Chapter 7 Birationality No: in this chapter all varieties are by default assumed to be irreducible and separated! def. A variety X is separated if $\Delta_X \subset X \times X$ is closed. Lemma X separated (=> V 4, 4: Z -> X locus (p=43 is closed.

We identify rational maps that agree on some non-empty open subset.

det.-Lemma. Given
$$\varphi: X \longrightarrow \exists : U_Q \subseteq X$$
 that is
The maximal subset of definition of φ .
Proof: $\exists: \quad \exists: \quad \exists := \{ U \subseteq X \text{ open} \} \varphi$ extends to a?
 X Noetherian \Longrightarrow Ξ has a maximal element

.1: assume both
$$q_1: V_1 \rightarrow 4$$
, $p_2: V_2 \rightarrow 4$ estend $q: U_1 \rightarrow 4$.
We can extend q to $U_1 \cup U_2$ by pluing,
hence $V_1 = U_2$ as they are both maximal.
But we know that $p_1 = q_2$ on $U \cap V_1 \cap V_2$.
 $4 \text{ separated} => by det.$, the locus $fq_1 = q_2$ is
closed in $V_1 \cap V_2 =>$ it must be whole $V_1 \cap V_2$.
 $fx:$ Coemonal transformation (quadratic transform)
 $q: |P^2 - \rightarrow |P^2 (x:y:z) \rightarrow (xy: xz:yz),$
 $U_q = |P^2 - ((1:0:0) \cup (0:1:0) \cup (0:0:1)).$
But on $D_+(xyz): q(x:y:z),$
hence $q \circ q = id$ on $D_+(xyz),$
 $v = (x) + o (0:0:1).$

Rem: 1) q: X..., y w q(uq) ⊆ y doesn't have to les open, so a priori me comb compose $\varphi: X \longrightarrow Y$ and $\varphi: Y \longrightarrow Z$ because it may be that $\varphi(U_{\varphi}) \cap U_{\varphi} = \emptyset$. But this is not on issue when φ is dominant, i.e. $\varphi(u_{\varphi}) \subseteq Y$ is dense. $2) \{\varphi: X \longrightarrow A^{1}\} = \langle \varphi \in L(X) \rangle_{\mathcal{F}}$ so rational maps to correspond to rational functions, hence the hame. In particular, $q: X \dots Y$ rational dominant induces $q^{\flat}: k(Y) \rightarrow k(X)$ fractoq. det. The category Ratic consists of irreducible k-varieties and dominant vational maps between them. Thm. There is an equivalence of categories: Ratop ~ fin. gen. k ~ field extensions $X \longrightarrow k(k)$ $\varphi: X \dots Y \longmapsto \varphi^* k(Y) \rightarrow k(X)$ Cor. $X \sim y$ iff $k(X) \sim k(y)$ bir as k-algebras. (k-extensions)

Rem. It's important that k(x)=k(y) as k-extensions: C(sc) and C are ison as fields but not as C-algebras Ex. 12 ~ 12 × 12' because k (12)=k(12'x12')=k(xy). Both have 12 as a dense open subset Proof. · Y F/k fin.gen. J X: F= k(X) holds because F = Frac(R), R reduced fin. sen. halg. given k-algebra how $\angle k(Y) \rightarrow k(X)$ want: $\varphi': X - \gamma Y$ s.t. $\measuredangle = \varphi^{*}$. Choose any affine opens $U \subseteq X$ and $V \subseteq Y$. Let $A = O_{x}(u) \subset k(x)$, $B = O_{y}(v) \subset k(y)$. A privori, d(B) & A, so we want to replace A with some Aa = D(a) so that $\mathcal{A}(\mathcal{B}) \in \mathcal{A}_{\alpha}$. Choose $b_{1,...,b_s}$ generators of B as a k-algebra, they give $\lambda(b_1),...,\lambda(b_s) \in le(X)$. Write $d(b_i) = \frac{a_i}{a} \in k(x), \quad a_i, a \in A$ it's possible because k(X) = Frac(A). Kence d: B -> Aa Ek(X) and we can choose $U:=\mathfrak{d}(\alpha)\subseteq X$. Main theorem of affine varieties gives a unique morphism $p: D(a) \rightarrow V$ s.t. $p^{*} = x$ (other U, V~same rational map) $p: X \xrightarrow{\mathbb{V}} y$ rational map

Now we can prove the promised Prop. Prop. Any variety of dim h is Birational to a hypersurface in 12n+1. Proof: $n = \dim X = tr \deg_k k(X)$, hence $k(X)/k(x_1, ..., x_n)$ is a finite separable extension. By the Prinitive element thus, ∃yek(k) algebraic over k(x,,,xn) s.t. $k(\mathbf{x}) = k(\mathbf{y}, \mathbf{x}_{1, \dots}, \mathbf{x}_{n}).$ y is algebraic => I minimal polynomial $y^{m} + a_{m-1} y^{m-1} + \dots + a_0 = 0, \quad a_i \in k(z_{n, \dots, \infty} x_n).$ clear denominators => $f(y, x_{1, \dots, \infty_n}) = 0, \quad f \quad irreducible.$ $Z(f) \subset A^{n+1}$ is a hypersurface s.t. $k(Z(f)) \simeq k(X)$ as extensions of k => by Corohary, X~ Z(P).

*: uses that every extension of a perfect (e.g. algebraically closed) field is separable (see Lang "Algebra" <u>VIII</u>, Cor. 4.4)

det. A normalization of a variety X is a normal variety X with a finite Birational morphism (defined on whole X) T: X -> X that is universal: V dominant y: Y-x where Y is normal, factors through TT. Thun. I variety X I! normalization T: X -> X (unique up to isour) | -> < Proof for attines (in general: gluing ... lengthy) A:= htx), B:= integral closure of A in Frac(A) = h(k). Fact (CA): B is a finite A-module. In particular, B is a f.g. k-algebra, so $B = k[\tilde{X}]$ and $\pi: \tilde{X} \to X$ is finite. Since $\pi^*: k(x) \rightarrow k(\tilde{x})$ is an isom, It is birational. Universality: $\psi: \mathcal{Y} \to \mathcal{X}$ dominant => $k(\mathcal{X}) \subseteq k(\mathcal{Y})$ y normal => kty] <k(y) integrally closed. Hence ULEK(X) integral over k[X] LEK[Y], so k[X] E k[Y] giving the factorization Y -> X.

& Birational automorphisms Birational antomorphisms give an important invariant: X in Bir(x): = {q:x...>X bir actional } a group under composition! Rem. 1) Bir X & Bir y => X + y Bir 2) Aut(X) < Bir (X) ii {p:X==>X] Subgroup Bir 1Ph is called noth Cremona group. Then we proved => Bir ph = Gal k k(x1...,xn). By Remark, PGIL (k) & Bir Iph GL^H_{h+1}(k)/k - acts on P^h via linear transformations 1) Bir IP' - PGL (k) (prove later) Ex. 2) Bir 12² is generated by PGLy(k) and the Cremona transformation, so only linear + quadratic transforms Max Noether's thm 3) Bir IP" is huge when h > 3 (no simple description, uncountably many generators)

Prop. Rational maps
$$|P' - - > |P'|$$
 can
always be extended to morphisms.
Cor. Bir $|P'| = Aut |P'| = PGL_2(k)$
prove later in the course
 $Proof: \varphi: |P' - - > |P'|$, $U_{\varphi} - maximal$ subset of def.
Let $V: = \varphi^{-1}(\varphi(U_{\varphi}) \cap D_{+}(x_{0})) \subseteq \mathbb{R}^{n}$ apen,
we get a morphism
 $\varphi| : V \rightarrow D_{+}(x_{0}) \simeq |A'|$.

Define $\mathbb{P}^{1} \xrightarrow{\mathbb{P}} \mathbb{P}^{1}$ as $(y_{0}; y_{1}) \mapsto (f_{0}(y_{0}, y_{1}); f_{1}(y_{0}, y_{1}))$ $\cdot \mathbb{P}$ is a morphism because f_{0}, f_{1} here he foctors $\cdot \mathbb{P}$ extends $\phi: x_{0} \neq 0 \Rightarrow \phi = \frac{f_{1}}{f_{0}}$ Rem. By the same argument, any $\rho:\mathbb{P}^{1} \longrightarrow \mathbb{P}^{n}$ extends to $\mathbb{P}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{n}$.

Ex.
$$Q = 2 + (xev - zy) \subset P^3$$
 quadric surface
• $Q = 2 + (xev - zy) \subset P^3$ quadric surface
($x:y:2: Q = 2 + (xev - zy) \cap Q$
($x:y:2: W = (xev - zy) \cap Q$
($x:y:2:W \to (xev - zy) \cap Q$
($x:y:2:W \to (xev - zy) \cap Q$
($x:y:2:W \to (xev - zy) \cap Q$

SBirational classification

f Blow-ups

NS: varieties are no longer assumed irreducible Blow-ups: important examples of birational norphisms! (e.g., between projective varieties) "Blow up = zoom in, i.e. replace a subvariety with its tangent directions" Idea: to ublow up" a closed subvariety without changing its open complement, i.e. for ZCX closed construct a surjective birational map $\pi: \widetilde{X} \to X \qquad \text{s.t.}$ $\pi^{-1}(x-z) \rightarrow x-z$ is an isom. For example, one could choose Z Sing(X) in such a way that \tilde{X} is less singulary, and in cherr O one can always dotain a regular variety by a finite sequence of blow-ups, this procedure is called resolution of singularities" of X: Zitis a very hard thin that resolution exists in char 0. $\ddot{\chi}_{\lambda} \rightarrow \dots \rightarrow \ddot{\chi}_{\lambda} \rightarrow \chi \rightarrow \chi$ regular J singular blow-ups

Ex: blow-up along a point in P²
Recall: · V p = +q E P² there is a unique
time l = p² connecting them
· lines in p² that pass through
a fixed point p are parametrized by p⁴.
Say, p=(0:0:1), then the "plane at as'
is
$$H = \{(x:y:0)\} \cong H^2 - plane that doesn't cartain p
and the dijection sends l >p to lnH E H2.$$

We can assume
$$p = (0:0:1) \in \mathbb{P}^2$$
.
Let $X = \mathbb{P}^2$, $\tilde{X} := \mathbb{E}_{q}(x_0y_1 - x_1y_0) \subset \mathbb{P}^2 \times \mathbb{P}^2$
Exercise. $\tilde{X} = \{(q, \ell) \mid q \in X, \ell \in \mathbb{P}^1, \ell \in \mathbb{P}^2 \text{ contains}\}$
 f intuitively clear lives through p
Prop. Let $\pi : \tilde{X} \to X = \mathbb{P}^2$ - projection.
 $0 \in I := \pi^{-1}(p) \cong \mathbb{P}^2$
 $\Im = \pi^{-1}(p) \cong \mathbb{P}^2$
 $S = \pi$ is birational surjective.
Proof: 0 clear by construction

Dearsider the rational map
(y: 1^{p2} --> 1^p) (x₀: x₁: x₂) -> (x₀: x₁)
(De define the inverse to Tf as
X-p -> 1^p>0^p) x +> (x₁, y(x))
The image lies in X because in coordinates
(x₀: x₁: x₂) +> (x₀: x₁: x₂)×(x₀: x₁) - satisfies
(x₀: x₁: x₂) +> (x₀: x₁: x₂)×(x₀: x₁) - satisfies
Moreover
$$\forall q \in \mathcal{I}$$
 is in the image because
 $q = (x_0: x_1: x_2) \times (y_0: y_1) \in D_{+}(x_0) \times (p)$
(x₀ y₀: x₀y₁) can assume
 $q = (x_0: x_1: x_2) \times (y_0: y_1) \in D_{+}(x_0) \times (p)$
(x₀y₀: x₀y₁) can assume
 $q = (x_0: x_1: x_2) \times (y_0: y_1) \in D_{+}(x_0) \times (p)$
(x₀y₀: x₀y₁) can assume
 $q = (x_0: x_1: x_2) \times (y_0: y_1) \in D_{+}(x_0) \times (p)$
(x₀y₀: x₀y₁) can assume
 $q = (x_0: x_1: x_2) \times (y_0: y_1) \in D_{+}(x_0) \times (p)$
(x₀y₀: x₀y₁) can assume
 $q = (x_0: x_1: x_2) \times (y_0: y_1) \in D_{+}(x_0) \times (p)$
 $x_0 \neq 0 \Rightarrow y_0 \neq 0$
(x₀ y₁ x₁y₀) D₁(x₀) or D₁(x₁)
 $x_0 \neq 0 \Rightarrow y_0 \neq 0$
Thus tradition:
 $T = \sum_{x \in D} || x \in P^2 \times || p|$
 $x \neq 0 \Rightarrow y_0 \neq 0$
 $x_0 \neq 0 \Rightarrow y_0 \neq 0$ <

General blow-ups

$$X \subseteq A^{h}$$
 offine variety, $Z \subset X$ closed, $(I=X-Z, I(Z)=(f_{A},..,f_{+})ck[X]$.
Define $f: (I \rightarrow |P^{h-1} = I \cap f_{+}(X))$
Consider the graph
 $F_{f}:=\{(X_{1},f(X))\} \subset (I \times |P^{r-1} \subset X \times |P^{r-1} \cap f_{+}(X))\}$
Consider the graph
 $F_{f}:=\{(X_{1},f(X))\} \subset (I \times |P^{r-1} \subset X \times |P^{r-1} \cap f_{+}(X))\}$
def. The blow-up $Bl_{2}X$ of X along Z is
 $\tilde{X}:=\overline{F_{f}} \subset X \times |P^{r-1} \cap (closure in X \times |P^{r-1})$
 $T \cup -projection$
 $T \mapsto exceptional locus is universal property
 $E:=T^{-1}(Z).$
Down $Ta \subset U \times P^{r-1}$ is closed because.$

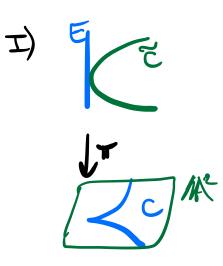
Pen.
$$F_F \subset U \times P^{r-1}$$
 is closed because
 P^{r-1} is separated, hence
 $\pi \colon \widetilde{X} - E \xrightarrow{\sim} X - 2$ is an isom,
so π is birational.

def. Let $y \subset x$ closed subvariety s.t. $y \not\in z$. The strict transform of y is $\widetilde{y} := BI \quad y = \overline{f_{f_j}} = \overline{\pi^{-1}(y-z)} \subset \widetilde{X}$ The total transform of y is 7-1(y): we have $t^{-1}(y) = y ve piece$ where $e=\pi^{-1}(y) \in x$ satisfies $\pi(e) \subseteq y \in \mathcal{Y}$. $\pi^{-1}(z)$ "e is not too big" Now, let (x,y) e Fe c U×p^{r-1}. By construction, $(x, y) = (x_1, ..., x_n) \times (y_1 : y_r)$ where $(y_1, ..., y_r)$ is proportional to $(f_n(x), ..., f_r(x))$. That means, the matrix $M = \begin{pmatrix} f_1(\infty) & f_r(\infty) \\ y_1 & y_r \end{pmatrix}$ has rank 1 on Tf, because $f_i(vz) \cdot y_i - f_j(x) \cdot y_i = 0 \quad i \neq j.$ These equations also hold on Tf, so we get: Prop. The blow-up & CX×10^{r-1} satisfies $\tilde{X} \subseteq \{(x, y) \in X \times |P^{r-1}| rk \begin{pmatrix} f_1(x) \dots f_r(x) \\ y_1 \dots y_r \end{pmatrix} \leq 1 \}$ \tilde{L}

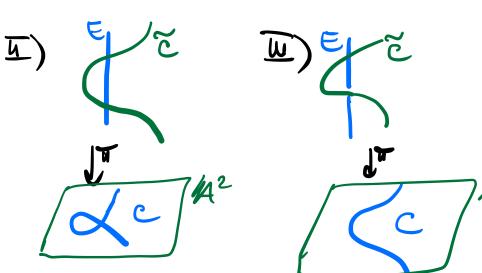
(=>when kors is Cohen-Macaulay notion from CA Fact: If I(2)=(f1,...,fr) s.t. (f1,...,fr) is a régular sequence (=> codim ==r), then X is fully determined by these equations, i.e. \subseteq in the Prop. is \equiv . Ex: Blow-up of An at the origin We have $O \in A^n = U = A^n - 0$ and f: U -> pn $x \mapsto (x_1, \dots, x_{h-1})$ The graph $\Gamma \subset A^h \times IP^{h-1}$ consists of $(x_1, \dots, x_n) \times (y_1 \cdots y_n)$ s.t. $\mathcal{M} = \begin{pmatrix} x_1 & \dots & x_n \\ y_n & \dots & y_n \end{pmatrix}$ has vanle 1. let $W \subset A^n \times P^{n-1}$ be the subvariety defined by vanishing minors of M. We know that Bloth EW. Claim: Bloth = W. Enough to shoe: Wis irreducible and dim W=4, because so is the blow-up: Blo An = If and If = An-O => Blo An is irred. of dimension h.

To do so, we will show that W has open cohering by $U_i \simeq A^h$ s.t. $U_i \cap U_j \neq \emptyset$. Lemma. W= UU: open covering of a top. space, Ui irreducible Ui, UinU: +Ø Ui,j. Then W is irreducible. Proof: exercise :) Let $pr: A^n \times A^{n-1} \rightarrow A^{n-1}$ $V_1: = pr^{-1} (D_+(y_1)).$ and We have: $V_{\gamma} \simeq A^{n} \times A^{n-1} \simeq A^{2n-1}$ Can assume y1 = 1 Then wov, is defined by equations x; = y; x, i=2,..,n, because $x_i y_i = y_i x_1 y_i = y_i x_i \quad \forall i \neq j.$ Hence $W \cap V_{q} \simeq M^{n}$, and same for other charts V_{i} . The sets $U_i = \{ U \cap V, j_{i} \}^h$ form an open covering of $W = \{ M'', j_{i} \}^h$ and $U_i \cap U_i \neq \emptyset$ $\forall i, i$.

Ex: blow-up of a cuepidal cubic $C = Z(y^2 - x^3) \subset M^2$ $\chi := A^2, \quad \tilde{\chi} := Bl_p M^2, \quad p = (0, 0).$ $\widetilde{X} = \left\{ \left(x, y, y, u_0; u_1 \right) \mid u_1 \times -u_0 y = 0 \right\} \subset \mathbb{A}^2 \times \mathbb{P}^1$ The total transform of C is $\pi^{-1}(C) = \begin{cases} u_1 x - u_0 y = 0 \\ y^2 - x^3 = 0 \end{cases} \subset M^2 \times \mathbb{P}^1$ because Cop As we saw, $T^{-1}(C) = C \cup E$ strict transform exceptional locus chart U. = {us=1]: Consider flre $\begin{cases} y_1 \propto -y = 0\\ y_2 - \chi_2 = 0 \end{cases}$ => $\begin{cases} y = 4_1 x \\ 4_1^2 = 2^2 - x^3 = x^2 (u_1^2 - x) = 0 \end{cases}$ Hence EnU, is the conic 2(42-2) CA2 - regular variety. In the chart 4, = {4, = 1}: $\begin{cases} x = u_{0}y \\ y^{2} - u_{0}^{3} \cdot y^{3} = y^{2} (1 - u_{0}^{3}y) = 0 \\ y = u_{0}^{3} \cdot y^{3} = y^{2} (1 - u_{0}^{3}y) = 0 \\ y = u_{0}^{3} \cdot y^{3} = y^{2} (1 - u_{0}^{3}y) = 0$ Hence $\tilde{C} \cap U_1 = \mathcal{Z}(1 - u_0^2 y) \subset A^2 \longrightarrow \tilde{C}$ is regular! Pictures

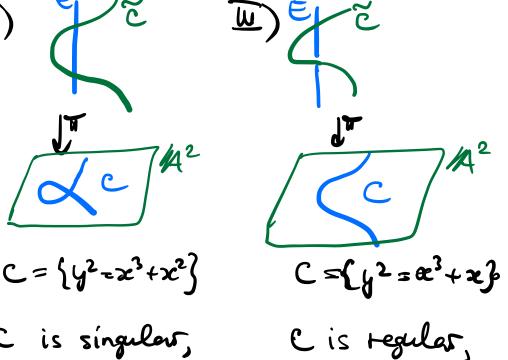


 $C=\left(y^2=x^3\right)$ C is singular, The is bijective



 $C = \left\{ y^2 = x^3 + x^2 \right\}$

C is singular, TT'(O) is 2 points Il ison outside O



the is ison. (no coincidence!)

No: Blow-up of a singularity can be singular! $E\infty$. $C = Z(y^2 - x^5) CA^2$ $\tilde{X} = B |_{o} A^{2} = \mathcal{Z} (u_{1} \propto - u_{o} y) \subset A^{2} \times P^{1}$ In the chart Up= [10 = 1]: (C~ C => c is the cuspided cubic! É $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \left(\begin{array}{c} \\ \end{array} \end{array} \end{array} \right) \begin{array}{c} \\ \end{array} \end{array} \end{array} \left(\begin{array}{c} \\ \end{array} \end{array} \right) \begin{array}{c} \\ \end{array} \end{array} \end{array} \left(\begin{array}{c} \\ \end{array} \end{array} \right) \begin{array}{c} \\ \end{array} \end{array} \left(\begin{array}{c} \\ \end{array} \end{array} \right) \begin{array}{c} \\ \end{array} \end{array} \left(\begin{array}{c} \\ \end{array} \right) \left(\begin{array}{c} \end{array} \right) \left(\begin{array}{c} \\ \end{array} \right) \left(\begin{array}{c} \end{array} \right) \left(\begin{array}{c} \\ \end{array} \right) \left(\begin{array}{c} \end{array} \right) \left(\begin{array}{c} \end{array} \right) \left(\begin{array}{c} \\ \end{array} \right) \left(\begin{array}{c} \end{array} \right) \left(\begin{array}{c} \\ \end{array} \right) \left(\begin{array}{c} \end{array} \right) \left(\end{array}{c} \end{array} \right) \left(\begin{array}{c} \end{array} \right) \left(\begin{array}{c} \end{array} \right) \left(\begin{array}{c} \end{array} \right) \left(\end{array}{c} \end{array} \right) \left(\end{array}{c} \end{array} \right) \left(\begin{array}{c} \end{array} \right) \left(\end{array}{c} \end{array} \right) \left(\end{array}{c} \end{array} \right) \left(\end{array}{c} \end{array} \right) \left(\end{array}{c} \end{array} \right) \left(\end{array} \bigg) \left($