Chapter 13 Weil conjectures This Chapter is NOT part or m Evjoy:) (following Martshorne, Appendix C +Milhe de Lectures on étale cohomology, chapter I) Main idea: intrinsic connections arithmetic of alg varieties over finite fields (----> of alg varieties over complex numbers Explaining these connections uses many new words, but I will give some idea. Scalar extension rings ny affine schemes ny schemes XESch_R, San R-algebra ~ X×S = Speck(X)@S R 3 R for X affine 1) An x C = Spec Mit, , t,) Q C = A C Ex, 2) X E Sch Z (Similarly for X E Sch Z) (Similarly for X E Sch Z (G)) Z (Similarly for X E Sch Z (G)) Z (G)) (Similarly for X E Sch Z (G)) Z (G)) (Similarly for X E Sch Z (G)) Z (G)) (Similarly for X E Sch Z (G)) (Similarly for X E Sch

"look at solutions of equations over different fields"

Rem. $X \in Sch_k$ is still can define E(X), less explicitly than for k = C. & Arithmetic invariants X finite type IF2-scheme. $N_{r}(x) := |x(F_{qr})| - number of pts of x$ $with residue field <math>F_{qr}$ If $x \in A^{n}$ is cut out by some equations with F_{q}^{q} -coefficients, then $N_{r}(x)$ coulds solutions whose coords are in F_{qr} .

- E_{Σ} : $\chi = P_{W_{r_{1}}}^{T}$
- $N_r(x) = q^r + 1$ $\forall r$, because $H^{1}(H_{\overline{q}}) = \bigcup_{a \in H_{\overline{q}}} \{ [1:a] \} \cup \{ [0:1] \}$ Q: How to pack (Nr(x)) nicely together? A: Get inspiration from the g-function!
- def. The zeta-function of X is $Z(X; t) := exp(\tilde{\Sigma}N_{r} t) \in \mathbb{Q}[t+1]$ $e^{(f)} = 1 + f + \frac{f^2}{2!} + \cdots$ $E_{X}: X = \mathbb{P}_{f_{q}}^{1} = 2(\mathbb{P}_{f_{1}}^{1}; t) = \exp\left(\tilde{\mathbb{E}}(q_{1}^{1}+1)\frac{t}{r}\right) = \frac{1}{(1-t)(1-qt)}$

& Weil conjectures Thm. X smooth projective IFq-scheme of dimension h. 1) Z(t):= Z(X;t) is a rational hundrion: $Z(t) \in Q(t) \subset Q(t)$ 2) Z(t) satisfies a functional equation: $2\left(\frac{1}{q^{h}\cdot t}\right) = \pm q^{h\cdot E/2} \cdot t^{E} \cdot 2(t), \text{ where } E = E(x)$ 3) analogue of the Riemann hyp.: $\mathcal{Z}(t) = \frac{P_1(t) \cdot P_3(t) \cdots P_{2n-1}(t)}{P_1(t)}$ Po(t), P2(t) P2n(t) where $P_i(t) \in \mathbb{Z}[t]$ $\forall i:$ $P_{o}(t) = 1 - t; P_{2h}(t) = 1 - q^{h}t$ and V1 sis 2n-1 all roots of Pi(t) are algebraic integers with absolute value q2. 4) We have: E(X) = E(-1)' deg P;. Moreover, if X = Y × 15g for Y a smooth &-scheme, then $\deg P_i = B_i(y \times C)$ (or $Z_{(2)}$ -scheme) Arithmetic data over IFgr (Nr) is related to topological data over C (E and Bi)!

Ex: 1)
$$K = \mathbb{P}_{\mathcal{X}}^{1} \longrightarrow \mathbb{P}_{2}(+) = 1 \longrightarrow \deg \mathbb{P}_{2}(+) = 0 = \mathbb{B}_{1}$$
.
2) $X = \mathbb{P}_{\mathcal{X}}^{h} \longrightarrow \mathbb{P}(X, +) = \frac{1}{(1 - t)(1 - qt) \cdots (1 - q^{h}t)}$,
and all the properties follows (exercise).

Relation to Riemann hypothesis
s-function:
$$S(s) = \prod_{p} \frac{1}{1-p^{-s}}$$

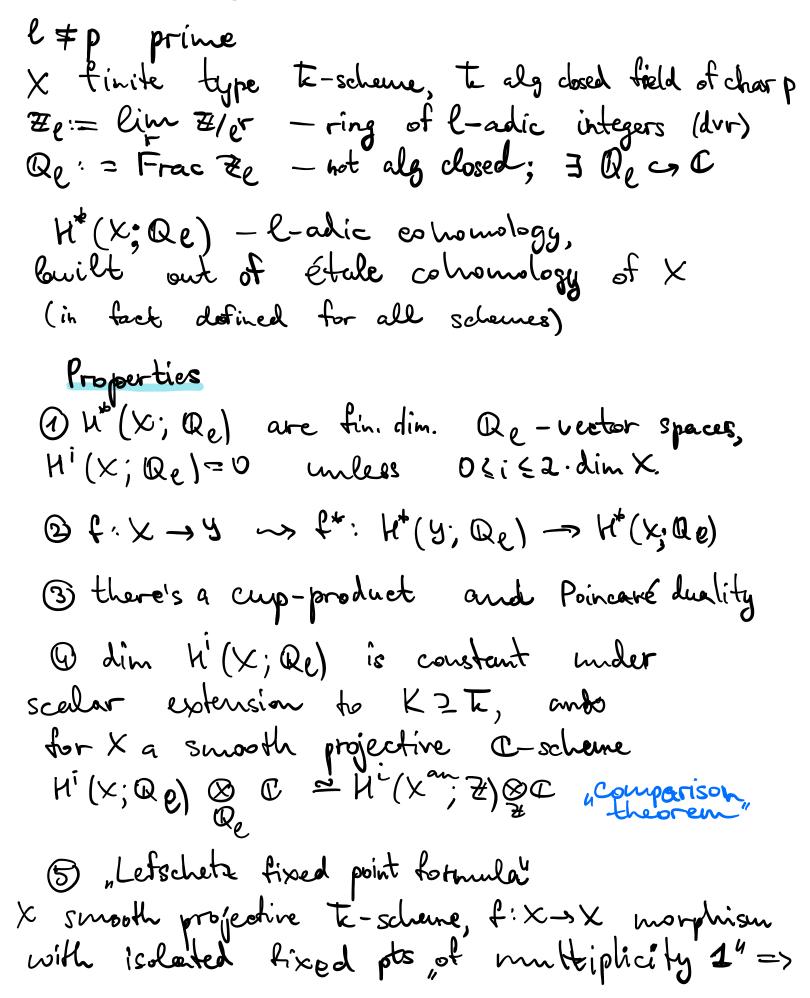
We have: $p = |F_{p}| = |k(x)|$ for $x = (p) \in \mathbb{Z}$.
X finite type \mathcal{X} -scheme as
 $S_{X}(s) := \prod_{\substack{x \in X \\ closed pte}} \frac{1}{1-|k(\infty)|^{-s}}$
Ex. $S_{spec}(s) = \varepsilon(s)$
Claim: If X is a finite type $k_{\overline{2}}$ -scheme,
then it's a fit. \mathcal{X} -scheme (via $\mathcal{X} \rightarrow \mathcal{X}/p\mathcal{X} \rightarrow \mathcal{E}_{\overline{2}})$
and $S_{X}(s) = \mathbb{Z}(X; q^{-s})$.
(to check, take log of both sides and
use basic Galois theory: L/k separate ext.
 $=\mathcal{T} \# (\bigcup_{x \in X}) = \mathbb{E}(L; k]$)

Speculation: If Spec Z was an Fg-curve (1, F1) 3) => roots of 2(t) = roots of $P_1 =$ alg integers with absolute value $q^{\frac{1}{2}}$. => by Claim, roots of 5(s) have \$ Re=1 (trivial zeroes aren't visible here because & spoc I is not projective, one would need to compactify...) Kowever, Spec I is not an Fe-scheme, in particular \$(s) is not rational and its roots are not algebraic integers. But one can dream to use alg-geon methods to prove the Riemann hypothesis...:)

& Kistory

· Weil proved the conjectures for Fig-curves · Weil: conjectures would hollow tormally if there was a cohomology theory for IFq-schemes with nice properties similar to singular cohomology of C-schemes, and comparable with H^{*}_{sing} (x^{an}, Z) when X is a Z-scheme. · Alg Geom Seminar (SGA) at IHES (Grothendieck, Serre, Artin, Deligne, ...) constructed l-adic cohomology with expected properties ~ proved (1), (2), (4) Methods turned out to be more important than the statement, as it often happens. · Deligne: proved (3) - much barder "Riemann hyp." (For the proof he wrote up SGA 4.5 and disappointed Grothendieck who wanted to deduce 3 from his Standard Conjectures - still wich open ...)

& L-adic cohomology



fixed pts of
$$f = I_{n}(-1)^{i} (Tr)(f^{*}; H^{i}(X; \mathcal{Q}_{e}))$$

trace of a linear map
Ex: $X = discrete finite set$
 $H^{*} = H^{\circ} = \bigoplus \mathbb{Q}_{e} \cdot [se] =>$ the matrix of $f^{*}: H^{\circ} \rightarrow H^{\circ}$
on the diagonal has a for each fixed pt
and O otherwise => #fixed pts = trace
Main idea: X smooths projective F_{n} -schene, dim $X = h$.
 $X := X \times F_{d} \rightarrow F^{*}: X \rightarrow X - Frobenius map$
fixed pts of $F^{*} = pts$ of X (with coords in F_{0} ; i.e. $\kappa(x) = F_{d}$
fixed pts of $F^{*} = pts$ with residue field F_{0}^{*} .
 $N_{r}(X) = \# fixed pts of $F^{*} = \sum_{i=0}^{n} (-1)^{i} \cdot \operatorname{Tr}(F^{r*}, H^{i}(\overline{X}; \mathbb{Q}_{e}))$.
Hence: $E(X; t) = \prod_{i=0}^{n} [\exp(\sum_{i=0}^{n} Tr(F^{*}, H^{i}(\overline{X}; \mathbb{Q}_{e})) \cdot t^{*}]^{T}$
 $example: \exp(\sum_{i=1}^{n} K_{i}^{*}) = \frac{f_{n}(t) \cdots f_{2n-1}(t)}{f_{n}(t) \cdots f_{n-1}(t)}$ characteristic pts
ohere $P_{i}(t) = \det(1 - F^{*}, t; H^{i}(\overline{X}; \mathbb{Q}_{e}))$.
(Je get Cheil conjectures except , Riemann hyp.⁴:
 $O - ok$, because $O(E(T)) \cap O_{e}(t) = O(t)$
 $O - follows from comparison theorem
 O does not follow \rightarrow Delignets Fields medel.$$