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Exercise 1. Give an example of a morphism of ringed spaces that is not a
morphism of schemes.

Answer. Let X = Y = Spec(R) = {η, p} where R is a DVR and p is the
closed point. Let f ∶ X → Y be the constant function f(x) = p. Now, recall
that OX(X) = R, OX({η}) = K = Frac(R) and OX(∅) = 0. Consequently
writing F ∶= f∗OX , we have F(X) = R, F({η}) = 0 = F(∅). Define f# by
setting it to be the identity on OX(X) and the zero map otherwise. This is
obviously a map of sheaves and hence we obtain a map of ringed spaces (f, f#).
However, notice that f# is not a local ring map since in fact Fη = 0 (notice
that {η} is an open neighbourhood of η on which F is constantly zero) whereas
OX,f(η) = OX,p = Rp = R ≠ 0. We conclude that f# ∶ OX,f(η) → Fη cannot be a
local ring map (in particular because the zero ring is not local) and f is not a
morphism of schemes.

Exercise 2. Show that any irreducible closed non-empty subset of a scheme has
a unique generic point.

Answer. We first show this for affine schemes: Let X = Spec(R) and Y ⊆ X

closed and irreducible. Then Y = Z(a) for some radical ideal a. We claim that
in order for Y to be irreducible, a must be prime. Indeed, if not then there
exist f, g ∈ R such that f, g ∉ a but fg ∈ a. Since a is radical, this means that√

a ⊊
√
(f + a) and analogously for g. As shown in the lecture, this implies that

Z(f + a) ⊊ Z(a) and thus Z(a) = Z(f + a) ∪ Z(g + a) is a decomposition of a

into closed proper subsets showing that Z(a) is not irreducible. Finally a ≠ R
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since Y ≠ ∅. This shows the claim.

But now, since {a} = Z(a) as was shown in the lecture, a is a generic point
of Z(a). Moreover, if b is a second generic point then Z(a) ⊆ Z(b) and thus
b ⊆ a. But since b ∈ Y = Z(a), we also have a ⊆ b and consequently a = b showing
uniqueness.

For general X let Y ⊆X be irreducible. Then consider U ⊆X affine open such
that U ∩Y ≠ ∅. Since U ∩Y ⊆ Y is open an open subset of Y and a closed subset
of U , by the above argument, there exists a generic point x ∈ U ∩ Y . That is
to say the closure of {x} in U ∩ Y is U ∩ Y . Thus the closure of x in Y must
contain U ∩ Y . Now note that that Y is irreducible and consequently the open
subset U ∩ Y is dense showing that in fact the closure of x in Y is Y and x is a
generic point of Y . For uniqueness let y ∈ Y be a second generic point. Observe
that a point is generic if and only if it is contained in every open subset. This
immediately implies that y ∈ U ∩ Y . By the argument for affine schemes given
above, we conclude x = y.

Exercise 3. Show that a scheme X is integral (i.e. irreducible and OX,x is
reduced for all x ∈X ) if and only if OX(U) is an integral domain for any affine
open subset ∅ ≠ U ⊆X.

Answer. We first show that any integral scheme satisfies that OX(U) is an
integral domain for any affine open subset U ⊆ X. To this end, we assume by
contraposition that there exists an affine open subset U ⊆X such that OX(U) is
not an integral domain. If X is not irreducible we are done. Consequently assume
X is irreducible. Notice that the stalk of OX at some x ∈ U is isomorphic to the
stalk of the restriction of the sheaf OX to U at x. Indeed, using the definition
of the stalk by the colimit, this follows from the fact that any open subset of X

contains an open subset of U . Hence in order to show that OX,x is not reduced,
we may restrict to U and thus assume X = Spec(R) for some R (notice that
since U ⊆ X is open, it is again irreducible). We have OX(U) = OX(X) = R.
That is to say, R is not an integral domain. Let f, g ∈ R ∖ {0} with f ⋅ g = 0.
Notice that this implies that every prime must contain either f or g (since
the quotient by the prime must be an integral domain) and it follows that
X = Spec(R) = Z(f)∪Z(g). But now, X is irreducible and consequently it must
hold that Z(f) =X or Z(g) =X. Without loss of generality, Z(f) =X. That is
to say, every prime contains f or equivalently, f is nilpotent. We now construct
a prime p such that f is non-zero in OX,p which finishes the proof. To do so,
notice that Ann(f) ∶= {r ∈ R ∶ rf = 0} is an ideal and since f ≠ 0, Ann(f) ≠ R.
Consequently there exists a maximal ideal p which contains Ann(f). Now, if f

were zero in OX,p = Rp,then by definition of the localization, there would exist
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some g ∈ R ∖ p with fg = 0 which is impossible since p contains the annihilator
of f . Thus we conclude.

For the converse, we again proceed by contrapositon and assume that X is either
not irreducible or there exists an x ∈X such that OX,x is not reduced.

In the first case, this is equivalent to saying that there exist V1, V2 ⊆ X open
such that V1 ∩ V2 = ∅. Let U1 ⊆ V1 and U2 ⊆ V2 be non-empty, affine subsets,
U1 = Spec(R1), U2 = Spec(R2). Since the subsets are non-empty, the Ri are not
the zero ring. By the previous exercise sheet, we now have that OX(U1 ∪U2) ≅
Spec(R1 ×R2). This is not an integral domain and since U ∶= U1 ∪U2 is affine,
we conclude.

In the second case, let x ∈X such that OX,x is not reduced. As above, we may
restrict to X = U = Spec(R) affine. Then letting p be the prime corresponding to
x, OX,x = Rp. Let a

b
∈ Rp be nilpotent and non-zero, a, b ∈ R. Then necessarily

also a is nilpotent. That is to say, there exists some k ∈ N and g ∈ R ∖ p such
that ak ⋅ g = 0. Hence R = OX(U) is not an integral domain.

Exercise 4. Let p be a prime. For a scheme X over Fp, define F ∶ X → X to
be the identity map on the underlying topological space and F # ∶ OX → OX to be
the map F #(g) = gp. Show that this is a map of schemes.

Answer. Obviously, F is continuous. As remarked in the lecture, the fact that
X is a scheme over Fp means that OX is a sheaf of Fp-algebras. Let U ⊆ X

be open. Then F # obviously defines a ring morphism since p = 0 in OX(U).
Moreover, F # obviously commutes with the restriction maps (it commutes
with any ring morphism). Hence it remains to show that the induced map
OX,x → OX,x is a local morphism. This map is again given by g ↦ gp. But now,
if g is contained in the maximal ideal, then obviously so too is gp. That is to
say, F #(m) ⊆ m and we conclude.
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