Another approach: · consider each irreducible component separately, and dim is the maximum of dim's of components . for each component use the following Fact χ irreducible variety, UCX open ($\neq p$). Then dim $\mu = dim \chi$. Rem <: general fact for top. spaces >: specific for algebraic verieties Ex. 1) $|P^{h} = |A^{hH}_{-0}|_{2}$ is irreducible, $|A^{h} \subset |P^{h}_{-0}|_{2} \Rightarrow \dim |P^{h}_{-0}|_{2}$ 2) Gr(2,n) is irreduble; has an open cover by $D_{ij} \simeq A^{2n-4} \Rightarrow$ dim $Gr(2, n) = 2 \cdot (n - 2).$ More generally, dim Gr(d, n) = d. (n-d). The Fact follows from the following important result (prove later). Thur. & irreducible variety, then dim X = tr dim_k k(x) en transcendence

dd. Let
$$\varphi' \times \cdot \cdot \cdot \cdot \times \cdot$$
 a morphism of varieties.
 φ is affine if \forall affine $U \subseteq Y$ $\varphi^{-1}(V) \subseteq \times$ is affine.
 φ is finite if it's affine and
 $\forall y \in Y \exists affine U \ni Y \quad s.t. \quad \varphi: \varphi^{-1} \cup \rightarrow V$ is fluite.
 $\exists x \cdot i \land x := 2(x^{3} - y^{-1}) \subset A^{2}$
 $\varphi' \times \rightarrow A^{1}$ projection to x -axis
 $\varphi'': \land \Box A^{1} \rightarrow \land \Box X \exists$
 $\land \Box x := x \land \Box x, y \exists /y^{2} - x^{3}$ cuspidal
 $as \land \Box x := 1$
 $bin : \Box as conset diags are finite, aldhaugh it has finite fibers!
 $Bi: \Box as conset a unbeddiags are finite, aldhaugh it has finite fibers!
 $Bi: \Box as conset a unbeddiags are finite, although it has finite fibers!
 $Bi: \Box as conset a unbeddiags are finite, although it has finite fibers!
 $Bi: \Box as conset a unbeddiags are finite, although it has finite fibers!
 $Bi: \Box as conset a unbeddiags are finite, although it has finite fibers!
 $Bi: \Box as conset a unbeddiags are finite, although it has finite fibers!
 $Bi: \Box as conset a unbeddiags are finite, although it has finite fibers!
 $Bi: \Box as conset a unbeddiags are finite, although it has finite fibers!
 $Bi: \Box as conset a unbeddiags are finite, although it has finite fibers!
 $Bi: \Box as conset a unbeddiags are finite, although it has finite fibers!
 $Bi: \Box as conset a unbeddiags are finite, although it has finite fibers!
 $Bi: \Box as conset a unbeddiags are finite, although it has finite fibers!
 $$$$$$$$$$$$$$$

-

We can refine it. Prop (Going Up) appeared in Comm Alg! q: X-> Y finite dominant morphism, ZEY closed irreducible subset => $\exists \omega \in x \text{ closed irreducible s.t. } \varphi(\omega) = 2.$ Proof: By previous Prop, op surjective => op-'(2) EX closed hon-empty => op¹(2) = W1U...UWr irreduciple comps $\Rightarrow \phi(\omega_{1}) \cup \dots \cup \phi(\omega_{r}) = 2$ => 3i: $\phi(w_i) = 2$ because 2 irred.

Lemma.
q: X -> Y finite dominant morphism,
2 CX proper closed subset =>
$$p(z) CY$$
 is proper.
Proof: We can assume X, 9 affine irreducible
Suppose $p(z) = 9$, let $f \in I(z)$.
p finite => $k CX$ is a fin.gen. $k [Y] - Godule =>$
J relation
 $f^{h} + p^{*}(a_{h+1})f^{h-1} + \dots + p^{*}(a_{0}) = 0$
with $a_{0,\dots,n_{h}} C \in CY$ s.t. h is minimal.
Since $f(x) = 0$ $\forall x \in z$,
 $p^{*}(a_{0})(x) = 0$ so a_{0} vanishes along $p(z) = Y$,
hence $G_{0} = 0$ because p^{*} injective.
This contradicts h minimal => f=0 and $z = x!$

Using these tools, we can deduce
Thm.
$$p: X \rightarrow Y$$
 finite morphism =>
dim X ≤ dim Y.
If p is also dominant, then
dim X = dim Y.

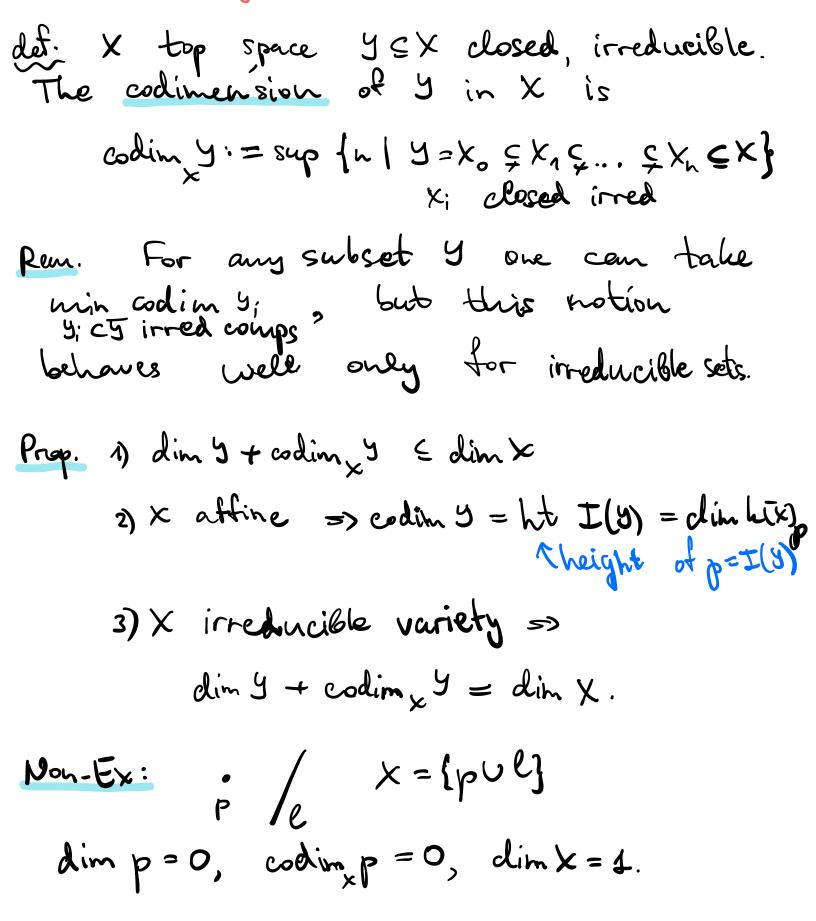
Proof. Replacing Y by
$$\overline{p(X)}$$
, we reduce
to proving the second statement.
Take $W \circ \subseteq \dots \subseteq Wr$ chain of closed irred in X.
Then $p(W \circ) \subset \dots \subset p(Wr)$ is a chain in Y:
irred - ok, closed - because p finite.
Last Lemma => indusions are strict =>
dim X \in dim Y.

Conversely, a chain Zo G.... GZr in Y by Going Up gives a chain $\omega_0 \in ... \in \omega_r$ in X s.t. $\phi(\omega_i) = \overline{z_i}$. Thuild it from top: $\omega_r - \omega_{r-1} - \overline{z_r}$. Hence dim X > dim Y.

SMether normalization
Pecall Norther normalization lemma:
Thun A fin.gen. k-algebra =>
A is a finite expression of
$$k \text{Lx}_{n-n} \text{zd}$$
.
Moreover, for infinite k, $A \simeq k(\text{z}_{n-1}, \text{z}_n)/T$ ~>
aci can be chosen as lehear combinations of z.
Ex. $A = C[\text{z},y]/(\text{zy}-1) = C[\text{z},x^{-1}]$
hot finite over $k(\text{z})$
Set $x:=u+iv$ ~> $A = C[u,v]/(2+v^2-k)$
finite over $k(\text{z})$
because $v^2 + (u^2-i)$ is monic in V .
 $xy=1$ $v^2 = v^2$ v^2
Cor. (Geometric interpretation, k infinite)
 $x \in D^n$ affine => \exists projection $A^n \rightarrow A^d$
which induces linear map
a finite dominant morphism $X = A^d$.
puretrocendent algebric

Morally: it's similar to L/k decomposing as kCFCL

fCodimension



Thum (Krull's principal ideal thun) A noetherian ring, f≠O, f & A[×] => V minimal prime ideal p=f: htp ≤ 1. If f not a zero divisor => htp = 1. Cor. X variety, f = 0 EOx(X). If Z(f) = Ø, Hen codim Z ≤ 1 & irred component Z of Z(f) an extra equation drops dimension at most by 1" Ex. Zely A² codim 1 = Z(y) has coolim 0 in Z(x.y) NB: Not every codim 1 subvariety is cut out by one equation! let X = Z(xy-zt) CAA", irreducible, dim K = 3 Consider the plane $\Xi(x, z) \subset X$: it has dim 2 => coolim 1 in X but it is not cut out by one equation.

Thm. X alg variety, fr..., fr EOX(X). Then every component Z of Z(fr..., fr) has codim <r. Proof: . X irreducible. Want: dim Z > h-t; h=dimX. Induction on V: r=1 - previous case r>1: let be a comparent of Z(fing f) that contains Z. By induction, dim (? n-(r-1). Z is a component of WnZ(fr) $f_r \equiv 0$ on $W \equiv i$ Z = W and dim Z = dim W - 1 by krall's flum dim Z = N - r + 1 = n - r.X=UX; irreducible comps Fix Z us choose i s.t. Z ⊆ Xi and codim Z = codim Z (i.e. codim in X; is maximal). Then Ξ is an irr comp of $\Xi(f_{1,...},f_{r}) \cap X_{i} \rightarrow Codim \Sigma = codim \Sigma \leq r.$

s systems of parameters Morally: "local coordinates" det. A local Noetherian ring of dim n, mcA. A sequence $(f_{1,...,f_n})$ in m is a system of parameters if $(f_{1...,f_n})$ is m-primary, $j.\varrho. \quad \sqrt{(f_1, \dots, f_n)} = h.$ In other words, A/(f1,,,fn) is Artinian ring, Geometric interpretation det x affine var. of dim n, $x \in X$. $(f_{n}, ..., f_{n}) \in \mathcal{O}_{X, \pi} =: A$ is a system of parameters at x if all f'_{i} 's vanish at x and x is isolated (i.e., an irreducible comp.) in $Z(f_{n}, ..., f_{n})$. By Nullstellensatz, it's the same def. Ex. $A = h(x, y, 2)/(xy-z^2)$, choose the point (90,0) · (x, y) form a system of parameters at 0, because $\overline{(x,y)} = (x, y, z)$ y=0 y=0 · (x, 2) does not -ll-, because A/(x,z) $\sim k(y]$, so $p = (x,z) \subset (x,y,z)$ is strict. parabolas for fixed y

Prop. (they exist!) X affine irreducible of dim h, xEX. Then $\exists f_{n,...,f_n} \in \mathbb{L}[X]$ s.t. x is an isolated point in $\mathcal{L}(f_{n,...,f_n}) \subset X$. Proof: skip uses: Krull's thin and prime avoidance lemma (comm alg).

SApplications Fibers of morphisms Prop. p: X > Y dominant morphism, y G q(X). Then & component 2 of q-'(4), dim Z > dim X - dim y. th can be strict Proof. Can assume X, Y attine, r=dim Y. Choose (fr, fr) system of parameters at y. By replacing y with an affine open, are can assume $\Xi(f_1, ..., f_r) = y$. Hence $\varphi^{-1}(y) = \overline{Z}(\varphi^* f_{1,...}, \varphi^* f_r).$ By generalized Krull's thin, every component of $\varphi^{-1}(y)$ has codim $\in r$. Kence dim X - dim Z Er = dim y. A stronger statement is true, but harder to prove. Thm. Under the same assumptions, I non-empty open USY s.t. YYEU V non-empty comp Z of q-1(3): dim Z = dim X-dim Y.

Intersections

Prop. (Affine case) X, Y E A affine irreducible varieties. Then I non-empty component ZEKny codim ZE codim X + codim Y Proof. Consider the diagonal {(x,x) | x \in X}=: $\Delta_X \subset X \times X$. "reduction to the diagonal" For X, y S/A" $x \cap y = (x \times y) \cap \Delta_{A^n} \subset A^n \times A^n.$ $\{x_i\} \quad \{y_i\}$ Hurrah! Δ_{μ} $C/A^n \times \mu^n$ is cut out by h equations $\{x_i - y_i\}_{i=1}^n$, and has codim h. Kence Xxy n Am cXxy is cut out by restrictions of these equations to XXY. By Krule's Hum, & component ZCXny Satisfies dim = >, dim (x × 3) - h dim X + dim 9 - n => codim 2 & codim X + codim Y.

Ex. $X, y \in A^n$ is important, otherwise: $Q := Z(xw-yz) \subset A^n$ 3-dimensional $Z_1 = (x,y)$ and $Z_2 = (Z_1w)$ intersect at p=0. We have: $\operatorname{codim}_{Q} p = 3;$ $\operatorname{codim}_{Q} Z_1 = \operatorname{codim}_{Q} Z_2 = 1;$ and $3 \notin 1+1$!

by previous Prop we have by
codim
$$\neq \leq coolim C(x) + coolim C(y)$$
 (m),
Ant:
so dim $\geq > 1 =>$
 $C(x) \cap C(y) - 0$ is non-empty
 $=> x \cap y \neq \emptyset$.
Moreover, $C(x) \cap C(y)$ is the cone
over $x \cap y$,
so the desired inequality of codim
follows from the previous Prop
applied to the cones.
Ex. Again, $\leq 10^{11}$ is important, otherwise:
take $10^{11} \times 10^{11}$ with coords $(x_0: x_1)i(y_0: y_1)$.
Consider $L_q = \mathbb{Z}_+(x_0)$ and $L_2 = \mathbb{Z}_+(x_1)$.
We have
 $codim L_1 + codim L_2 = 1 + 1 = dim 10^{11} \times 10^{11}$
but $L_q \cap L_2 = \emptyset$.