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Introduction

The present text provides lecture notes for a course on symmetric spaces given in the
framework of the “Semaine spéciale M2 : Géométrie et théorie des groupes” held
at the Institut de Recherche Mathématique Avancée in Strasbourg from April 28 to
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May 3, 2008. It intends to give an accessible introduction to the theory of Riemannian
symmetric spaces with an emphasis on those of non-compact type. Since the excellent
textbook [H] by S. Helgason on the subject contains complete proofs of all relevant
results way beyond the scope of this introduction, we content ourselves here with
merely stating certain results, giving precise references for the more ambitious reader.
We want to give the reader a guideline through a part of the landscape, trying to
motivate the steps we take and illustrating the basic results by means of a detailed
treatment of particular important examples. For a deeper understanding, the reader is
strongly encouraged to study the books by Helgason [H], Eberlein [E] and also Borel
[B1] and Wolf [Wo].

The plan of the text is as follows: Section 1 gives an overview on the geometry and
algebraic coding of arbitrary globally symmetric spaces. In Section 2 we investigate
more precisely the case of symmetric spaces of non-compact type which, in particular,
are manifolds of non-positive sectional curvature. Their theory is intimately related to
the theory of semi-simple Lie groups, so we describe the important Iwasawa and Cartan
decompositions of such spaces. Finally in Section 3 we study the geometry at infinity
of globally symmetric spaces of non-compact type: like any Hadamard manifold these
spaces can be compactified by adding a sphere at infinity. Due to the rich structure of
symmetric spaces, this geometric boundary can be described more precisely: we give
a parametrization of boundary points in terms of the Cartan decomposition, relate it to
the Furstenberg boundary and show how the Bruhat decomposition helps to describe
pairs of boundary points which can be joined by a geodesic. In the last section we
study Busemann functions and see how they can be used to obtain invariant Finsler
metrics on the differentiable manifold underlying the symmetric space.

Acknowledgments. The author is grateful to the organizers of the “Semaine spéciale”
in Strasbourg for the opportunity to give this lecture series. She also warmly thanks
her thesis advisor Enrico Leuzinger for introducing her to the beautiful theory of
symmetric spaces.

1 Generalities on symmetric spaces

In this section we begin with a definition of Riemannian symmetric spaces and deduce
many important properties from it. We will see that such manifolds have a huge group
of isometries which acts transitively. Moreover, any simply connected symmetric
space S is diffeomorphic to a homogeneous space G=K, where G is a connected
Lie group with an involutive automorphism whose fixed point set is essentially the
compact subgroup K � G.

This algebraic coding allows to describe the geometry in Lie algebraic terms: we
will see that geodesics are projections to G=K of certain one-parameter subgroups of
G, the curvature tensor is described by Lie brackets, and totally geodesic submanifolds
correspond to Lie triple systems. In particular, the Levi-Civita connection remains
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the same when endowing the differentiable manifold S with a different Riemannian
structure with respect to which S is also a symmetric space.

Towards the end of this introductory section we will see that after dividing out a
direct factor isomorphic to a Euclidean motion group, the isometry group G becomes
semi-simple; in this way the problem is reduced to the study of certain involutive
automorphisms of semi-simple Lie algebras.

1.1 Geometric definition

Let S be a connected Riemannian manifold and x 2 S . The geodesic symmetry sx at
x is the local diffeomorphism defined by sx.y/ ´ expx

� � idTxS .exp�1
x .y//

�
.

Definition 1.1. S is called locally symmetric, if sx is a local isometry for all x 2 S .
If sx is a global isometry for all x 2 S , then S is called (globally) symmetric.

Examples. S D En, Sn, Hn are globally symmetric, and any quotient �nS , where
� � Is.S/ is a discrete, torsion free group of isometries of S , is locally symmetric.

Theorem 1.2 ([H], Theorem IV.5.6). A simply connected locally symmetric space is
globally symmetric.

Notice that this theorem in particular implies that the Riemannian universal cover of
a locally symmetric space is globally symmetric. Conversely, every locally symmetric
space is a quotient of a globally symmetric space by a discrete, torsion free group of
isometries isomorphic to the fundamental group. In these notes we will only be
concerned with globally symmetric spaces. Let d denote the distance function on S

induced from the Riemannian metric.

Proposition 1.3. If S is globally symmetric, then S is complete and homogeneous.

Proof. For completeness we show that all geodesics are defined on R. The claim then
follows from the theorem of Hopf–Rinow.

Let c be a geodesic in S and suppose there exists b 2 R such that c is defined
on .a; b/ for some a < b, but not at b. Take " D b�a

4
and consider the geodesic

symmetry sx at x ´ c.b � "/. Then c.b/ D sx.c.b � 2"// exists, hence c is defined
at parameter b which contradicts our assumption.

By the Theorem of Hopf–Rinow and completeness we know that for any pair of
points x; y 2 S and t ´ d.x; y/ there exists a geodesic c W R ! S such that c.0/ D x

and c.t/ D y. Then y D sc.t=2/ B sx.x/, i.e. S is homogeneous.

Remark 1.4. Notice that the isometry sc.t=2/ B sx in the above proof belongs to the
connected component Iso.S/ of the identity in Is.S/. Hence we have shown that the
(possibly smaller) group Iso.S/ acts transitively on S .
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For x, y 2 S we denote by cx;y the unique unit speed geodesic emanating from x

which contains y. With this notation we have

sx.y/ D sx

�
cx;y.d.x; y//

� D cx;y.�d.x; y//: (1.1)

1.2 The group of isometries

We first state an important rigidity property of isometries of a Riemannian manifold
which we will need in the sequel. For a diffeomorphism ˆ of a Riemannian manifold
M we denote by Dˆ W TM ! TM its differential.

Lemma 1.5 (Rigidity of isometries; [dC], Lemma 4.2). Let ˆ and ‰ be two local
isometries of a connected Riemannian manifold S . Assume that at some point x we
have ˆ.x/ D ‰.x/ and Dxˆ D Dx‰. Then ˆ D ‰.

Moreover, the group of isometries of a Riemannian manifold satisfies the following
properties:

Theorem 1.6 ([H], Theorem IV.2.5). Endowed with the compact-open topology the
isometry group Is.S/ of a Riemannian manifold S is a locally compact topological
transformation group of S . Moreover, for all x 2 S the isotropy subgroup Is.S/x ´
fg 2 Is.S/ W g.x/ D xg at x is compact.

In the sequel we assume that S is globally symmetric, and denote by G ´ Iso.S/

the identity component of Is.S/. We fix o 2 S and let K ´ fg 2 Iso.S/ W g.o/ D og
be the compact isotropy subgroup of G at o. Then by Remark 1.4 we have S D
G.o/ ´ fg.o/ W g 2 Gg.

Theorem 1.7 ([H], Lemma IV.3.2 and Theorem IV.3.3 (i), (ii)). The topological group
G has an analytic structure compatible with the compact-open topology in which
it is a connected Lie transformation group of S . Moreover, G=K is analytically
diffeomorphic to S , and K contains no non-trivial normal subgroup of G.

Notice that by Theorem II.2.6 of [H] a topological group has at most one analytic
structure compatible with its topology with respect to which it is a Lie group.

In the remainder of this section we will have a look at the geodesic symmetry in S .

Lemma 1.8. If x 2 S and k 2 Is.S/x then the geodesic symmetry at x satisfies

sx B k D k B sx :

Proof. Let z 2 S arbitrary. If t ´ d.x; z/ D d.k.x/; k.z// D d.x; k.z//, then
by (1.1) and the fact that g.cx;z/ D cg.x/;g.z/ for any isometry g 2 Is.S/ we get
sx.k.z// D cx;k.z/.�t / D k.cx;z.�t // D k.sx.z//.
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Lemma 1.9. Let x 2 S and g 2 Is.S/ be such that x D g.o/. Then sx D g Bso Bg�1.

Proof. Let y 2 S arbitrary, t ´ d.x; y/ and z ´ g�1.y/. Then

sx.y/ D cx;y.�t / D cg.o/;g.z/.�t / D g.co;z.�t // D g.so.co;z.t///;

hence the claim follows from co;z.t/ D z D g�1.y/.

1.3 Algebraic point of view

We have seen that globally symmetric spaces are diffeomorphic to G=K, where G is
a connected Lie group and K � G the isotropy subgroup at some point. One natural
question concerns the reverse statement: which homogeneous spaces are symmetric
spaces?

Before we address this question we need some more facts relating a globally
symmetric space S to the connected Lie group G ´ Iso.S/ and its Lie algebra g.
Denote e W g ! G the exponential mapping of g into G, and e 2 G the identity
element in G. We fix a base point o 2 S , let K � G be the isotropy subgroup of G

at o, and consider the geodesic symmetry so at o. The automorphism � 2 Aut.G/ of
G defined by �.g/ ´ so BgBs�1

o is an involution, i.e. �2 is the identity idG 2 Aut.G/.
We set

G� ´ fg 2 G W �.g/ D gg;
and we denote by .G� /o the identity component of G� .

Notation. For simplification, we will in the sequel omit the “B” when referring to
composition of group elements in G. Moreover, the action of G on S will be denoted
by a dot “�”.

Proposition 1.10. .G� /o � K � G� .

Proof. Let k 2 K. Then sok s�1
o � o D o D k � o and

Do.sok s�1
o / D � idToS B Dok B .� idToS / D Dok;

hence by rigidity of isometries sok s�1
o D k and therefore K � G� .

Next let g 2 .G� /o. Then there exists a path p W Œ0; 1� ! .G� /o such that p.0/ D e

and p.1/ D g. Now o D so � o gives

sop.t/ � o D sop.t/s�1
o � o D �.p.t// � o D p.t/ � o

for all t 2 Œ0; 1�, i.e. p.t/ � o is a fixed point of so for all t 2 Œ0; 1�. But o is an isolated
fixed point of so, hence necessarily p.t/ � o D o for all t 2 Œ0; 1�. In particular we
have g � o D p.1/ � o D o which implies g 2 K.

In order to give a condition under which a homogeneous space is symmetric, we
recall some facts from the theory of Lie groups and Lie algebras.
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Let G be a connected Lie group with Lie algebra g. Then for h 2 G the conjugation
map I.h/ W G ! G, g 7! hgh�1 is an isomorphism of Lie groups. We denote by
Ad.h/ ´ De.I.h// W g ! g its differential at the identity e 2 G. Ad.h/ is a Lie
algebra automorphism, hence in particular

ŒAd.h/X; Ad.h/Y � D Ad.h/ŒX; Y � for all X; Y 2 g:

Moreover, we have the following useful formula:

eAd.h/X D heXh�1 for any h 2 G; X 2 g: (1.2)

The map AdG W G ! GL.g/, h 7! Ad.h/ is an analytic group morphism which is
called the adjoint representation of G.

Definition 1.11. .G; K/ is called a Riemannian symmetric pair if G is a connected
Lie group, K � G a closed subgroup such that AdG.K/ is a compact subgroup of
GL.g/ and if there exists an analytic involutive automorphism � of G such that

.G� /o � K � G� :

Notice that if S is a globally symmetric space, G D Iso.S/ and K � G the isotropy
subgroup of an arbitrary point x 2 S , then .G; K/ is a Riemannian symmetric pair
with respect to the analytic involutive automorphism of G induced by the geodesic
symmetry at x. In this case we call .G; K/ the Riemannian symmetric pair associated
to .S; x/. The following theorem in particular answers the question raised in the
introduction.

Proposition 1.12 ([H], Proposition IV.3.4). If .G; K/ is a Riemannian symmetric
pair and � any analytic involutive automorphism of G such that .G� /o � K � G� ,
then G=K is a globally symmetric space with respect to any G-invariant Riemannian
metric. If � W G ! G=K denotes the natural projection and so the geodesic symmetry
at o D �.K/ D eK 2 G=K, then

so B � D � B �:

In particular, so is independent of the choice of the G-invariant Riemannian metric.

The following proposition shows that under very general conditions the automor-
phism � is completely determined by its set of fixed points G� .

Proposition 1.13 ([H], Proposition IV.3.). Let .G; K/ be a Riemannian symmetric
pair, k the Lie algebra of K and z the Lie algebra of the center of G. If k \ z D
f0g, then there exists exactly one analytic involutive automorphism � of G such that
.G� /o � K � G� .

We remark that for semi-simple Lie groups G we have z D f0g, hence clearly
k \ z D f0g. Moreover, if .G; K/ is the Riemannian symmetric pair associated to a
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globally symmetric space S with base point o 2 S , then K contains no non-trivial
normal subgroup of G by Theorem 1.7; hence in this case the analytic involutive
automorphism � of G induced by the geodesic symmetry at o is the only one satisfying
.G� /o � K � G� .

We next look at the Cartan involution ‚ W g ! g defined as the differential ‚ ´
De� of � at the identity e 2 G. Since ‚2 D Idg one can look at the eigenspace
decomposition g D k ˚p of g with respect to the eigenvalues C1 and �1 respectively.
This decomposition is called the Cartan decomposition of g with respect to ‚.

Moreover, ‚ is a Lie algebra automorphism and we have the Cartan relations

Lemma 1.14. Œk; k� � p, Œk; p� � p, Œp; p� � k.

Proof. We prove Œk; p� � p, the other inclusions are similar. Let X 2 k, Y 2 p
arbitrary. Then

‚ŒX; Y � D Œ‚X; ‚Y � D ŒX; �Y � D �ŒX; Y �;

i.e. ŒX; Y � belongs to the �1-eigenspace of ‚.

1.4 Geodesics and curvature

Now let S be a globally symmetric space with base point o 2 S and .G; K/ the
associated Riemannian symmetric pair. By our remark following Proposition 1.13
there exists exactly one analytic involutive automorphism � of G with .G� /o � K �
G� , so the Cartan decomposition g D k ˚ p is uniquely determined. Let � W G ! S ,
g 7! g � o, denote the natural map, e W g ! G the Lie group exponential mapping,
De� W g ! ToS the differential of � at the identity e 2 G, and expo W ToS ! S the
Riemannian exponential mapping. The importance of the Cartan decomposition of g
is reflected in the following

Theorem 1.15 ([H], Theorem IV.3.3 (iii)). De� jp W p ! ToS is an isomorphism (of
vector spaces with Lie bracket), and ker.De�/ D k. Moreover, we have

�.eX / D expo

�
De�.X/

�
for any X 2 p: (1.3)

This shows in particular that the Riemannian exponential map exp W TS ! S

of a globally symmetric space does not depend on its Riemannian metric; for any G-
invariant Riemannian metric on S Š G=K the exponential map is the same! Moreover,
this immediately shows how geodesics in S look like:

Corollary 1.16. The geodesic c � S emanating from o with tangent vector De�.X/ 2
ToS , X 2 p, is given by

c.t/ D etX � o; t 2 R:
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Notice that if c � S is an arbitrary geodesic, then by transitivity of the action of
G there exists g 2 G such that c.0/ D g � o. So g�1 � c is a geodesic emanating from
o 2 S and therefore of the form etX � o for some X 2 p. This shows that for every
geodesic c � S there exist g 2 G and X 2 p such that

c.t/ D getX � o; t 2 R:

The following theorem describes the curvature tensor and totally geodesic submani-
folds of S . Notice that for the curvature tensor we use the definition from [H]; in the
book [dC] by do Carmo the curvature tensor is defined with the opposite sign.

Theorem 1.17 ([H], Theorem IV.4.2, Theorem IV.7.2). (1) The curvature tensor Ro

evaluated in ToS is given by

Ro.De�.X/; De�.Y //De�.Z/ D De�
� � ŒŒX; Y �; Z�

�
; X; Y; Z 2 p:

(2) Totally geodesic submanifolds through o are of the form eq � o, where q � p is
a Lie triple system, i.e. ŒŒq; q�; q� � q.

In particular – as we have already seen for the Riemannian exponential mapping
exp W TS ! S – the curvature tensor and the totally geodesic submanifolds of S do
not depend on the given Riemannian metric on S . These facts also follow from the
following

Theorem 1.18 ([H], Corollary IV.4.3). The Levi-Civita connection on G=K is the
same for all G-invariant Riemannian structures on G=K.

1.5 Examples

(1) SL.n; R/= SO.n/.

Consider the connected Lie group G D SL.n; R/ which is the group of all .n�n/-
matrices with determinant 1 and entries in R. On G we consider the involutive
automorphism � W G ! G, g 7! .gt /�1. Then

G� D fg 2 G W .gt /�1 D gg D fg 2 G W gtg D eg D SO.n/ DW K:

The Lie algebra g D sl.n; R/ consists of all .n � n/-matrices with trace 0 and
entries in R, and the Cartan involution ‚ W sl.n; R/ ! sl.n; R/ is given by
‚.X/ ´ �X t for X 2 sl.n; R/. So the Cartan decomposition of an element
X 2 sl.n; R/ is the well-known unique decomposition

X D 1
2
.X � X t / C 1

2
.X C X t /

of a matrix into its anti-symmetric and symmetric part. If so.n/ denotes the Lie
algebra of K D SO.n/, and sym0.n/ the set of symmetric .n � n/-matrices of
trace zero with entries in R, we therefore have

sl.n; R/ D so.n/ ˚ sym0.n/:
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Denote o D eK 2 G=K the base point and consider the positive definite sym-
metric bilinear form

hX; Y i ´ Tr.X � Y /; X; Y 2 To.G=K/ Š p � g: (1.4)

As we will see more precisely in Section 1.7, this scalar product on To.G=K/ can
be naturally extended by G-left-translations to a G-invariant Riemannian metric
on G=K.

The set Pos1.n/ of positive definite symmetric .n�n/-matrices with determinant
1 and entries in R can be identified with G=K as follows: it is a standard fact from
elementary linear algebra that any matrix p 2 Pos1.n/ can be written as a matrix
product p D btb for some b 2 SL.n; R/. With the action of g 2 SL.n; R/ on
Pos1.n/ given by g � p ´ gtpg, p 2 Pos1.n/, G acts transitively on Pos1.n/.
If we choose the .n � n/-identity matrix In as a base point o in Pos1.n/, then
SO.n/ D fg 2 G W g � In D Ing.

If n D 2, we can identify G=K endowed with the G-invariant Riemannian
metric induced by hX; Y i ´ 2 � Tr.X � Y /; X; Y 2 To.G=K/, and the real
hyperbolic plane H2 ´ fx C iy W x 2 R y > 0g endowed with the metric
ds2 D .dx2 C dy2/=y2. Indeed, SL.2; R/ acts transitively by isometries via
linear fractional transformations on H2, and SO.2/ is the isotropy subgroup of
the point i 2 H2. So Pos1.2/ with a metric rescaled by the factor 2 can be
identified with the hyperbolic plane .H2; ds2/.

Exercise. Show that we need to have the factor 2 in equation (1.4) in order that
.SL.2; R/= SO.2/; h�; �i/ is isometric to .H2; ds2/.

(2) G=K , G � SL.n; R/ closed subgroup with G t D G .

As involutive automorphism we take again � W G ! G, g 7! .gt /�1, so K D
G \ SO.n/. If o D eK 2 G=K denotes the base point, then the positive definite
bilinear form given by (1.4) on To.G=K/ extends to a G-invariant Riemannian
metric on G=K.

(a) The group G D SO.p; q/ of linear transformations leaving invariant the
bilinear form

Q.x; y/ D �x1y1 � � � � � xpyp C xpC1ypC1 C � � � C xpCqypCq;

x; y 2 RpCq , on RpCq is invariant under transposition. Therefore if K D
G \ SO.p C q/ D SO.p/ � SO.q/ we get a symmetric space G=K.

Let M.p; q/ denote the set of .p�q/-matrices with entries in R. The Cartan
decomposition of the Lie algebra of SO.p; q/ is given by so.p; q/ D k˚p,
where k D so.p/ � so.q/ � so.p C q/ is the Lie algebra of K and

p D ˚ �
0 B

Bt 0

� W B 2 M.p; q/
� � sym0.p C q/:
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In the particular case p D 1, this symmetric space with an appropriately
rescaled metric is isometric to the hyperbolic space of dimension q.

(b) The group G D Sp.2q; R/ of linear transformations leaving invariant the
standard symplectic form

!.x; y/ D x1yqC1 C x2yqC2 C � � � C xqy2q � xqC1y1 � � � � � x2qyq;

x; y 2 R2q , on R2q is invariant under transposition. If K D Sp.2q; R/ \
SO.2q/, then G=K is a symmetric space.

The Cartan decomposition of the Lie algebra of Sp.2q; R/ is given by
sp.2q; R/ D k ˚ p, where

k D ˚ �
A B

�Bt A

� W A; B 2 M.q; q/; At D �A
� � so.2q/

is the Lie algebra of K and

p D ˚ �
A B
Bt �A

� W A; B 2 M.q; q/; At D A
� � sym0.2q/:

Recall that a complex structure on a real vector space V is an endomorphism
J of V with the property J 2 D � idV . Moreover, if g 2 GL.V /, then
g B J B g�1 is also a complex structure.

Consider the set S2q of complex structures J on the symplectic vector
space .R2q; !/ such that the symmetric bilinear form defined by

qJ .x; y/ ´ !.x; Jy/; x; y 2 R2q; (1.5)

is positive definite. A complex structure with this property is called !-
compatible. G D Sp.2q; R/ acts naturally on S2q by conjugation, i.e.
g � J ´ gJg�1 for g 2 G, J 2 S2q . Indeed, if g 2 Sp.2q; R/ then

qg �J .x; y/ D !.x; gJg�1y/ D !.g�1x; Jg�1y/ D qJ .g�1x; g�1y/;

so qg �J is positive definite if qJ is. Moreover, this action is transitive. We
choose as a base point o 2 S2q the !-compatible complex structure given
by the matrix

J0 ´
�

0 �Iq

Iq 0

�
I (1.6)

its associated symmetric bilinear form qJ0
is the standard scalar product

in R2q . Then the isotropy subgroup of G at o is precisely the group K D
Sp.2q; R/ \ SO.2q/, so S2q D Sp.2q; R/ � o can be identified with G=K.

Notice that in the particular case q D 1 we have Sp.2; R/ D SL.2; R/,
so the subspace S2 of R2 with the appropriately rescaled metric can be
identified with the hyperbolic plane .H2; ds2/.

(c) The group G D SL.2; R/ � SL.2; R/ acts by isometries on H2 � H2

endowed with the product metric, and K D SO.2/ � SO.2/ fixes the point
o ´ .i; i/ 2 H2 �H2. So in this case the symmetric space G=K endowed
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with the G-invariant metric induced by hX; Y i ´ 2 � Tr.X � Y /; X; Y 2
To.G=K/, is isometric to a product of hyperbolic planes H2 � H2.

(3) SO.p C q/=.SO.p/ � SO.q//.

As before we denote by Iq the .q � q/-identity matrix and let s 2 SL.p C q; R/

be the matrix s D
��Ip 0

0 Iq

�
. For G D SO.p C q/ we consider the involutive

automorphism � W G ! G, g 7! sgs. Then K D SO.p/ � SO.q/ is a compact
subgroup fixed by � .

The Cartan involution ‚ W so.p C q/ ! so.p C q/ is given as follows: if
A 2 M.p; p/, At D �A, B 2 M.p; q/, D 2 M.q; q/, Dt D �D, then for

X D
�

A B

�B t D

�
2 so.p C q/

we have

‚.X/ D
�

A �B

B t D

�
:

So so.p C q/ D .so.p/ � so.q// ˚ p, where

p ´ ˚ �
0 B

�Bt 0

� W B 2 M.p; q/
�
:

In this case, the symmetric bilinear form given by

hX; Y i ´ � Tr.X � Y /; X; Y 2 To.G=K/ Š p � g; (1.7)

is positive definite, and hence can be extended to a G-invariant Riemannian
metric on G=K.

Here the symmetric space G=K is the Grassmannian manifold of p-dimensional
oriented subspaces of RpCq . In the particular case p D 1 this is the q-dimensional
sphere, and the standard metric induced from the embedding into RqC1 is a scalar
multiple of the above metric.

(4) Compact Lie groups as symmetric spaces.

Let G be a compact connected Lie group. Then the mapping

� W G � G ! G � G; .g1; g2/ 7! .g2; g1/;

is an involutive automorphism of the product group G � G. The fixed point set
of � is the diagonal � ´ f.g; g/ W g 2 Gg in G � G which is isomorphic to
G and hence compact. The pair .G � G; �/ is a Riemannian symmetric pair
and the coset space .G � G/=� is diffeomorphic to the original group G via the
mapping .G � G/=� ! G, .g1; g2/� 7! g1g�1

2 .

A Riemannian metric on .G � G/=� is .G � G/-invariant if and only if the
corresponding Riemannian metric on the group G is bi-invariant. Hence by
Proposition 1.12, G is a globally symmetric space with respect to any bi-invariant
Riemannian metric on G. The natural mapping of G � G onto G Š .G � G/=�
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corresponds to � W G � G ! G, .g1; g2/ 7! g1g�1
2 . Recalling that the geodesic

symmetry so at o ´ �.�/ D e is given by so B� D � B� we obtain so.g/ D g�1

for g 2 G.

Exercise. Using Lemma 1.9 prove that for any h; g 2 G we have sh.g/ D
hg�1h.

Next let g denote the Lie algebra of G, and e W g ! G the Lie group exponential
mapping. Then the product algebra g � g is the Lie algebra of G � G, and the
identity

.X; Y / D �
1
2
.X C Y /; 1

2
.X C Y /

�C �
1
2
.X � Y /; �1

2
.X � Y /

�
gives the Cartan decomposition of g�g into the two eigenspaces of ‚ D D.e;e/� .
In particular, we have p ´ f.X; �X/ W X 2 gg � g�g. So if Oe W g�g ! G�G

denotes the Lie group exponential mapping, and exp W T G ! G the Riemannian
exponential mapping of the symmetric space G, then (1.3) implies that for all
X 2 g,

expo

�
D.e;e/�.X; �X/

� D �. Oe.X;�X// D �.eX ; e�X / D e2X :

We conclude that the geodesics in the symmetric space G through the base point
o D e are the one-parameter subgroups of the group G.

1.6 The Killing form

For Lie groups the Killing form is an important and natural bilinear form on the Lie
algebra. We will see that it also plays a very important role in the theory of globally
symmetric spaces. In this section we will describe the Killing form and some of its
properties. For that we need some more facts from the theory of Lie groups.

Recall the adjoint representation Ad ´ AdG W G ! GL.g/ described in Sec-
tion 1.3. The Lie algebra of GL.g/ is the vector space gl.g/ of all linear endomor-
phisms of g endowed with the bracket Œˆ; ‰� ´ ˆ B ‰ � ‰ B ˆ for ˆ; ‰ 2 gl.g/.
It is naturally identified with the tangent space of GL.g/ at the identity map idg. The
adjoint representation ad W g ! gl.g/ of g is defined as the differential ad ´ De Ad
of the map Ad W G ! GL.g/ at the identity of G. It can be shown that for X 2 g the
endomorphism ad.X/ is given by ad.X/Y D ŒX; Y � for Y 2 g. Moreover we have
the relation

Ad.eX / D ead.X/; X 2 g; (1.8)

where on the left-hand side e W g ! G denotes the Lie group exponential mapping
and on the right-hand side e W gl.g/ ! GL.g/ denotes the exponential mapping given
by the usual power series

eˆ ´ Id Cˆ C 1

2
ˆ B ˆ C

1X
kD3

1

kŠ
ˆk; ˆ 2 gl.g/: (1.9)
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The Killing form B of a Lie algebra g is the symmetric bilinear form on g defined by

B W g � g ! R; .X; Y / 7! Tr.ad.X/ B ad.Y //;

where Tr W gl.g/ ! R is the canonical trace map. The following properties of the
Killing form will turn out to be very useful:

Proposition 1.19 ([H], II.6 (2)). (1) B.X; ŒY; Z�/ D B.Y; ŒZ; X�/ D B.Z; ŒX; Y �/

for any X; Y; Z 2 g.
(2) For any Lie algebra automorphism ˆ W g ! g we have B.ˆ.X/; ˆ.Y // D

B.X; Y /, X; Y 2 g.

Definition 1.20. A Lie algebra g over R is called semi-simple if its Killing form is
non-degenerate. A Lie group is called semi-simple if its Lie algebra is.

So if G is a connected semi-simple Lie group, we can construct from the Killing
form a natural G-invariant semi-Riemannian metric on the analytic manifold G as
follows: requiring that the Riemannian exponential mapping expe W TeG ! G at the
identity e coincides with the Lie group exponential mapping e W g ! G we get a natural
identification of the tangent space TeG at the identity e 2 G with the Lie algebra g of
G. Let Qe be the non-degenerate symmetric bilinear form on TeG corresponding to
the Killing form of g. If for g 2 G the map Lg 2 Aut.G/ denotes left multiplication
by g on the analytic manifold G, then its differential at a point h 2 G is a linear map
DhLg W ThG ! TghG. We define a non-degenerate symmetric bilinear form Qg on
TgG via

Qg.v; w/ ´ Qe

�
.DeLg/�1.v/; .DeLg/�1.w/

�
; v; w 2 TgG: (1.10)

Doing this for all g 2 G, we get a semi-Riemannian structure Q on G. Moreover,
if g; h 2 G and v; w 2 TgG are arbitrary, then using DeLhg D DgLh B DeLg we
compute

Qhg.DgLh.v/; DgLh.w//

.1.10/D Qe

�
.DeLhg/�1.DgLh.v//; .DeLhg/�1.DgLh.w//

�
D Qe

�
.DeLg/�1.v/; .DeLg/�1.w/

�
.1.10/D Qg.v; w/:

So Q is indeed G-left-invariant.
For an arbitrary (not necessarily semi-simple) Lie algebra g the following propo-

sition will be very convenient in the sequel.

Proposition 1.21 ([H], Proposition II.6.8). If u � g is a compactly embedded subal-
gebra with u \ z D f0g, then the Killing form Bju restricted to u is negative definite.
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Notice that g being semi-simple necessarily implies that the center z of g is trivial.
So in this case the Killing form restricted to any compactly embedded subalgebra is
negative definite.

For the remainder of this section we let S be a globally symmetric space with base
point o 2 S , .G; K/ the associated Riemannian symmetric pair, and g D k ˚ p the
Cartan decomposition with ek D K. Then k is a compactly embedded subalgebra
of g, and k \ z D f0g by the last assertion of Theorem 1.7. So from the previous
proposition we know that the Killing form restricted to k is negative definite.

We will now prove several useful lemmata.

Lemma 1.22. k and p are orthogonal with respect to the Killing form.

Proof. Let Z 2 k, X 2 p arbitrary, and ‚ W g ! g the Cartan involution. By definition
of k and p we have ‚.Z/ D Z and ‚.X/ D �X . Moreover, since ‚ is a Lie algebra
automorphism, we have from Proposition 1.19 (2)

B.Z; X/ D B.‚.Z/; ‚.X// D B.Z; �X/ D �B.Z; X/;

which implies B.Z; X/ D 0.

Lemma 1.23. For all k 2 K we have Ad.k/p D p.

Proof. Let Z 2 k be such that k D eZ , and X 2 p be arbitrary. Then

Ad.k/X D Ad.eZ/X
.1.8/D ead.Z/X

.1.9/D X C ad.Z/X C
1X

iD2

1

iŠ
ad.Z/iX:

Since ad.Z/X D ŒZ; X� 2 p, and inductively ad.Z/iX D ad.Z/i�1ŒZ; X� 2 p for
i � 2 by Lemma 1.14, we get Ad.k/p � p.

The reverse inclusion follows from g D k ˚ p and the fact that Ad.k/ W k ! k and
Ad.k/ W g ! g are isomorphisms.

For any x 2 S we denote by �x W G ! S , g 7! g � x, the orbit map, and
De�x W g ! TxS its differential at the identity e 2 G. We know from Theorem 1.15
that De�o maps p isomorphically into ToS . For x 2 S arbitrary, we have the following:

Lemma 1.24. If x 2 S and g 2 G such that g � o D x, then De�x maps Ad.g/p
isomorphically into TxS .

Proof. For g 2 G D Iso.S/ we denote by Dog W ToS ! Tg �oS its differential at the
base point o 2 S , and Lg , Rg 2 Aut.G/ left- and right-multiplication by g on G.
Now let x 2 S and g 2 G be such that g �o D x. From the definitions we immediately
get

�o B Lg D g B �o; �x D �o B Rg :
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If X 2 g then by the above relations we have

�x.etX / D �o B Rg.etX / D �o B Lg„ ƒ‚ …
DgB�o

B.Lg/�1 B Rg.etX /;

and from .Lg/�1 B Rg.etX / D g�1etXg D et Ad.g�1/X we conclude

De�x.X/ D d

dt

ˇ̌̌
tD0

�x.etX / D d

dt

ˇ̌̌
tD0

g��o

�
et Ad.g�1/X

�D DogBDe�o

�
Ad.g�1/X

�
:

Since Dog is an isomorphism we therefore have X 2 ker
�
De�x

�
if and only if

Ad.g�1/X 2 ker
�
De�o

� D k. This is equivalent to ker
�
De�x

� D Ad.g/k.
We know from Lemma 1.22 that g is the orthogonal direct sum of k and p. Since

Ad.g/ W g ! g is a Lie algebra automorphism and hence by Proposition 1.19 (2)
preserves the Killing form, we know that g D Ad.g/g can be decomposed into the
orthogonal direct sum Ad.g/k ˚Ad.g/p. Hence De�x

ˇ̌
Ad.g/p

is an isomorphism.

Notice that if g; h 2 G satisfy g � o D h � o D x, then h�1g fixes o and therefore
belongs to K, so by Lemma 1.23

Ad.g/p D Ad.h/
�

Ad.h�1g/p
�„ ƒ‚ …

Dp

D Ad.h/p:

This shows that the map Do�x does not depend on the choice of g 2 G such that
g � o D x. Moreover, the decomposition g D Ad.g/k ˚ Ad.g/p can be interpreted as
the Cartan decomposition of g with respect to the involution induced by the geodesic
symmetry sx at x D g �o 2 S ; the isotropy subgroup of G at x is the compact subgroup
eAd.g/k D gKg�1.

1.7 Decomposition of symmetric spaces

We have seen in Section 1.3 that a globally symmetric space together with the choice
of a base point o 2 S gives rise to a pair .g; ‚/, where g is the Lie algebra of the
group of isometries Iso.S/, and ‚ the differential at the identity of the involutive
automorphism � of G induced by the geodesic symmetry at o. Moreover, the set of
fixed points of ‚ in g is a compactly embedded subalgebra. In this section we will
have a look at such pairs.

Definition 1.25. An orthogonal symmetric Lie algebra is a pair .l; &/, where l is a
Lie algebra over R and & is an involutive automorphism of l such that u D fX 2 l W
&X D Xg is a compactly embedded subalgebra of l.

.l; &/ is called effective if in addition u \ z D f0g, where z � l denotes the center
of l.

Notice that any pair .g; ‚/ coming from a globally symmetric space is effective
by the last assertion of Theorem 1.7.
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Definition 1.26. Let .l; &/ be an effective orthogonal symmetric Lie algebra with
Killing form B , and l D u ˚ e the decomposition of l into the eigenspaces of & for
the eigenvalue C1 and �1 respectively. Then .l; &/ is said to be of

(1) compact type if l is compact and semi-simple;

(2) non-compact type if l is non-compact and semi-simple, and if Bju is negative
definite and Bje is positive definite;

(3) Euclidean type if e is an abelian ideal in l.

Notice that the proof of Lemma 1.22 shows that the subspaces u and e are orthog-
onal with respect to the Killing form. Moreover, Proposition 1.21 implies that the
Killing form restricted to u is negative definite.

We say that a pair .L; U / is associated with an orthogonal symmetric Lie algebra
.l; &/ if L is a connected Lie group with Lie algebra l, and U is a Lie subgroup of L

with Lie algebra u. So we can define the type of a pair .L; U / according to the type of
the effective orthogonal Lie algebra it is associated to. Similarly, the type of a globally
symmetric space S is defined as the type of an associated Riemannian symmetric pair
.G; K/ (which is naturally associated to an effective orthogonal symmetric Lie algebra
.g; ‚/ as above). Notice that even though every choice of base point a priori gives
rise to a different Riemannian symmetric pair, the types of all such pairs are the same:
if instead of a base point o 2 S we take the base point x D g � o, g 2 G, then the Lie
algebra g remains the same and only the involution ‚ on g is changed to Ad.g/‚.

Example 1. SL.n; R/= SO.n/ is a symmetric space of non-compact type: g D
sl.n; R/ is non-compact and semi-simple. Moreover, Bjk is negative definite by
Proposition 1.21, and Bjp is a positive multiple of the positive definite symmetric
bilinear form (1.4).

Example 2. If G � SL.n; R/ is a closed subgroup invariant under transposition and
K D SO.n/ \ G, then G=K is also a symmetric space of non-compact type, because
g is non-compact and semi-simple, Bjk is negative definite by Proposition 1.21, and
Bjp is a positive multiple of the positive definite symmetric bilinear form (1.4).

Example 3. SO.p C q/=.SO.p/ � SO.q// is a symmetric space of compact type:
g D so.p C q/ is compact and semi-simple. Notice that in this case Bjp is a negative
multiple of the positive definite symmetric bilinear form (1.7).

Example 4. A compact connected semi-simple Lie group G Š .G � G/=� is a
symmetric space of compact type with respect to any metric induced by a G-bi-in-
variant metric on G. The corresponding orthogonal symmetric Lie algebra is .g �
g; ‚/, where ‚.X; Y / ´ .Y; X/ for X; Y 2 g, and g�g is compact and semi-simple.

The next theorem gives a decomposition for effective orthogonal symmetric Lie
algebras.
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Theorem 1.27 ([H], Theorem V.1.1). Let .l; &/ be an effective orthogonal symmetric
Lie algebra. Then there exist ideals l0, l� and lC such that

(1) l can be decomposed as a direct sum l D l0 ˚ l� ˚ lC ;

(2) l0, l� and lC are invariant under & and orthogonal with respect to the Killing
form of l ;

(3) the pairs .l0; & jl0
/, .l�; & jl�

/ and .lC; & jlC
/ are effective orthogonal symmetric

Lie algebras of Euclidean type, compact type and non-compact type respectively.

Let .L; U / be a pair associated with an effective orthogonal symmetric Lie algebra
.l; &/, and l D u ˚ e the decomposition of l into the eigenspaces of & for the
eigenvalues C1 and �1 respectively. In the proof of the above theorem, S. Helgason
shows that for any Ad.U /-invariant positive definite symmetric bilinear form Q on e
there exists an endomorphism ˆ of e such that

Q.ˆ.X/; Y / D B.X; Y / for any X; Y 2 e:

Moreover, if l is of Euclidean, compact or non-compact type, then all eigenvalues of ˆ

are identically zero, strictly negative or strictly positive, respectively. This immediately
implies the following

Proposition 1.28. If .l0; &0/, .l�; &�/, .lC; &C/ are effective orthogonal symmetric
Lie algebras ofEuclidean, compact andnon-compact type respectively, then theKilling
form restricted to e0, e�, eC is identically zero, negative definite and positive definite,
respectively.

For the remainder of this section we let S be a globally symmetric space, o 2 S

a base point, and .G; K/ the associated Riemannian symmetric pair. Let � W G ! S ,
g 7! g � o, denote the natural map, and g D k ˚ p the Cartan decomposition of the
Lie algebra g of G with ek D K. From the previous proposition we know that if S

is of compact type, then �Bjp induces a scalar product Qo on ToS , and if S is of
non-compact type, then Bjp does.

As performed in Section 1.6 for a semi-simple Lie group, we can extend this
scalar product to a G-invariant Riemannian structure on S : for g 2 G we denote by
Dg W TS ! TS the differential of the isometry g. For x 2 S we choose g 2 G such
that x D g � o and define a scalar product Qx on TxS via

Qx.v; w/ ´ Qo

�
.Dog/�1.v/; .Dog/�1.w/

�
; v; w 2 TxS: (1.11)

Notice that if h 2 G also satisfies h �o D x, then h�1g 2 K. Moreover, for any k 2 K

the Killing form Bp restricted to p is Ad.k/-invariant. Since Qo.De�.X/; De�.Y // D
	B.X; Y /, and De� B Ad.k/ D Dok B De� we conclude that Qo is invariant under
Dok for any k 2 K. Hence the assignment x 7! Qx is consistent and defines a
Riemannian structure Q on S . This structure is G-invariant: indeed, if x; y 2 S ,
v; w 2 TxS are arbitrary, and g 2 G such that y D g � x , h 2 G such that x D h � o,
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then y D gh � o and Do.gh/ D Dxg B Doh gives

Qy.Dxg.v/; Dxg.w//
.1.11/D Qe

�
.Do.gh//�1 B Dxg.v/; .Do.gh//�1 B Dxg.w/

�
D Qe

�
.Doh/�1.v/; .Doh/�1.w/

� .1.11/D Qx.v; w/:

Hence both for symmetric spaces S of compact type and of non-compact type the
Killing form canonically induces a G-invariant Riemannian structure on S .

Conversely, any G-invariant Riemannian metric Q on a symmetric space S of
compact or non-compact type is essentially determined by the restriction of the Killing
form to p: since QoBDe� jp is an Ad.K/-invariant positive definite symmetric bilinear
form on p, by the remark following Theorem 1.27 there exists an automorphism ˆ of
p such that in ToS D De�.p/ we have

Qo.De�.ˆ.X//; De�.Y // D B.X; Y / for all X; Y 2 p:

Moreover, according to whether S is of compact type or of non-compact type, all
eigenvalues of ˆ are strictly negative or strictly positive, and all eigenspaces of ˆ are
invariant by Ad.K/. More details can be found e.g. in Section 2.3 of [E], Section 8.2
of [Wo] or Chapter V, §1 and §3 in [H].

We will now look at the sectional curvature of the globally symmetric space S .
Let h�; �i denote the scalar product in p Š ToS induced from the Riemannian metric.
Recall from Theorem 1.17 that for X; Y; Z 2 p the curvature tensor R.X; Y /Z ´
.De�/�1

�
Ro.De�.X/; De�.Y //De�.Z/

�
is given by �ŒŒX; Y �; Z�. Given two lin-

early independent vectors X; Y 2 p, the sectional curvature �.hX; Y i/ of the two-plane
hX; Y i in ToS spanned by De�.X/ and De�.Y / is defined by

�.hX; Y i/ ´ hR.Y; X/X; Y iphX; XihY; Y i � hX; Y i2
:

We have the following

Theorem 1.29 ([H], Theorem V.3.1). Let S be a globally symmetric space with asso-
ciated Riemannian symmetric pair .G; K/ such that K � G is connected and closed,
and Q an arbitrary G-invariant Riemannian metric.

(1) If S is of compact type, then S has non-negative sectional curvature.

(2) If S is of non-compact type, then S has non-positive sectional curvature.

(3) If S is of Euclidean type, then the sectional curvature of S is identically zero.

Proof. Notice that by G-invariance of the metric it suffices to prove the claim for
arbitrary two-planes in ToS Š p. Recall that h�; �i denotes the scalar product on p
induced by the Riemannian structure Q. We first prove (1) and (2). By the remark
following Proposition 1.28 there exists an automorphism ˆ of p with all eigenvalues
strictly positive such that hˆ.X/; Y i D 	B.X; Y /, X; Y 2 p, according to whether
S is of compact type or of non-compact type.
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Now choose an arbitrary two-plane E in ToS and a basis X; Y 2 p of .De�/�1.E/

satisfying hX; Xi D hY; Y i D 1 and hX; Y i D 0. Then the sectional curvature of E

is given by

�.E/ D hR.Y; X/X; Y i D h�ŒŒY; X�; X�; Y i D �hY; ŒŒY; X�; X�i: (1.12)

Let k 2 K be such that Ad.k/Y is an eigenvector of ˆ with eigenvalue say ˇ > 0.
Since the scalar product is invariant under Ad.k/ we get

�.E/ D �hAd.k/Y; Ad.k/ŒŒY; X�; X�i D �ˇ�1hˆ.Ad.k/Y /; Ad.k/ŒŒY; X�; X�i:
If S is of compact type, we therefore have by Ad.k/-invariance of the Killing form
and Proposition 1.19 (1)

ˇ �.E/ D B.Ad.k/Y; Ad.k/ŒŒY; X�; X�/ D B.Y; ŒŒY; X�; X�/

D B.ŒY; X�; ŒX; Y �/ D �B.ŒX; Y �; ŒX; Y �/ � 0;

because B is negative definite on k and ŒX; Y � 2 k. Similarly, for S of non-compact
type we get ˇ �.E/ D B.ŒX; Y �; ŒX; Y �/ 
 0. The claim then follows from the fact
that all eigenvalues of ˆ are positive.

If S is of Euclidean type, then p is an abelian ideal in g. So for all X; Y 2 p we
have R.Y; X/X D �ŒŒY; X�; X� D 0, hence by (1.12) �.E/ D 0 for any two-plane
E � ToS .

Notice that for the non-compact type, the hypothesis that K is connected and
closed is always satisfied; for the compact type, K is always closed but not necessarily
connected.

We finally state the de Rham decomposition

Theorem 1.30 ([H], Proposition V.4.2). Let S be a globally symmetric space. Then

S D S0 � S� � SC;

where S0 is a symmetric space of Euclidean type, S� a symmetric space of compact
type, and SC a symmetric space of non-compact type.

This theorem implies that in order to understand arbitrary globally symmetric
spaces it suffices to study symmetric spaces of Euclidean, compact and non-compact
type separately. Since the symmetric spaces of Euclidean type are isometric to Eu-
clidean spaces by Theorem 1.29 (3), the interesting classes of symmetric spaces are
those of compact or of non-compact type.

2 Symmetric spaces of non-compact type

In this section we will study the structure of globally symmetric spaces of non-compact
type which are known to be non-positively curved by Theorem 1.29. Moreover, it
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follows from Definition 1.26 that the connected component of the identity of the
isometry group is a semi-simple Lie group. More precisely, we have the following

Proposition 2.1 ([E], Proposition 2.1.1). The connected component of the identity of
the isometry group of a globally symmetric space of non-compact type is a semi-simple
Lie group with trivial center and without compact factor.

We will explain the classical decompositions of semi-simple Lie groups and relate
them to the geometry of the symmetric space. In this way we can understand how
totally geodesically embedded Euclidean spaces and the so-called horocycles sit inside
our manifold.

For the remainder of this text we will assume that S is a globally symmetric space of
non-compact type, o 2 S a base point, G D Iso.S/ and K � G the compact isotropy
subgroup at o. Let g D k ˚ p be the Cartan decomposition, and De� W p ! ToS the
isomorphism given in Theorem 1.15. We will assume that the Riemannian structure
of S is induced by the Killing form Bjp restricted to p; from the remark following
Proposition 1.28 we know that this is not a severe restriction.

2.1 Flats and rank

Definition 2.2. A k-flat in S is a totally geodesic k-dimensional submanifold isometric
to Rk . The rank r of S is defined as the maximal natural number r for which an r-flat
exists in S . An r-flat is called a (maximal) flat.

Notice that a 1-flat is simply a geodesic. Moreover, if a symmetric space of non-
compact type has an upper negative bound on its sectional curvature, then it is of rank
one. The rank one symmetric spaces of non-compact type are completely classified:
they are precisely the hyperbolic spaces over the reals, complex numbers and quater-
nions, and the hyperbolic plane over the Cayley numbers. Every other symmetric
space of non-compact type is of rank bigger than one and therefore possesses totally
geodesically embedded Euclidean planes.

We next address the following question: how does an r-flat F through the base
point o 2 S look like in terms of Lie algebras?

We first remark that F is totally geodesic, hence by Theorem 1.17 (2) it necessarily
has the form F D eq � o for a Lie triple system q � p. Moreover, the sectional
curvature restricted to F equals zero. Hence for all X; Y 2 q Š ToF such that
B.X; Y / D 0, B.X; X/ D B.Y; Y / D 1 we have the condition

0 D �.hX; Y i/ D B.ŒX; Y �; ŒX; Y �/:

Again, the fact that B is negative definite on k implies that ŒX; Y � D 0. Hence q � p
has to be an abelian subspace.

Now let a � p be a maximal abelian subspace of dimension r D rank.S/. Then
F D ea � o is a maximal flat in S . Since G acts by isometries on S , every set of the
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form g � F , g 2 G, is also a maximal flat. We will see later on that every flat in S is
necessarily a G-translate of F .

Example 1. For SL.n; R/= SO.n/ we know from Section 1.5 that p D sym0.n/ �
sl.n; R/, the set of symmetric .n � n/-matrices of trace zero with entries in R. A
maximal abelian subspace a of p is the set of diagonal matrices of trace zero, i.e.

a D ˚
Diag.t1; : : : ; tn/ W t1; : : : ; tn 2 R;

Pn
iD1 ti D 0

�
:

We have seen that the set of positive definite symmetric .n�n/-matrices Pos1.n/ with
determinant one is diffeomorphic to SL.n; R/= SO.n/, where the SL.n; R/-action on
Pos1.n/ is given by g � p ´ gtpg, p 2 Pos1.n/, g 2 SL.n; R/. The base point
o 2 Pos1.n/ is the fixed point of SO.n/, hence the identity matrix In 2 Pos1.n/. So
we get a maximal flat

F D ea � o D ˚
Diag.e2t1 ; : : : ; e2tn/ W t1; : : : ; tn 2 R;

Pn
iD1 ti D 0

�
D ˚

Diag.	1; : : : ; 	n/ W 	1; : : : ; 	n > 0;
Qn

iD1 	i D 1
� (2.1)

in S , and the rank equals n � 1.

Exercise. Every flat F in SL.n; R/= SO.n/ is isomorphic to the Euclidean vector
space Rn�1, hence for x; y; z 2 F the angle †x.y; z/ between the vectors pointing
from x to y and from x to z is well-defined. Using formula (1.4), show that for x; y; z

in a common flat F with †x.y; z/ D �=2 we have d.y; z/2 D d.x; y/2 C d.x; z/2.

Example 2a. For SO.p; q/=.SO.p/ � SO.q//, p 
 q, a maximal abelian subspace a
of p is given by

a D ˚ �
0 D
D 0

� W D D .dij / 2 M.p; q/; dij D 0 for i ¤ j
�
:

In particular, the rank equals p D minfp; qg.

Example 2b. For Sp.2q; R/=.SO.2q/ \ Sp.2q; R// a maximal abelian subspace a of
p is given by

a D ˚ �
D 0
0 �D

� W D D Diag.t1; : : : ; tq/; t1; : : : ; tq 2 R
�
:

In particular, the rank equals q.
As in Section 1.5 we consider the set S2q of !-compatible complex structures on the

symplectic vector space .R2q; !/ with the Sp.2q; R/-action by conjugation. Choosing
as a base point o 2 Sp.2q; R/ the !-compatible complex structure defined by the
matrix J0 given in (1.6), S2q is diffeomorphic to Sp.2q; R/=.SO.2q/ \ Sp.2q; R//.
The following set F is a maximal flat in S2q:

F D ea � o D ˚ �
A 0
0 A�1

� � 0 �Iq

Iq 0

� �
A�1 0

0 A

� W A D Diag.et1 ; : : : ; etq /; t1; : : : ; tq 2 R
�

D ˚ �
0 �A2

A�2 0

�
W A D Diag.et1 ; : : : ; etq /; t1; : : : ; tq 2 R

�
D ˚ � 0 Diag.��1;:::;��q/

Diag. 1
�1

;:::; 1
�q

/ 0

�
W 	1; : : : ; 	q > 0

�
:
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Example 2c. A maximal flat in H2 � H2 is simply a set

f.c1.t1/; c2.t2// W t1; t2 2 Rg;
where ci is a geodesics in the i -th H2-factor for i D 1; 2.

Lemma 2.3. Every geodesic is contained in at least one flat.

Proof. If c � S is a geodesic, then by the remark following Corollary 1.16 there
exists g 2 G and X 2 p such that c.t/ D getX � o, t 2 R. Take a maximal abelian
subspace a � p which contains X . Then c is contained in the flat gea � o.

Definition 2.4. Let X 2 p, and Zg.X/ ´ fY 2 g W ŒY; X� D 0g the centralizer of X

in g. The vector X is called regular if Zg.X/ \ p is maximal abelian, and singular
otherwise.

Notice that if X 2 p is singular, then dim.Zg.X/ \ p/ > r . The following lemma
in particular shows that regular vectors exist.

Lemma 2.5 ([H], Lemma V.6.3 (i)). Let a � p be a maximal abelian subspace. Then
there exists an element H 2 a such that Zg.H/ \ p D a.

Theorem 2.6. If a, a0 are maximal abelian subspaces of p, then there exists k 2 K

such that a0 D Ad.k/a.

Proof. Choose H 2 a, H 0 2 a0 regular. Recall that B denotes the Killing form
on g, and consider the bounded differentiable map f W K ! R defined by f .k/ D
B
�

Ad.k/H; H 0� . Let k0 2 K be one of its critical points. Then for any Z 2 k we
have

0 D d

dt

ˇ̌̌
tD0

f .k0etZ/ D d

dt

ˇ̌̌
tD0

B.Ad.k0etZ/H; H 0/

D d

dt

ˇ̌̌
tD0

B.Ad.k0/ Ad.etZ/H; H 0/ D B.Ad.k0/
d

dt

ˇ̌̌
tD0

.Ad.etZ/H/; H 0/

D B.Ad.k0/.ad Z/H; H 0/ D B.Ad.k0/ŒZ; H�; H 0/
D B.Ad.k0/Z; ŒAd.k0/H; H 0�/:

From Lemma 1.23 we know that Ad.k0/H 2 p, so by Lemma 1.14, ŒAd.k0/H;H 0� 2 k.
Since both Ad.k0/Z and ŒAd.k0/H; H 0� belong to k, Z 2 k is arbitrary, and the restric-
tion of the Killing form B to k is negative definite by Proposition 1.21, we conclude
that ŒAd.k0/H; H 0� D 0. Since H 0 is regular, every element in g which commutes
with H 0 is contained in a0, so Ad.k0/H 2 a0. Since a0 is abelian, every element in
a0 commutes with Ad.k0/H , and therefore every element in Ad.k�1

0 /a0 commutes
with H . Since a D Zg.H/ \ p we conclude that Ad.k�1

0 /a0 � a. Exchanging the
role of a and a0 in the argument above we conclude that there exists k 2 K such that
Ad.k/a � a0. Hence

Ad.k/ Ad.k�1
0 /a0 � Ad.k/a � a0;
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which shows that Ad.k/ Ad.k�1
0 /a0 D a0 D Ad.k/a.

Notice that this theorem in particular implies that all maximal abelian subspaces
of p have the same dimension r D rank.S/.

Lemma 2.7. The vector X 2 p is regular if and only if the geodesic c � S defined
by c.t/ ´ etX � o, t 2 R, is contained in precisely one flat.

Proof. Suppose X 2 p is regular, i.e. a ´ Zg.X/ \ p is maximal abelian, and c is
contained in more than one flat. Since every flat through the base point o is of the
form ea0 � o with a0 � p a maximal abelian subspace, we may assume that c � ea � o

and c � ea0 � o, a0 � p maximal abelian, a0 ¤ a. Since X 2 a0 and a0 is abelian
we conclude that every element in a0 � p commutes with X , hence is contained in
Zg.X/ \ p D a. But a0 � a and dim a0 D dim a D rank.S/ then imply a0 D a, a
contradiction.

Conversely assume that c is contained in precisely one flat, say ea � o for a � p
maximal abelian. Suppose Zg.X/ \ p is not maximal abelian. Then a � Zg.X/ \ p
and there exists X 0 2 Zg.X/ \ p such that X 0 … a. Choose a0 � p maximal abelian
such that X 0 2 a0. Then by the choice of X 0 we have a0 ¤ a, and X 0 2 Zg.X/ implies
ŒX 0; X� D 0, hence X 2 a0. We conclude that c is contained in the two different flats
ea � o and ea0 � o, a contradiction.

Example 1. X 2 p is regular if and only if all its eigenvalues are distinct.
Let us look in the case n D 3 at the singular vector X D Diag.1; 1; �2/ 2

p D sym0.3/. An easy computation shows that for any 
 2 R the element k.
/ ´�
cos � sin � 0� sin � cos � 0

0 0 1

�
2 K D SO.3/ satisfies Ad.k.
//X D X .

In particular, there exists a one-parameter family of flats containing the geodesic
c defined by c.t/ D etX � o, t 2 R.

Example 2b. X 2 p is regular if and only if all its eigenvalues are distinct and different
from zero.

In the case q D 2 the vector X D Diag.1; 1; �1; �1/ 2 p is singular: clearly every
element in K of the form

k D

0
BB@

cos 
 sin 


� sin 
 cos 

0

0
cos 
 sin 


� sin 
 cos 


1
CCA ; 
 2 R;

satisfies Ad.k/X D X . For �1; �2 > 0 we set

A� .�1; �2/ ´
�

�1 cos2 
 C �2 sin2 
 .�2 � �1/ sin 
 cos 


.�2 � �1/ sin 
 cos 
 �1 sin2 
 C �2 cos2 


�
:
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Then the geodesic c.t/ ´ etX � o D
�

0 �et I2

e�t I2 0

�
� S4 belongs to each of the

following flats parametrized by 
 2 R:n �
0 A� .��1;��2/

A� . 1
�1

; 1
�2

/ 0

�
W 	1; 	2 > 0

o
� S4:

Similarly, the vector Y D Diag.1; 0; �1; 0/ is invariant by Ad.k/ for any k 2 K

of the form

k D

0
BB@

1 0 0 0

0 cos 
 0 sin 


0 0 1 0

0 � sin 
 0 cos 


1
CCA ; 
 2 R:

So for all 
 2 R the geodesic c.t/ ´ etY � o D
 

0
�e2t 0

0 �1

e�2t 0
0 1

0

!
� S4 is

contained in the flat8̂<
:̂
0
B@

0 0 ��1 0

0 . 1
�2

��2/ sin � cos � 0 � 1
�2

sin2 ���2 cos2 �

1
�1

0 0 0

0 �2 sin2 �C 1
�2

cos2 � 0 .�2� 1
�2

/ sin � cos �

1
CA W 	1; 	2 > 0

9>=
>; :

Example 2c. A geodesic c in H2 � H2 is of the form

c.t/ D .c1.t cos 
/; c2.t sin 
//;

where ci are geodesics in the i -th H2-factor, i D 1; 2, and 
 2 Œ0; �=2�. The geodesic
c is regular if the parameter 
 is contained in the open interval .0; �=2/, c is singular
if 
 2 f0; �=2g. In other words, c is singular if and only if its projection to one of the
factors is a point.

2.2 Roots and root spaces

Recall that ‚ W g ! g is the Cartan involution, and B W g � g ! R the Killing form
on g. For this section we will use the following positive definite bilinear form on g

hhX; Y ii ´ �B.X; ‚.Y //; X; Y 2 g;

which is obtained from the Killing form by “changing sign on k". Notice that on p the
scalar product hh�; �ii coincides with the one induced by Bjp (which by our assumption
made at the beginning of Section 2 determines the Riemannian structure on S ).

Lemma 2.8. The operator ad X , X 2 p, is self-adjoint on g with respect to hh�; �ii.

Proof. Let X 2 p. We show that for all Y; Z 2 g

hh.ad X/Y; Zii D hhY; .ad X/Zii:
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Indeed, we have hhŒX; Y �; Zii D �B.ŒX; Y �; ‚Z/ D �B.‚Z; ŒX; Y �/; using Propo-
sition 1.19 (1), we conclude

hhŒX; Y �; Zii D B.‚Z; ŒY; X�/

D �B.Y; Œ

D‚X‚…„ƒ
�X ; ‚Z�/ D �B.Y; Œ‚X; ‚Z�/ D �B.Y; ‚ŒX; Z�/

D hhY; ŒX; Z�ii: �

Corollary 2.9. If a � p is maximal abelian, then fad H W H 2 ag is a commutative
family of self-adjoint operators on g with respect to hh�; �ii.

This corollary in particular implies that g decomposes into an orthogonal direct
sum of common eigenspaces with respect to hh�; �ii. This motivates the following

Definition 2.10. A linear map ˛ W a ! R is called a root of the pair .g; a/ if g˛ ´
fX 2 g W ŒH; X� D ˛.H/X for all H 2 ag ¤ f0g. The subspace g˛ of g is then
called a root space.

It is easy to see that a � g0, where the subscript 0 denotes the trivial linear map.
We will write † for the set of non-trivial roots. We have #† < 1, and

g D g0

M
˛2†

g˛: (2.2)

Recall that ‚ W g ! g denotes the Cartan involution. It is easy to see that for all X 2 g
we have X C ‚X 2 k, and X � ‚X 2 p.

Lemma 2.11. For all ˛ 2 † we have

‚g˛ D g�˛:

Proof. Let X 2 g˛ . Then for all H 2 a we have ŒH; X� D ˛.H/X . Moreover, H 2
p, i.e. ‚H D �H . We conclude, using the fact that ‚ is a Lie algebra automorphism,
ŒH; ‚X� D Œ‚. ‚H„ƒ‚…

D�H

/; ‚X� D ‚
�
Œ�H; X�

� D ‚
�� ˛.H/X

� D �˛.H/‚X .

Lemma 2.12. We have

Œg˛; gˇ � ´ fŒX; Y � W X 2 g˛; Y 2 gˇ g � g˛Cˇ for all ˛; ˇ 2 †:

Proof. Let X 2 g˛ , Y 2 gˇ . Then for H 2 a we have by the definition of ad W g !
gl.g/ and the Jacobi identity

.ad H/ŒX; Y � D ŒH; ŒX; Y �� D �ŒX; ŒY; H�� � ŒY; ŒH; X��

D �ŒX; �ˇ.H/Y � � ŒY; ˛.H/X�

D ˇ.H/ŒX; Y � � ˛.H/ŒY; X�

D .˛ C ˇ/.H/ŒX; Y �: �
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Lemma 2.13. H 2 a n f0g is regular if and only if ˛.H/ ¤ 0 for any ˛ 2 †.

Proof. Let H 2 a n f0g. First assume that H is regular, i.e. Zg.H/ \ p is maximal
abelian. Since a � Zg.H/ this implies a D Zg.H/ \ p. Suppose there exists
˛ 2 † such that ˛.H/ D 0. Then for all X 2 g˛ we have ŒH; X� D ˛.H/X D 0,
hence g˛ � Zg.H/. Similarly we have g�˛ 2 Zg.H/, and therefore X � ‚X 2
Zg.H/ \ p D a for all X 2 g˛ , a contradiction.

Conversely suppose ˛.H/ ¤ 0 for all ˛ 2 †, and Zg.H/ \ p is not maximal
abelian. Then there exists Y 2 p � g, Y … a, Y ¤ 0 such that ŒH; Y � D 0. For
˛ 2 † denote by Y˛ the projection of Y to g˛ . Then

0 D ŒH; Y � D
X
˛2†

ŒH; Y˛� D
X
˛2†

˛.H/Y˛:

Since ˛.H/ ¤ 0 for all ˛ 2 † and g is a direct sum of the g˛ , this implies Y˛ D 0

for all ˛ 2 †, a contradiction to Y ¤ 0.

Corollary 2.14. If areg denotes the set of regular vectors in a, then

areg D a n
[
˛2†

ker.˛/:

Definition 2.15. A Weyl chamber in a is a connected component of areg.

Notice that a Weyl chamber is isomorphic to an open Euclidean cone in a.
In the sequel Eij will denote a quadratic matrix which has a 1 at the position i -th

row, j -th column, and zeros everywhere else. The size of the matrix will be taken so
that it fits into the frame of the example considered.

Example 1. For SL.n; R/= SO.n/ we consider H D Diag.t1; t2; : : : ; tn/ 2 a. An
easy calculation shows that

.ad H/Eij D ŒH; Eij � D .ti � tj /Eij :

Hence we have n.n � 1/ non-zero roots, and g0 D a. In particular

sl.n; R/ D a C
X
i¤j

R � Eij :

A Weyl chamber in a is e.g. given by

aC ´ ˚
Diag.t1; t2 : : : ; tn/ W Pn

iD1 ti D 0; t1 > t2 > � � � > tn
�
:

Example 2a. Recall that M.p; q/ denotes the set of .p � q/-matrices with values
in R. For SO.2; 3/=

�
SO.2/ � SO.3/

�
we have

a D
8<
:H.t1; t2/ ´

0
@ 0

t1 0 0
0 t2 0

t1 0
0 t2

0 0
0

1
A W t1; t2 2 R

9=
; Š R2:
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Here we have 8 roots: if H D H.t1; t2/ then a calculation shows that with ˛1, ˛2

defined by ˛1.H/ D t1, ˛2.H/ D t2, the set of roots is given by

f˛1; ˛2; �˛1; �˛2; ˛1 C ˛2; ˛1 � ˛2; �˛1 C ˛2; �˛1 � ˛2g:
The corresponding root spaces are

g˛1
D R � �E15 C E51 C E35 � E53

�
; g�˛1

D R � �E15 C E51 � E35 C E53

�
;

g˛2
D R � �E25 C E52 C E45 � E54

�
; g�˛2

D R � �E25 C E52 � E45 C E54

�
;

g˛1C˛2
D R � �E12 � E21 C E23 C E32 � E14 � E41 � E34 C E43

�
;

g˛1�˛2
D R � �E12 � E21 C E23 C E32 C E14 C E41 C E34 � E43

�
;

g�˛1C˛2
D R � �E12 � E21 � E23 � E32 � E14 � E41 C E34 � E43

�
;

g�˛1�˛2
D R � �E12 � E21 � E23 � E32 C E14 C E41 � E34 C E43

�
:

A Weyl chamber in a is for example aC D fH.t1; t2/ 2 a W t1 > t2 > 0g.

Example 2b. For Sp.4; R/=
�

SO.4/ \ Sp.4; R/
�

we have

a D fH.t1; t2/ ´ Diag.t1; t2; �t1; �t2/ W t1; t2 2 Rg Š R2:

If H D H.t1; t2/ then with ˛1, ˛2 defined by ˛1.H/ D t1, ˛2.H/ D t2, the set of
roots is given by

f2˛1; 2˛2; �2˛1; �2˛2; ˛1 C ˛2; ˛1 � ˛2; �˛1 C ˛2; �˛1 � ˛2g:
Here the corresponding root spaces are

g2˛1
D R � E13; g2˛2

D R � E24; g�2˛1
D R � E31; g�2˛2

D R � E42;

g˛1C˛2
D R � �E14 C E23

�
; g˛1�˛2

D R � �E12 � E43

�
;

g�˛1C˛2
D R � �E21 � E34

�
; g�˛1�˛2

D R � �E32 C E41

�
;

and a possible Weyl chamber in a is aC D fH.t1; t2/ 2 a W t1 > t2 > 0g.
Notice that even though at first sight this root system looks different from the one

in Example 2a, the root systems are isomorphic: taking instead of ˛1, ˛2 the roots �1,
�2 defined by �1.H/ D t1 C t2 and �2.H/ D t1 � t2, the set of roots equals

f�1 C �2; �1 � �2; ��1 � �2; ��1 C �2; �1; �2; ��2; ��1g;
and the corresponding root spaces obviously are

g˙�1
D g˙.˛1C˛2/; g˙�2

D g˙.˛1�˛2/;

g˙.�1C�2/ D g˙2˛1
; g˙.�1��2/ D g˙2˛2

:

The fact that the two root systems are the same has a deeper reason: the Lie algebras
so.2; 3/ and sp.4; R/ are isomorphic (see e.g. Chapter X, §6.4 (ii) in [H]).

Remark 2.16. The roots of the pair .g; a/ form a root system in the finite dimensional
vector space a over R according to the following definition.
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Definition 2.17 ([H], X.3.1). Let V be a finite dimensional vector space over R and
R � V a finite set of non-zero vectors. R is called a root system in V , and its members
are called roots if

(1) R generates V ;

(2) for each ˛ 2 R there exists a reflection s˛ along ˛ leaving R invariant;

(3) for all ˛, ˇ 2 R the number m˛ˇ determined by

s˛ˇ D ˇ � m˛ˇ ˛

is an integer, i.e. m˛ˇ 2 Z.

2.3 Iwasawa decomposition

For this section we fix a Weyl chamber aC � a, and denote by r ´ dim a the rank
of S . We will need the following subset of the set of roots † of the pair .g; a/

†C ´ f˛ 2 † W ˛.H/ > 0 for all H 2 aCg:

Definition 2.18. A root is called simple if it cannot be written as a sum ˛ D ˇ C � ,
where ˇ, � 2 †C.

By Theorem III.V.7 in [H] there exist a set of r simple roots ‡ ´ f˛1; ˛2; : : : ; ˛rg
and c1; : : : ; cr 2 N [ f0g such that

˛ D
rX

iD1

ci˛i for all ˛ 2 †C:

Such a set is called a fundamental set of roots. Moreover, we have

† D †C t .�†C/:

We next put

nC ´
X

˛2†C

g˛;

which is a nilpotent Lie algebra by Lemma 2.12 and the fact that † is a finite set. Set
N C ´ enC

which is a unipotent subgroup of G. The following theorem is called the
Iwasawa decomposition:

Theorem 2.19 ([H],Theorem IX.1.3). We have g D k ˚ a ˚ nC. If A D ea, then the
mapping K � A � N C ! G, .k; a; n/ 7! kan is a diffeomorphism.

As a consequence we have S D G � o D N CA � o which is sometimes called the
“foliation by flats”. N C-orbits in S are called horocycles.
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Example 1. We consider the set †C of positive roots with respect to the Weyl chamber

aC D ˚
Diag.t1; t2; : : : ; tn/ W Pn

iD1 ti D 0; t1 > t2 > � � � > tn
�
:

Let ˛i denote the simple root determined by ˛i .Diag.t1; t2; : : : tn// D ti � tiC1 for
i 2 f1; 2; : : : ; n � 1g. Then a fundamental set of roots is precisely the set ‡ D
f˛1; ˛2; : : : ; ˛n�1g.

The nilpotent Lie algebra nC is the set of upper triangular .n � n/-matrices with
zeros in the diagonal, and N C is the group of upper triangular .n � n/-matrices with
1’s in the diagonal. If DiagC.n/ denotes the set of diagonal .n � n/-matrices with
positive entries and determinant one, we have

SL.n; R/ D SO.n/ � DiagC.n/ � N C: (2.3)

This decomposition simply comes from the Gram–Schmidt orthonormalization pro-
cedure in linear algebra.

In H2 the foliation by flats is simply the foliation by geodesics given by�
1 x

0 1

�
�
�

et=2 0

0 e�t=2

�
� i D

�
1 x

0 1

�
� et i D et i C x; x; t 2 R:

Any fixed t 2 R determines a horocycle fet i C x W x 2 Rg.

Example 2b. In Sp.4; R/=
�

SO.4/ \ Sp.4; R/
�

we take the Weyl chamber

aC D ˚
Diag.t1; t2; �t1; �t2/ W t1 > t2 > 0

�
:

Then the set of positive roots in the notation from the previous section is given by
†C D f2˛1; 2˛2; ˛1 C ˛2; ˛1 � ˛2g. The roots 2˛1 and ˛1 C ˛2 are not simple; a
fundamental set of roots is ‡ D f˛1 � ˛2; 2˛2g. Here we have

nC D
´ 

0 a
0 0

x z
z y

0
0 0

�a 0

!
W a; x; y; z 2 R

μ
:

2.4 The space of maximal flats

Let a � p be a maximal abelian subspace. In Section 2.1 we have seen that every set
of the form gea � o, g 2 G, is a maximal flat in S . The following theorem shows that
every maximal flat can be written in this way.

Theorem 2.20. All maximal flats are conjugate in S , i.e. the space of maximal flats
is homogeneous.

Proof. We have to show that for arbitrary maximal flats F , F 0 in S there exists g 2 G

such that F 0 D g � F . Since G acts transitively on S we may assume that o 2 F .
Pick x 2 F 0 and let g 2 G be such that g � x D o. Replacing F 0 by g � F 0 we
may further assume that o 2 F 0. Now let a, a0 � p be maximal abelian subspaces



314 Gabriele Link

such that F D ea � o and F 0 D ea0 � o. We show that there exists k 2 K such that
F 0 D k � F , i.e. ea0 � o D kea � o. This is equivalent to the existence of k 2 K such
that a0 D Ad.k/a, hence the claim follows from Theorem 2.6.

Example 1. Recall from (2.1) that in Pos1.n/ the set

F D ˚
Diag.	1; : : : ; 	n/ W 	1; : : : ; 	n > 0;

Qn
iD1 	i D 1

�
is a maximal flat containing the base point o D In. Given an arbitrary point p 2
Pos1.n/, how does a flat through o containing p look like?

Since p 2 Pos1.n/ is diagonalizable, there exists k 2 SO.n/ such that the matrix
kpk�1 is diagonal with positive entries and determinant 1. With the action of SL.n; R/

on Pos1.n/ given by g � p ´ gtpg, p 2 Pos1.n/, g 2 SL.n; R/, we conclude

kpk�1 D .k�1/tpk�1 D k�1 � p 2 F;

hence F 0 ´ k � F is a flat in Pos1.n/ through o containing p.
Notice that the matrix k 2 SO.n/ above is not unique. Conjugating with an

appropriate element w 2 SO.n/ we can arrange that wkpk�1w�1 is a diagonal matrix
Diag.	1; : : : ; 	n/ such that 	1 � 	2 � � � � � 	n. This motivates the definition of the
Weyl group in the following section.

Example 2c. If F is a flat in H2 � H2, there exist unit speed geodesics c1, c2 in
the two factors such that F D f.c1.t1/; c2.t2// W t1; t2 2 Rg. Since SL.2; R/ acts
simply transitively on the set of unit speed geodesics of H2, there exists .g1; g2/ 2
SL.2; R/�SL.2; R/ such that g1 �c1.t1/ D et1 i and g2 �c2.t2/ D et2 i for all t1; t2 2 R.

2.5 Weyl group and opposition involution

We have seen that a maximal flat F � S is an isometric copy of Rr , where r denotes
the rank of S . Hence abstractly its full isometry group would be O.n/ËRn. However,
the induced isometries of F (i.e. the isometries of F in G D Iso.S/) are generated by
all translations, but only finitely many rotations. These rotations are encoded in the
so-called Weyl group of S .

We denote by M the centralizer, and by M � the normalizer of a in K, i.e.

M D fk 2 K W Ad.k/H D H for all H 2 ag;
M � D fk 2 K W Ad.k/H 2 a for all H 2 ag:

Definition 2.21. The Weyl group of S is the factor group M �=M .

The Weyl group is finite and satisfies the following properties which are proved in
Chapter VII of [H].

Proposition 2.22 ([H], VII.2). (1) W leaves invariant the configuration of singular
hyperplanes.
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(2) W is finitely generated by reflections s˛ (in the walls of a fixed Weyl chamber).
(3) W acts simply transitively on the set of Weyl chambers of a flat with apex o.

Remark 2.23. If S is a rank one symmetric space, then the Weyl group is isomorphic
to Z=2Z.

Given a Weyl chamber aC � a, there exists a unique element w� 2 W such that
every representative mw�

2 M � of w� satisfies

Ad.mw�
/aC D �aC ´ f�H 2 a W H 2 aCg:

If aC denotes the closure of the Weyl chamber aC, then this element defines a map

 W aC ! aC

H 7! � Ad.mw�
/H;

(2.4)

which is called the opposition involution. Notice that  is an isometry which is the
identity if and only if Ad.mw�

/ D � ida.

Example 1. For Pos1.n/ the Weyl group is isomorphic to the group of permutations
of n-tuples. The element w� corresponds to the permutation which maps the n-tuple
.t1; t2; : : : ; tn/ to .tn; tn�1; : : : ; t1/. For the closed Weyl chamber

aC D ˚
Diag.t1; t2; : : : ; tn/ W Pn

iD1 ti D 0; t1 � t2 � � � � � tn
� � sym0.n/

the opposition involution is given by


�

Diag.t1; t2; : : : ; tn/
� D Diag.�tn; �tn�1; : : : ; �t1/:

Example 2b. For S2q the Weyl group is isomorphic to the subgroup of permutations of
2q-tuples generated by transpositions among the first q elements and the transpositions
.k; k C q/, 1 
 k 
 q. The element w� here acts as � ida, so  D id

aC .

Example 2c. For H2 � H2 the Weyl group is isomorphic to Z=2Z � Z=2Z. The
opposition involution is again the identity.

Definition 2.24. By abuse of notation a Weyl chamber in S is defined to be a set of
the form geaC � o, where aC is a Weyl chamber in a and g 2 G.

2.6 Cartan decomposition and Cartan vector

This section provides a refinement of the Cartan decomposition of the Lie algebra g
of G studied in Section 1.3. We fix a Weyl chamber aC � a in a maximal abelian
subalgebra a of p and denote by aC its closure. The following theorem implies that
symmetric spaces of non-compact type are Weyl chamber isotropic.
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Theorem 2.25.
p D

[
k2K

Ad.k/aC:

Proof. Let X 2 p be arbitrary. By Theorem 2.6 there exists k 2 K such that
Ad.k/X 2 a. The claim now follows from the fact that the Weyl group acts tran-
sitively on the set of Weyl chambers of a.

Since S is complete, the Theorem of Hopf–Rinow implies that the base point o 2 S

can be joined to any point x 2 S by a geodesic. Moreover, since De� W p ! ToS is an
isomorphism and expo

�
De�.X/

� D eX �o, we have S D ep �o. So S is diffeomorphic
to Rdim p and we obtain from the previous theorem polar coordinates for S :

Corollary 2.26. S D ep � o D KeaC � o.

If x D keH � o 2 S , we will call k 2 K an angular projection and H 2 aC
the Cartan projection of x. It can be shown (see e.g. [H], Theorem IX.1.1) that the
Cartan projection of a point x is unique, whereas its angular projection in general is
not. Using the fact that S Š G=K, we get the Cartan decomposition of G:

Corollary 2.27. G D KeaC
K.

The following definition plays an important role in the theory of higher rank sym-
metric spaces:

Definition 2.28. Given x; y 2 S , we choose g 2 G such that g � x D o. The Cartan
vector H.x; y/ 2 aC of the ordered pair of points .x; y/ 2 S � S is defined as the
Cartan projection of g � y.

Notice that the definition of the Cartan vector H.x; y/ does not depend on the
choice of g 2 G such that g � x D o. Indeed, if h 2 G also satisfies h � x D o, then
hg�1 2 K. So if g � y D keH � o we get

h � y D hg�1g � y D hg�1k„ƒ‚…
2K

eH � o:

Furthermore, the length of the Cartan vector of the ordered pair of points .x; y/ 2 S�S

is simply the distance d.x; y/. In particular, if S is a rank one symmetric space,
then the Cartan vector reduces to the Riemannian distance. Hence in higher rank
symmetric spaces the Cartan vector is a natural generalization of the Riemannian
distance function.

We remark that H.y; x/ D .H.x; y//, where  is the opposition involution (2.4).
This can be seen as follows: let h 2 G be such that h � x D o and h � y D eH.x;y/ � o,
and mw�

2 M � be a representative of w� 2 W . Then g ´ e�H.x;y/h 2 G satisfies
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g � y D o, and we have

g � x D e�H.x;y/h � x D e�H.x;y/ � o

D .mw�
/�1e�.H.x;y//mw�

� o D .mw�
/�1e�.H.x;y// � o;

hence the Cartan projection H.y; x/ of g � x equals .H.x; y//.

3 The geometry at infinity

In this section we will describe the geometry at infinity of a globally symmetric space
S of non-compact type. From Section 1.1 and Theorem 1.29 we know that S is
in particular a Hadamard manifold, i.e. a complete simply connected Riemannian
manifold of non-positive sectional curvature. Therefore S is homeomorphic to Rdim S

and can be compactified by attaching its so-called geometric boundary. Due to the
rich algebraic structure of globally symmetric spaces, this boundary can be described
much more precisely than it is possible for general Hadamard manifolds. In particular,
there exists a natural quotient of a dense subset of the geometric boundary which is
called the Furstenberg boundary; for rank one symmetric spaces these two boundaries
coincide.

On the other hand, we are led to study the pairs of points in the geometric boundary
which can be joined by a geodesic. For rank one symmetric spaces all pairs of distinct
boundary points can be joined by a geodesic; in the higher rank setting the flats destroy
this property. However, the Bruhat decomposition will allow us to describe the pairs
of boundary points which can be joined by a geodesic.

Finally we will introduce Busemann functions which serve as a tool in the con-
struction of G-invariant Finsler pseudo-distances on S . When studying the action of
discrete groups on S , these pseudo-distances play a key role for the construction of
generalized Patterson–Sullivan measures (see e.g. [A], [L2]). However, we will not
touch on this subject here.

Recall the notation from Section 2: o 2 S denotes the base point, G D Iso.S/

and K � G the compact isotropy subgroup at o. Let g D k ˚ p be the Cartan
decomposition and assume that the Riemannian structure of S is induced by the Killing
form restricted to p. Moreover, we will fix once and for all a Weyl chamber aC in a
maximal abelian subalgebra a of p. Throughout this section all geodesics and geodesic
rays are supposed to have unit speed.

3.1 The geometric boundary of S

Definition 3.1. We say that two geodesic rays c1, c2 are equivalent if

d.c1.t/; c2.t// is bounded as t ! 1:
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The geometric boundary @S of S is defined as the set of geodesic rays in S modulo
this equivalence relation.

In order to topologize the space xS ´ S [ @S , we introduce the following sets:
for " > 0; R � 1, x 2 S and � 2 @S let CR;"

x;� � xS be the truncated cone

CR;"
x;� ´ fy 2 xS W d.x; y/ > R; d.cx;�.R/; cx;y.R// < "g

in xS , where cx;� denotes the unique unit speed geodesic emanating from x 2 S in the
class of � 2 @S (compare (1.1) for the definition of cx;y , y 2 S ).

Definition 3.2 ([Ba], Chapter II). The cone topology on xS is the topology generated
by the open sets in S and these truncated cones.

If not stated otherwise, convergence in S [ @S will always mean convergence
with respect to the cone topology. The relative topology on @S turns the geometric
boundary into a topological space.

The isometry group of S has a natural action by homeomorphisms on the geometric
boundary. If g 2 G, and � 2 @S is represented by a geodesic ray c in S , then g � � is
the class of the geodesic ray g � c in S . Notice that this assignment does not depend
on the choice of the geodesic ray c in the class of �: indeed, if c0 is a ray different
from c representing �, then d.c.t/; c0.t// is bounded as t tends to infinity. Since g is
an isometry, d.g � c.t/; g � c0.t// is bounded as t tends to 1, hence g � c0 is equivalent
to g � c and therefore represents the same point in the geometric boundary.

It is well-known that the geometric boundary endowed with the cone topology is

homeomorphic to the unit tangent space of an arbitrary point x 2 S . If p1 and aC
1

denote the set of vectors of length 1 with respect to the Killing form in p and aC
respectively, then

@S Š T 1
o S Š p1 D Ad.K/aC

1 :

In particular, a tuple .k; H/ 2 K � aC
1 defines a unique point in @S by taking the

class of the geodesic ray c.t/ ´ keHt � o, t > 0.

Conversely, given a point � 2 @S there exists k 2 K and H 2 aC
1 such that

� is the class of the geodesic ray c.t/ ´ keHt � o, t > 0. In this case we write
� D c.1/. By the Cartan decomposition, H is uniquely determined by �, whereas k

is only determined up to right multiplication by an element in the centralizer of H in
K. We call k an angular projection, and H the Cartan projection of �, and we will
write � D .k; H/.

If r D rank.S/ > 1, we define the regular boundary @S reg as the set of classes
with Cartan projection in aC

1 . If rank.S/ D 1, we use the convention @S reg D @S .
Notice that G � � D K � � for any � 2 @S . Furthermore, G acts transitively on @S

if and only if rank.S/ D 1.
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Example 1. For n D 2, the symmetric space SL.2; R/= SO.2/ can be identified with
H2. The geometric boundary of the hyperbolic plane H2 is the set R [ f1g which is
homeomorphic to the sphere S1.

In general, for n � 2, a point � in the geometric boundary of S D Pos1.n/

determines an eigenvalue-flag pair as follows: let X D X.�/ 2 p Š ToS be the unit
vector such that the geodesic ray c.t/ ´ eXt � o, t > 0, satisfies c.1/ D �. Let
f	1; 	2; : : : ; 	lg be the l 
 n distinct eigenvalues of X , arranged so that 	1 > 	2 >

� � � > 	l . For 1 
 i 
 l let Ei be the eigenspace of X in Rn for the eigenvalue 	i ,
mi ´ dim Ei , and Vi the direct sum of the eigenspaces fEj W 1 
 j 
 ig. We thus
obtain a flag of subspaces V1 � V2 � � � � � Vl D Rn. Notice that X 2 p D sym0.n/

implies Tr.X/ D 0, hence
Pl

iD1 mi	i D 0. Moreover, B.X; X/ D 1 translates into

the condition
Pl

iD1 mi	
2
i D 1. Hence to each point � 2 @S we have associated a

vector 	.�/ D .	1; 	2; : : : ; 	l/ 2 Rl and a flag F.�/ D .V1; V2; : : : ; Vl/ in Rn subject
to the above conditions. Such a pair will be called an eigenvalue-flag pair.

The group G D SL.n; R/ acts naturally on the flags in Rn: if g 2 G, then a
subspace V � Rn is mapped by g to the subspace g � V � Rn of the same dimension.
So a flag F D .V1; V2; : : : ; Vl/ is mapped to the flag g �F ´ .g �V1; g �V2; : : : ; g �Vl/.
We can therefore consider the action of G D SL.n; R/ on the set of eigenvalue-flag
pairs given by

g � .	; F / ´ .	; g � F /; g 2 G:

For 1 
 j 
 n we denote by e.j / the j -th standard basis vector in Rn. Suppose

X.�/ 2 aC D ˚
Diag.t1; t2; : : : ; tn/ W t1 � � � � � tn;

Pn
iD1 ti D 0

�
:

Let f	1; 	2; : : : ; 	lg, 2 
 l 
 n, be the distinct eigenvalues of X.�/ in decreasing
order, and mi , 1 
 i 
 l , the multiplicity of the eigenvalue 	i . Then with di ´Pi

j D1 mj the flag F.�/ D .U1; U2; : : : ; Ul/ is given by

Ui D spanR.e.1/; : : : ; e.di //; 1 
 i 
 l: (3.1)

This flag will be called the standard flag in Rn determined by .m1; m2; : : : ; ml/.
Conversely, given an integer l with 2 
 l 
 n, a flag of subspaces F D

.V1; V2; : : : ; Vl/ in Rn, mi ´ dim Vi � dim Vi�1, 1 
 i 
 l , and a vector 	 D

.	1; 	2; : : : ; 	l/ 2 Rl satisfying

	1 > 	2 > � � � > 	l ;

lX
iD1

mi	i D 0 and
lX

iD1

mi	
2
i D 1;

then there exists a unique point � 2 @S such that 	.�/ D 	 and F.�/ D F as fol-
lows. Let H 2 sym0.n/ be the diagonal matrix with entries 	1; 	2; : : : ; 	l occurring
according to their multiplicities. We then choose an element k 2 K D SO.n/ such
that k � F is the standard flag in Rn determined by .m1; m2; : : : ; ml/; this is possible
because we can choose an orthonormal basis for V1, and if i � 2 we can extend the
orthonormal basis of Vi�1 to an orthonormal basis of Vi . Moreover, different choices
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of such k 2 K are equal up to left multiplication by an element in K which preserves
the standard flag in Rn determined by .m1; m2; : : : ; ml/; hence all possible choices
of k 2 K define the same ray c.t/ ´ k�1eHt � o, t > 0, and we can set � D c.1/.

So we have seen that the geometric boundary @S of S D Pos1.n/ is identified with
the set of eigenvalue-flag pairs. Notice that � 2 @S reg if and only if l D n.

Moreover, this identification is G-equivariant: it can be shown that for g 2 G and
� 2 @S with corresponding eigenvalue-flag pair .	.�/; F.�// we have�

	.g � �/; F.g � �/
� D g � �	.�/; F.�/

�
:

Example 2b. Consider the space S D S2q of !-compatible complex structures on
.R2q; !/ with base point o 2 S2q given by the matrix (1.6). A point � in the geometric
boundary @S2q is uniquely determined by an element X D X.�/ 2 p1 such that
co;	.t/ D eXt � o. Now X 2 sym0.2q/ \ sp.2q; R/ implies that X possesses q pairs
of eigenvalues .	; �	/ with 	 � 0. Denote by f	1; 	2; : : : ; 	lg the l 
 q distinct
positive eigenvalues of X , arranged so that 	1 > 	2 > � � � > 	l > 0. For 1 
 i 
 l

let Ei � R2q be the eigenspace of X for the eigenvalue 	i , mi ´ dim Ei , and Wi

the direct sum of the eigenspaces fEj W 1 
 j 
 ig. Notice that the subspaces Wi ,
1 
 i 
 l , are isotropic, i.e.

Wi � W !
i ´ fx 2 R2q W !.x; y/ D 0 for all y 2 Wig:

We so obtain a flag of isotropic subspaces W1 � W2 � : : : � Wl of the sym-
plectic vector space .R2q; !/. Since B.X; X/ D 1 we further have the condition
2
Pk

iD1 mi	
2
i D 1. Hence to each point � 2 @S2q we have associated a vector

	.�/ D .	1; 	2; : : : ; 	l/ 2 Rl and a flag F.�/ D .W1; W2; : : : ; Wl/ of isotropic
subspaces in R2q .

The symplectic group Sp.2q; R/ maps an isotropic subspace of .R2q; !/ to an
isotropic subspace of .R2q; !/. So G D Sp.2q; R/ acts naturally on the set of isotropic
flags as above: if g 2 G and F D .W1; W2; : : : ; Wl/ is an isotropic flag, then g � F is
the isotropic flag g � F ´ .g � W1; g � W2; : : : ; g � Wl/. As in the previous example we
will consider the action of G D Sp.2q; R/ on the set of pairs of positive eigenvalues
and isotropic flags given by

g � .	; F / ´ .	; g � F /; g 2 G:

Let e.j / denote the j -th standard basis vector in R2q , 1 
 j 
 2q, and assume that

X.�/ 2 aC D ˚ �
D 0
0 �D

� W D D Diag.t1; t2; : : : ; tq/; t1 � t2 � � � � � tq
�
:

If f	1; 	2; : : : ; 	lg, 1 
 l 
 q, are the distinct positive eigenvalues of X.�/ in de-
creasing order, mi denotes the multiplicity of the eigenvalue 	i , and di ´ Pi

j D1 mj ,
1 
 i 
 l , then the flag F.�/ D .U1; U2; : : : ; Ul/ is given by

Ui D spanR.e.1/; : : : ; e.di //; 1 
 i 
 l: (3.2)

This flag will be called the isotropic standard flag in .R2q; !/ determined by
.m1; m2; : : : ; ml/.
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Notice that for 1 
 i 
 l the eigenspace Ei for the eigenvalue 	i is given by Ei D
spanR.e.di�1 C 1/; : : : ; e.di //, where we used the convention d0 D 0; moreover,
the eigenspace E�i for the eigenvalue �	i is E�i D spanR.e.di�1 C q C 1/; : : : ;

e.di C q//. If dl < q, then the eigenspace E0 for the eigenvalue 0 is the symplectic
subspace E0 D spanR.e.dl C 1/; : : : ; e.q/; e.dl C q C 1/; : : : ; e.2q//.

Conversely, given an integer l with 1 
 l 
 q, a flag of isotropic subspaces
F D .W1; W2; : : : ; Wl/ in R2q , mi ´ dim Wi � dim Wi�1, 1 
 i 
 l , and a vector
	 D .	1; 	2; : : : ; 	l/ 2 Rl such that

	1 > 	2 > � � � > 	l > 0 and 2 �
lX

iD1

mi	
2
i D 1;

then there exists a unique point � 2 @S such that 	.�/ D 	 and F.�/ D F as
follows: let D 2 M.q; q/ be the diagonal matrix with entries 	1; 	2; : : : ; 	l occurring
according to their multiplicities; if dl ´ Pl

iD1 mi < q, the remaining q�dl diagonal
entries are filled with zeros. Set H ´ �

D 0
0 �D

�
. Consider the standard scalar product

q0 in R2q which – as we have seen in Section 1.5 – is given by

q0.x; y/ ´ !.x; J0y/; x; y 2 R2q;

where J0 denotes the complex structure given by the matrix (1.6).
Notice that if dl D q, then the subspace L ´ Wl is necessarily Lagrangian, i.e.

L D L! . If dl < q we choose a Lagrangian subspace L of R2q such that Wl � L.
We take an orthonormal basis fb1; : : : ; bm1

g of W1 with respect to q0 and extend it
inductively to an orthonormal basis of W2; : : : ; Wl ; L. By a standard procedure in
symplectic linear algebra (see e.g. Section 1.1 in [dS]) we can inductively extend
the orthonormal basis fb1; b2; : : : ; bqg of L to an orthonormal basis fb1; : : : ; b2qg of
R2q such that !.bi ; bj / D ıi;j �q for all i; j 2 f1; 2; : : : ; 2qg. Hence one can find
k 2 K D SO.2q/ \ Sp.2q; R/ such that k � bi D e.i/ for all 1 
 i 
 2q, which
implies that k � F is the isotropic standard flag determined by .m1; m2; : : : ; ml/.
Notice that if k0 2 K, k0 ¤ k, maps F to the isotropic standard flag determined by
.m1; m2; : : : ; ml/, then k�1k0 2 K has to leave invariant the eigenspaces of H . This
precisely translates to the fact that Ad.k�1k0/H D H , hence any such k determines
the same geodesic ray c.t/ ´ k�1eHt � o, t > 0, and we set � D c.1/.

So we have seen that @S can be identified with the set of pairs of positive eigenvalues
and isotropic flags. Notice that � 2 @S reg if and only if l D q. If X.�/ possesses only
one positive eigenvalue 	 > 0, then the flag of isotropic subspaces reduces to a q-
dimensional Lagrangian subspace L D L! of .R2q; !/. The condition B.X; X/ D 1

moreover implies 	 D 1p
2q

.
As before one can show that the identification described above is G-equivariant:

if g 2 G and � 2 @S with corresponding pair .	.�/; F.�// then
�
	.g � �/; F.g � �/

�D
g � �	.�/; F.�/

�
.

Example 2c. If S D H2 � H2, for i D 1; 2 we denote by @Si Š S1 the geometric
boundary of the i -th H2-factor. Then the regular geometric boundary @S reg can be
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identified with @S1 � @S2 � .0; �=2/. There are two singular boundary strata, one
isomorphic to the boundary of the first factor @S1 and one isomorphic to the boundary
of the second factor @S2. Hence

@S Š @S1 t @S2 t �@S1 � @S2 � .0; �=2/
�
:

3.2 The Furstenberg boundary

Now let us see what happens if we forget about the aC
1 -factor. Recall that M is the

centralizer of a in K and consider the projection

�B W @S reg ! K=M;

.k; H/ 7! kM:

Definition 3.3. We define the Furstenberg boundary @F S as �B.@S reg/.

The Furstenberg boundary has a natural differentiable structure arising from the
Lie group structure of K. Geometrically it can be described as the set of equivalence
classes of Weyl chambers in S (see [M]), where two Weyl chambers in S are equivalent
if and only if they have bounded Hausdorff distance. The following lemma relates the
cone topology to the topology of K=M . It is a corollary of Lemma 2.9 in [L1].

Lemma 3.4. A sequence .�n/ � @S reg converges to � D .k; H/ 2 @S reg in the cone
topology if and only if �B.�n/ converges to kM in K=M and the Cartan projections
of �n converge to H in aC

1 .

Hence �B is continuous, and rank.S/ D 1 if and only if �B is a homeomorphism.
Moreover, the projection �B induces an action of G by homeomorphisms on the

Furstenberg boundary K=M D �B.@S reg/. More precisely, if G D KAN C is the
Iwasawa decomposition from Section 2.3 with A D ea, and �I the natural projection

�I W G ! K=M;

g D kan 7! kM;

then we have the following

Lemma 3.5. Let g 2 G and � D .k; H/ 2 @S with k 2 K and H 2 aC
1 . If k0 2 K

is such that �I .gk/ D k0M , then g � � D .k0; H/.
In particular, if � 2 @S reg, then g � �B.�/ D �B.g � �/ D k0M .

Proof. Consider the unit speed geodesic c ´ co;	 , i.e. c.t/ D keHt � o for t 2 R.
We write gk D k0an with k0 2 K, a 2 A and n 2 N C. In order to prove that
g � c.t/ converges to .k0; H/ 2 @S as t ! 1, we let R � 1 and " > 0 arbitrary. For
t > R we denote by ct the geodesic emanating from o passing through g � c.t/. If
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st ´ d.o; g � c.t//, then by the triangle inequality jst � t j 
 d.o; g � o/. Using the
convexity of the distance function we estimate for t > R C d.o; g � o/

d.k0eHR � o; ct .R// 
 R

st

�
d.k0eHst � o; g � c.st // C d.g � c.st /; ct .st //

�
D R

st

�
d.k0eHst � o; gkeHst � o/ C d.g � c.st /; g � c.t//

�
D R

st

�
d.k0eHst � o; k0aneHst � o/ C d.c.st /; c.t//„ ƒ‚ …

Djst �t j�d.o;g �o/

�


 R

st

�
d.o; an � o/ C d.o; g � o/

�
since d.eHs � o; aneHs � o/ 
 d.o; an � o/ for all s > 0. From st ! 1 as t ! 1 we
get d.k0eHR � o; ct .R// < " for t sufficiently large. Hence g � � D .k0; H/.

Example 1. For S D Pos1.n/, n � 2, the Furstenberg boundary @F S is identified
with the space of regular flags in Rn, i.e. the set of flags F D .V1; V2; : : : ; Vn/ such
that dim Vi � dim Vi�1 D 1 for all 1 
 i 
 n.

Example 2b. For S D S2q , the Furstenberg boundary @F S is identified with the
space of complete isotropic flags in R2q , i.e. the set of flags F D .W1; W2; : : : ; Wq/

such that Wi � R2q is an isotropic subspace and dim Wi � dim Wi�1 D 1 for all
1 
 i 
 q.

Example 2c. For S D H2 � H2, the Furstenberg boundary @F S is isomorphic to
@S1�@S2, where @Si denotes the geometric boundary of the i -th H2-factor, i 2 f1; 2g.

3.3 The Bruhat decomposition

The main reference for this section is [Wa], Chapter 1.2. Given the Iwasawa de-
composition G D KAN C from Section 2.3, we consider the closed subgroup P D
MAN C � G. Any subgroup in G conjugate to P is called a minimal parabolic sub-
group. The homogeneous space G=P can be identified with the Furstenberg boundary
K=M via the bijection

N� W G=P ! K=M;

gP 7! �I .g/:

The Bruhat decomposition gives a cell decomposition of G=P , hence induces a cell
decomposition of the Furstenberg boundary which we will describe geometrically in
the next section.

Recall that the factor group W D M �=M is the Weyl group of the pair .g; a/.
We denote by w� 2 W the unique element such that Ad.mw�

/.�aC/ D aC for any
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representative mw�
of w� in M �, and put

n� ´ Ad.mw�
/nC D

X
˛2†C

g�˛:

For w 2 W represented by mw 2 M � we set

uw ´ nC \ Ad.mw/n� � nC and Uw ´ euw :

The Bruhat decomposition of G with respect to the minimal parabolic subgroup P is
the disjoint union

G D
G

w2W

N CmwP D
G

w2W

UwmwP: (3.3)

Notice that the orbit corresponding to w� 2 W is parametrized by N C D Uw�
, and

the restriction of the above bijection N� to N Cmw�
P defines a map

� W N C ! K=M;

n 7! N�.nmw�
P /:

Geometrically, this map can be interpreted in the following way: if n 2 N C, then
�.n/ 2 K=M is the unique element such that the Weyl chamber �.n/eaC � o is
equivalent to the Weyl chamber ne�aC � o. The following property of the map � is
well-known:

Proposition 3.6 ([H], Corollary IX.1.9). The map � is a diffeomorphism onto an open
submanifold of K=M whose complement consists of finitely many disjoint manifolds
of strictly lower dimension.

It follows that the orbit N Cmw�
P is a dense and open submanifold of G=P . We

will call a G-translate of the set �.N C/ D N�.N Cmw�
P / � K=M a big cell of the

Furstenberg boundary.

Example 1. For simplicity we treat the case n D 3. Recall the Iwasawa decomposition
G D KAN C of G D SL.3; R/ from (2.3), where K D SO.3/, A denotes the set of
diagonal matrices with positive entries in SL.3; R/, and N C the set of upper diagonal
.n � n/-matrices with 1’s in the diagonal. Here the centralizer of a in K is the finite
set

M D fDiag.1; 1; 1/; Diag.�1; �1; 1/; Diag.�1; 1; �1/; Diag.1; �1; �1/g;
and P D MAN C is a minimal parabolic subgroup. The Weyl group W is represented
by the set of matricesn

e D I3; w1 D
�

0 �1 0
1 0 0
0 0 1

�
; w2 D

�
1 0 0
0 0 �1
0 1 0

�
;

w3 D
�

0 0 1
1 0 0
0 1 0

�
; w4 D

�
0 1 0
0 0 1
1 0 0

�
; w� D

�
0 0 1
0 1 0�1 0 0

�o



An introduction to globally symmetric spaces 325

One easily computes the sets Uw as follows: Ue D feg, Uw�
D N C,

Uw1
D
n�

1 x 0
0 1 0
0 0 1

�
W x 2 R

o
; Uw3

D
n�

1 x z
0 1 0
0 0 1

�
W x; z 2 R

o
;

Uw2
D
n�

1 0 0
0 1 y
0 0 1

�
W y 2 R

o
; Uw4

D
n�

1 0 z
0 1 y
0 0 1

�
W y; z 2 R

o
:

Hence for SL.3; R/ the Bruhat decomposition yields 6 cells, one isomorphic to a point,
two isomorphic to R, two isomorphic to R2, and the maximal one isomorphic to R3.

Example 2b. We consider q D 2, and use the Iwasawa decomposition G D KAN C
described in Section 2.3. Here the centralizer of a D fDiag.t1; t2; �t1; �t2/ W t1; t2 2
Rg in K is the finite set

M D fI4; Diag.1; �1; 1; �1/; Diag.�1; 1; �1; 1/; �I4g;
and P D MAN C is a minimal parabolic subgroup. The following table gives a set of
representatives w of theWeyl group W and describes the corresponding sets uw � nC:

w uw

e D Diag.1; 1; 1; 1/ 00
BBB@

0 1 0 0

�1 0 0 0

0 0 0 1

0 0 �1 0

1
CCCA

8̂<
:̂
0
B@

0 b
0 0

0

0
0 0

�b 0

1
CA W b 2 R

9>=
>;

0
BBB@

1 0 0 0

0 0 0 1

0 0 1 0

0 �1 0 0

1
CCCA

8<
:
0
@ 0

0 0
0 z

0 0

1
A W z 2 R

9=
;

0
BBB@

0 0 0 1

�1 0 0 0

0 �1 0 0

0 0 �1 0

1
CCCA

8̂<
:̂
0
B@

0 b
0 0

x 0
0 0

0
0 0

�b 0

1
CA W b; x 2 R

9>=
>;

0
BBB@

0 1 0 0

0 0 �1 0

0 0 0 1

1 0 0 0

1
CCCA

8<
:
0
@ 0

0 y
y z

0 0

1
A W y; z 2 R

9=
;

0
BBB@

0 0 0 1

0 0 �1 0

0 �1 0 0

1 0 0 0

1
CCCA

8<
:
0
@ 0

x y
y z

0 0

1
A W x; y; z 2 R

9=
;

0
BBB@

0 0 �1 0

0 �1 0 0

1 0 0 0

0 0 0 �1

1
CCCA

8̂<
:̂
0
B@

0 b
0 0

x y
y 0

0
0 0

�b 0

1
CA W b; x; y 2 R

9>=
>;

w� D
�

0 �I2

I2 0

�
nC

Hence for Sp.4; R/ the Bruhat decomposition yields 8 cells, one isomorphic to a point,
two isomorphic to R, two isomorphic to R2, two isomorphic to R3 and the maximal
one isomorphic to R4.
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Example 2c. We have seen that for S D H2 � H2 the Furstenberg boundary is given
by @F S D @S1 � @S2. Hence @F S Š .R [ f1g/ � .R [ f1g/. Here the Bruhat
decomposition is isomorphic to the decomposition

@F S D f.1; 1/g t .f1g � R/ t .R � f1g/ t .R � R/:

3.4 Visibility at infinity

If the rank of S equals one, or, more generally, if S is a Hadamard manifold with a
negative upper bound on the sectional curvature, then any pair of distinct points in the
geometric boundary can be joined by a geodesic. In a symmetric space of higher rank
this fails to be true. In this section we will describe the set of points in the geometric
boundary @S of a globally symmetric space S which can be joined to a given point
� 2 @S by a geodesic.

Definition 3.7. The visibility set at infinity viewed from � 2 @S is the set

Vis1.�/ ´ f� 2 @S j there exists a geodesic c such that c.�1/ D �; c.1/ D �g:

It is clear that for g 2 Is.S/ we have Vis1.g � �/ D g � Vis1.�/. Moreover, we
have the following description of Vis1.�/, which is Proposition 2.21.13 (2) in [E].
We include a proof here for the convenience of the reader.

Proposition 3.8. If StabG.�/ � G denotes the stabilizer of a point � 2 @S , then

Vis.�/ D StabG.�/ � co;	.�1/:

Proof. By transitivity of the G-action and the fact that g � Vis1.�/ D Vis1.g � �/

for g 2 G and � 2 @S we can assume that � 2 @S is stabilized by the minimal
parabolic subgroup P D MAN C, so P � StabG.�/. If � 2 Vis1.�/, then there
exists a geodesic c � S such that c.�1/ D � and c.1/ D �. Let g 2 G be such
that c.0/ D g � o. Using the Iwasawa decomposition we may write g D nak with
n 2 N C, a 2 ea and k 2 K. Then c.0/ D nak � o D na � o. The geodesic c0 defined
by c0.t/ ´ .na/�1 � c.t/ D a�1n�1 � c.t/ satisfies c0.�1/ D c.�1/ D � because
N C and A stabilize �. So c0.0/ D .na/�1 � c.0/ D o implies c0.t/ D co;	.�t / for all
t 2 R. We conclude

� D c.1/ D na � c0.1/ D na � co;	.�1/;

hence � 2 StabG.�/ � co;	.�1/.
Conversely let p 2 StabG.�/ and set � ´ p � co;	.�1/. If c is the geodesic

defined by c.t/ ´ p � co;	.�t / for t 2 R, then we have c.1/ D � and c.�1/ D
p � co;	.1/ D p � � D � because p fixes �. Hence � 2 Vis1.�/.

The following lemma relates the visibility set of regular points to our coordinates
introduced in Section 3.1 and the map � from Section 3.3. Even though it is a direct
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consequence of [L1], Corollary 2.15, we include the proof here for the convenience
of the reader. Recall the definition of the opposition involution (2.4).

Lemma 3.9. If � 2 @S reg is stabilized by the minimal parabolic subgroup P � G

and possesses the Cartan projection H 2 aC
1 , then

Vis.�/ D f.k; .H// W kM 2 �.N C/g:

Proof. Let k 2 K be such that kM D �.n/ with n 2 N C. Consider the geodesic
c.t/ ´ n � co;	.�t / which satisfies c.�1/ D � because N C stabilizes �. If mw�

2
M � is a representative of w� 2 W , we have

c.t/ D ne�Ht � o D nmw�
e�.H/t � o;

hence by the property of the map � the geodesic rays c.t/, t > 0, and ke�.H/t �o, t > 0,
are equivalent. This shows c.1/ D .k; .H//, so we conclude .k; .H// 2 Vis1.�/.

Conversely, let � 2 Vis1.�/ and choose a geodesic c in S with c.1/ D � and
c.�1/ D �. From the proof of Proposition 3.8 we know that there exist n 2 N C
and a 2 ea such that the geodesic c0 defined for t 2 R by c0.t/ ´ .na/�1 � c.t/ D
a�1n�1 �c.t/ satisfies c0.t/ D co;	.�t / D e�Ht �o. Moreover, since A also stabilizes
co;	.�1/ we conclude

� D c.1/ D na � c0.1/ D na � co;	.�1/ D n � co;	.�1/ D n � c0.1/:

If k 2 K is an angular projection of �, then � D .k; .H//, and the geodesic ray
ke�.H/t � o, t > 0, is equivalent to the geodesic ray ne�Ht � o, t > 0. Hence by
definition of the map � we have kM D �.n/.

Since the opposition involution preserves the set aC of regular elements in aC,
this lemma in particular implies that the visibility set at infinity viewed from a regular
boundary point is contained in the regular boundary. This allows the following

Definition 3.10. The Bruhat visibility set viewed from � 2 @S reg is the image of
Vis1.�/ under the projection �B W @S reg ! K=M , i.e.

VisB.�/ D �B.Vis1.�//:

We remark that if rank.S/ D 1, then VisB.�/ Š Vis1.�/ D @S n f�g for all
� 2 @S . In general, an immediate consequence of Lemma 3.9 is the fact that VisB.�/

can be identified with the nilpotent Lie group N C or an arbitrary orbit N C � x, x 2 S .
Moreover, all Bruhat visibility sets are open and dense submanifolds of K=M by
Proposition 3.6.

Example 1. Let S D Pos1.n/, n � 3. Assume first that � is stabilized by P D
MAN C � G. Then there exist l 2 f2; 3; : : : ; ng, .m1; m2; : : : ; ml/ 2 Nl withPl

iD1 mi D n such that 	.�/ D .	1; 	2; : : : 	l/ 2 Rl and F.�/ D .U1; U1; : : : ; Ul/

is the standard flag in Rn determined by .m1; m2; : : : ; ml/ via (3.1).
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For 1 
 i 
 l we denote by U ?
i the orthogonal complement of Ui and remark

that � ´ co;	.�1/ corresponds to the eigenvalue-flag pair
�
	.�/; F.�/

�
with 	.�/ D

.�	l ; �	l�1; : : : ; �	1/ and F.�/ D .U ?
l

; U ?
l�1

; : : : ; U ?
1 /.

We will say that two flags F D .V1; V2; : : : ; Vl/, F 0 D .W1; W2; : : : ; Wk/ are in
opposition if k D l and Rn D Vi ˚ Wl�iC1, 1 
 i 
 l � 1. For � and � as above
clearly F.�/ and F.�/ are in opposition. Moreover, if g 2 G D SL.n; R/, then g � F

and g � F 0 are in opposition if and only if F and F 0 are.
By Proposition 3.8 we have Vis1.�/ D StabG.�/ � �, and g 2 G stabilizes � if and

only if g leaves invariant each of the eigenspaces for the eigenvalues 	1; 	2; : : : ; 	l

of X.�/ 2 p. This is equivalent to g � Ui D Ui for all 1 
 i 
 l . So we conclude that
� 2 Vis1.�/ if and only if there exists g 2 StabG.�/ such that

	.�/ D 	.g � �/ D 	.�/ D .�	l ; �	l�1; : : : ; �	1/;

and F.�/ D F.g � �/ D .g � U ?
l

; g � U ?
l�1

; : : : ; g � U ?
1 /. This second condition is

satisfied if and only if F.�/ and F.�/ are in opposition.
If � 2 @S is arbitrary, there exists g 2 G such that g � � is stabilized by P . So

there exist l 2 f2; 3; : : : ; ng, .m1; m2; : : : ; ml/ 2 Nl with
Pl

iD1 mi D n such that
	.g ��/ D .	1; 	2; : : : 	l/ 2 Rl and F.g ��/ D .U1; U1; : : : ; Ul/ is the standard flag in
Rn determined by .m1; m2; : : : ; ml/ via (3.1). Since � 2 Vis1.�/ if and only if g �� 2
Vis1.g ��/, this shows that � 2 Vis1.�/ if and only if 	.�/ D .�	l ; �	l�1; : : : ; �	1/,
and F.�/ is in opposition to F.�/. Summarizing we have � 2 Vis1.�/ if and only if
the following two conditions are satisfied:

(a) If 	.�/ D .	1; 	2; : : : ; 	l/, 	.�/ D .�1; �2; : : : ; �k/, then k D l and �i D
�	l�iC1 for all i 2 f1; 2; : : : lg.

(b) F.�/ and F.�/ are in opposition.

This immediately implies that �B.�/ 2 VisB.�/, � 2 @S reg, if and only if the regular
flags F.�/ and F.�/ are in opposition.

Example 2b. Consider S D S2q for q � 2. As before we first assume that � is
stabilized by P D MAN C � G D Sp.2q; R/. Then there exist 1 
 l 
 q,
.m1; m2; : : : ; ml/ 2 Nl with

Pl
iD1 mi 
 q such that 	.�/ D .	1; 	2; : : : 	l/ 2 Rl

and F.�/ D .U1; U2; : : : ; Ul/ is the isotropic standard flag in .R2q; !/ determined by
.m1; m2; : : : ; ml/ via (3.2).

Let m� 2 G be the element defined by the matrix
�

0 Iq

�Iq 0

�
. Here � ´ co;	.�1/

corresponds to the pair
�
	.�/; F.�/

�
with 	.�/ D .	1; 	2; : : : ; 	l/ and F.�/ D m� �

F.�/. Moreover, each of the linear subspaces Ui ˚m� �Ui , 1 
 i 
 l , is a symplectic
subspace of .R2q; !/, i.e. ! restricted to Ui ˚ m� � Ui is non-degenerate.

Motivated by this property we will say that two flags F D .V1; V2; : : : ; Vl/, F 0 D
.W1; W2; : : : ; Wk/ of isotropic subspaces are complementary if k D l and Vi ˚ Wi ,
1 
 i 
 l , is a symplectic subspace of .R2q; !/. Notice that this necessarily implies
dim Wi D dim Vi for all i 2 f1; 2; : : : ; lg. Clearly the isotropic flags F.�/ and
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F.�/ from above are complementary; moreover, if g 2 G, then g � F and g � F 0 are
complementary if and only if F and F 0 are.

Now Proposition 3.8 implies Vis1.�/ D StabG.�/ � �, and g 2 G stabilizes �

if and only if g leaves invariant each of the isotropic eigenspaces for the positive
eigenvalues 	1; 	2; : : : ; 	l of X.�/. Hence we conclude that � 2 Vis1.�/ if and
only if there exists g 2 StabG.�/ such that 	.�/ D 	.g � �/ D 	.�/ D 	.�/, and
F.�/ D F.g � �/ D g � F.�/. The latter condition is satisfied if and only if F.�/ is
complementary to F.�/.

If � 2 @S is arbitrary, there exists g 2 G such that g � � is stabilized by P . So
there exist l 2 f1; 2; : : : ; qg, .m1; m2; : : : ; ml/ 2 Nl with

Pl
iD1 mi 
 q such that

	.g � �/ D .	1; 	2; : : : 	l/ 2 Rl and F.g � �/ D .U1; U1; : : : ; Ul/ is the isotropic
standard flag determined by .m1; m2; : : : ; ml/ via (3.2). Since � 2 Vis1.�/ if and
only if g �� 2 Vis1.g ��/ this shows that � 2 Vis1.�/ if and only if 	.g ��/ D 	.�/ D
.	1; 	2; : : : ; 	l/ and F.�/, F.�/ are complementary. We conclude that � 2 Vis1.�/

if and only if the following conditions are satisfied:

(a) If 	.�/ D .	1; 	2; : : : ; 	l/, 	.�/ D .�1; �2; : : : ; �k/, then k D l and �i D 	i

for all i 2 f1; 2; : : : lg.

(b) The isotropic flags associated to � and � are complementary.

This implies in particular that �B.�/ 2 VisB.�/, � 2 @S reg, if and only if the complete
isotropic flags of � and � are complementary.

Example 2c. If S D H2 � H2 we have seen that

@S D @S1 t @S2 t @S reg;

where @S reg D @S1 � @S2 � .0; �=2/, and @S1, @S2 are the two singular boundary
strata. For i 2 f1; 2g, � 2 @Si , we have � 2 Vis1.�/ if and only if � 2 @Si and � ¤ �.

If � D .�1; �2; 
/ 2 @S reg, then � 2 Vis1.�/ if and only if � D .�1; �2; '/ 2 @S reg

with �1 ¤ �1, �2 ¤ �2 and ' D 
 .

3.5 Busemann functions and distances

In this final section we discuss Busemann functions and how they can be used to
construct a family of G-invariant Finsler pseudo-distances on S for which the flats
are isomorphic to a pseudo-normed vector space. For more details about G-invariant
Finsler structures on symmetric spaces we refer the reader to P. Planche’s thesis ([P]).

Let x; y 2 S , � 2 @S , and c � S a geodesic ray in the class of �. We put

B	.x; y/ ´ lim
s!1

�
d.x; c.s// � d.y; c.s//

�
:

This number is independent of the chosen ray c, and the function

B	.�; y/ W S ! R;

x 7! B	.x; y/;
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is called the Busemann function centered at � based at y (see also Chapter II of [Ba]).
It satisfies the following properties:

Proposition 3.11. For all � 2 @S , x; y; z 2 S , g 2 G ´ Iso.S/ we have

(1) Bg �	.g � x; g � y/ D B	.x; y/,

(2) B	.x; z/ D B	.x; y/ C B	.y; z/,

(3) jB	.x; y/j 
 d.x; y/,

(4) B	.x; y/ D d.x; y/ if and only if � D cx;y.1/.

Using Busemann functions we introduce an important family of (possibly non-
symmetric) pseudo-distances.

Definition 3.12. Let � 2 @S . We define the directional distance of the ordered pair
.x; y/ 2 S � S with respect to the subset G � � � @S by

BG�	 W S � S ! R;

.x; y/ 7! BG�	.x; y/ ´ sup
g2G

Bg �	.x; y/:

Notice that in rank one symmetric spaces G � � D @S and for x; y 2 S we have

d.x; y/ D BG�	.x; y/ D sup
�2@S

B�.x; y/ � Bcx;y.1/.x; y/ D d.x; y/;

hence BG�	 equals the Riemannian distance d for any � 2 @S . In general, the
corresponding estimate for the Busemann functions implies

BG�	.x; y/ 
 d.x; y/ for all � 2 @S and all x; y 2 S:

Moreover, BG�	 is a (possibly non-symmetric) G-invariant pseudo-distance on S (for
a proof see [L1], Proposition 3.7), and we have

BG�	.x; y/ D d.x; y/ � sup
g2G

cos †x.y; g�/:

In particular, if G D KeaC

K is a Cartan decomposition, H	 2 aC
1 the Cartan projec-

tion of �, and H.x; y/ 2 aC the Cartan vector of the ordered pair .x; y/ according to
Definition 2.28, then

BG�	.x; y/ D hhH	 ; H.x; y/ii D B
�
H	 ; H.x; y/

�
for all x; y 2 S: (3.4)

This shows in particular that the flats of S are isomorphic to Rr endowed with a
pseudo-norm.

Moreover, from the remark following Definition 2.28 we know that

BG�	.y; x/ D hhH	 ; .H.x; y//ii D hh.H	/; H.x; y/ii;
because  is an involution and, by Ad.K/-invariance of the Killing form, preserves
the scalar product. So BG�	 is symmetric if and only if the Cartan projection H	 of
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� satisfies .H	/ D H	 . This clearly always holds when  is the identity; so all the
directional distances are symmetric e.g. in S2q , q � 1, and H2 � H2.

Example 2c. If S D H2 � H2 we have seen that

@S D @S1 t @S2 t @S reg;

where @S reg D @S1 � @S2 � .0; �=2/, and @S1, @S2 are the two singular boundary
strata.

If � D .�1; �2; 
/ 2 @S reg one can easily deduce from the definition of the Buse-
mann functions that for x D .x1; x2/, y D .y1; y2/

B	.x; y/ D cos 
 � B	1
.x1; y1/ C sin 
 � B	2

.x2; y2/:

For the directional distance we therefore get by definition and the remark about rank
one symmetric spaces

BG�	.x; y/ D cos 
 � d1.x1; y1/ C sin 
 � d2.x2; y2/;

where for i 2 f1; 2g, di denotes the Riemannian distance in the i -th H2-factor. Hence
for � 2 @S reg the directional distance is a proper distance function.

If � 2 @Si , i 2 f1; 2g, we similarly obtain

B	.x; y/ D B	.xi ; yi / and BG�	.x; y/ D di .xi ; yi /:

In particular, B	 is symmetric, but only a pseudo-distance.
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