Chapter &
Curres
def. A curre is an irreducible alg vortety
of dimension A.
Points of a curve have local rings of dim=1.
Prop. (from CA): (A, m) Noetherian local domey
of dimension 1.
Then are equivalent:
1) A is tegular, i.e. dim M/m2=1; k=A/m.
2) A is integrally closed
3) M is principal
4) A is a PID and all ideals are
powers of M.
Such A is a discrete valuation ring,
with a valuation
V: A-O -> Z (v(0)=00)
st.
$$\forall f \in A-O$$
 is $f = L \cdot t^{v(f)}$, $m=(t)$, $d \in A^{v}$.
A discrete valuation satisfies:
A v(Lg)=v(f)+ev(g)
2) v(f m) > min (v(f), v(g))
= if v(h = v(g)

That means, t has a asimple zerot at ps or a vanishing of order 1, and V(f) can be thought of as the order of zero/pole of fat p: $f = \lambda \cdot t^{\nu(f)}$ where $\nu(f) \in \mathbb{Z}$ and $\alpha \in O_{x,p}^{x}$.

Moral: curves are casier to study because regular local rings are dur's, and singularities can be resolved via normalization: any normal curve is regular.

Of course, turves are simple" geometrically but not arithmetically: Fermat's Last Thun is a statement about curves! (over Z)

plassification of projective curves

Then X, Y projective regular curves. Then $X \underset{Bir}{\to} Y \xrightarrow{(=)} X \stackrel{(=)}{=} Y$.

Non-EX: 1)
$$\mathbb{P}^{1}$$
 for \mathbb{N}^{1} - not projective
2) $\mathbb{P}^{1} \times \mathbb{P}^{1} \sup_{\text{for}} \mathbb{P}^{2} - \text{hot curves}$
3) $\mathbb{P}^{1} \sup_{\text{for}} \mathbb{E}_{+}(x^{3}-y^{2}) - \text{hot regular}$
Extension lemma & curve, $p \in X$ regular points,
 $p: X - p \rightarrow \mathbb{P}^{n}$ morphism.
Then $\exists ! \ p: X \rightarrow \mathbb{P}^{n}$ that extends p .
Proof. We can assume X affine, because
it's enough to extend p to an open hold of p .
Let $D = D_{t}(x_{0}) \subset \mathbb{P}^{n}$. We can assume
 $V := p^{-1}(D) \subset X$ is a non-empty open.
Then $p: V \rightarrow D \simeq \mathbb{A}^{n}$
is given by (f_{\dots}, f_{n}) , $f_{i} = \frac{3i}{g_{0}} \in O_{X}^{i}(V)$.
Let $\mathbb{P}: X \rightarrow \mathbb{A}^{n+i}$
 $x \mapsto (g_{0}(x), g_{1}(x), \dots, g_{n}(x))$.
If $\mathbb{P}(p) \neq 0$, we get an exptension
which of $p \in \mathbb{A}^{n}$ for and win.
We multiple p $m^{n+1} = 0$
where g_{1} is p^{n} and win .

et
$$t \in O_{x,p}$$
 be a uniformizer,
then $\forall g_i = d_i (t) \cdot t^{\vee i}$ where $x_i(t) \in O_{x,p}$
does not vanish at p .
Define $v_i = \min(v_0, \dots, v_n)$
 $w_i = v_i - v > 0$ and $\exists j : M_i = 0$.
We replace each g_i by defined in a
 $\tilde{g}_i = g_i \cdot t^{-\vee} = d_i(t) \cdot t^{M_i} - \underset{heighborhood of p}{=}$
 $w_i = v_i - v > 0$ and $\exists j : M_i = 0$.
We replace each g_i by defined in a
 $\tilde{g}_i = g_i \cdot t^{-\vee} = d_i(t) \cdot t^{M_i} - \underset{heighborhood of p}{=}$
 $w_i = v_i - v > 0$ and $\exists j : M_i = 0$.
We replace each g_i by defined in a
 $\tilde{g}_i = g_i \cdot t^{-\vee} = d_i(t) \cdot t^{M_i} - \underset{heighborhood of p}{=}$
 $w_i = 0$ and $\tilde{g}_i = 0$ where both at p_i
 $\tilde{g}_0 = \frac{g_i}{g_0}$ where both are defined.

Cor. & curve, pEX regular pt, y projective var.
Then Y rational map
$$\varphi: X - -> y \leq p^m$$

extends to a morphism near p.
Proof: Let U>p open nobed st,
 $\varphi: U-p \rightarrow y$ is a marphism.
Then φ extends to
 $\varphi: U \rightarrow p^m$, and $\varphi(U) \leq y$ because
 $y \leq p^m$ is closed $=>$
 $\varphi^{-1}(y) \leq U$ is closed and contains $U-p => \varphi^{-1}(y)=U$.

Proof of Thm. X, 3 projective regular curves, $X \rightarrow Y$ $U \qquad U$ $U \qquad U$ $U \qquad V$ isom with inverse ψ . we have By Cor., p and y extend to morphisms. We get that poppid, and yoppidu on non-empty open sets => by separatedness, => on X and Y, so p and y are inverse isoms.

Fundamental thin for curves K/k afg. field extension with tr deg k = 1 \Rightarrow 3! regular projective curve χ up to isom. s.t. $k(\chi) \cong K$ as k-extensions: Cor. There is a contravariant equivalence of costs: regular curves over k ~ f.g. k-extensions of troleg 1 + dominant rational maps + k-algebra homs Earlier we proved analogous equivalence for all irreducible varieties and tin gen. tield extensions of k, and now we know that all tr deg 1 extensions correspond to curves. Fundamental Thm Proof: Uniqueness follows from the Thmy because two such curves X and X' could be birational, since $k(X) \simeq k(X')$ as k-extensions. Existence: K/L tr deg 1 => 3 æ EK: K is finite separade over L(x).

That means, $\exists f \in K \quad s.t. \quad K = le(x) \ Tf \ and f is a root of an irreducible polynomial$ $y^{h} + a_{h_{-1}}(x)y^{h-1} + \dots + a_{o}(x) = 0$ This equation defines a curve C in M^2 , with $k(C) \simeq K$. Then CCIP² is a projective cenve. We define X as the normalization of C, it's a regular curve with $k(X) \simeq k(C) \simeq k(C) \simeq K$. Fact: X is a projective curve. (follows from the general construction of normalization, which we slipped). Over C: there are bijections: regular projective complex carves fingen. C-extensions of tr deg 1 compact connected 1-dim complex utods (Riemann surfaces) Geometry, algebra and analysis come together!

SElliptic arres
Let L alg dosed, char L +2
Elliptic curve:
$$C = \{y^2 = x(x-1)(x-p_1)\} \in A^2,$$

 $h \neq p \in k^k$.
Thus, Elliptic curves are not rational,
i.e. $C \xrightarrow{abs} P^2$.
Reason: they have different genus
 $g(P_1) = 0$ vs $g(\overline{C}) = 1$
(pictures over C)
and genus is a birational Invariant.
Genus: over $C - \#$ holes in the Riemann surface
over $k - more$ complicated definition.
Proof: can assume $h = 1$, $p = -1$ (same proof).
Let $L := k(x)$, and
Let $L := k(C) = K(y)$ where $y^2 = x(x-1)(x+1)$.
Claim 1: \forall valuation $v: L^{\infty} \to \mathbb{Z}$ $v(x)$ is even.
Proof: $\cdot v(x) = 0 - ok$

$$(x) > 0 = > u(x-1) = \min(u(x), u(-1)) = u(-1) = 0 u(x-1) = u(-1) = 0 = > u(y^2) = v(x) + v(x-1) + v(x+1) zu(y) u(x) . u(x) < 0 => v(x-1) = u(x+1) = v(x) => zu(y) = 3u(x) => u(x) even. (laim 2: Let gel(t). If u(g) is even & valuation u: l(t)x = x, then g is a square. Y valuation u: l(t)x = x, then g is a square. g(t) = $\Pi(t-a_1)^{h_1}$, $u_1 \in Z$, $a_1 \in L$.
 We have $u_1 = \operatorname{ord}_{q_1}(g)$, if they all
 are even then Z^{i} g is a square.
 $L(t) = \operatorname{Frac} L(t)_{(t-a_1)}$
 Claim 3: xeL is hot a square.
 $L(t) = \operatorname{Frac} L(t)_{(t-a_1)}$
 Assume $x = (a+by)^2$, $a_1 \in L$.
 Then $x = a^2 + 2aby + b^2 x(x-1)(x+1) = 2ab = 0$ $\operatorname{dist} x = 2^{h_1}$ in $k = k(x)$, but $\operatorname{ord}_{q_1}(x) = 1$.
 If $b = 0$, then $x = a^{n_1}$ in $k = k(x)$, but $\operatorname{ord}_{q_1}(x) = 1$.
 If $a = 0$, then $(x-1)(x+1)$ is a square in k , but
 ib has $\operatorname{ord}_{1} = 1$.$$