Prof. Marc Burger

Spring 22

Functional Analysis II

Serie 10

Exercise 1. Prove carefully the remaining assertions of Proposition 6.13.

Exercise 2. Let G be a locally compact abelian Hausdorff group. Show that $L^1(G)$ has always approximate units. Namely, use Lemma 6.15 to show that for every $f \in L^1(G)$ and $\varepsilon > 0$ there exists an open set $e \in V$ with the following property: if $u: G \to [0, \infty[$ is a Borel function which vanishes outside V and $\int_G u(x)d\mu(x) = 1$ then

$$\|f - f * u\|_1 < \varepsilon.$$

Let $|x|_p := e^{-v_p(x)}$ denote the p-adic norm on \mathbb{Q}_p and recall that $\mathbb{Z}_p = \{x \in \mathbb{Q}_p \mid |x|_p \leq 1\}$. The ring of Adeles $\mathbb{A}_{\mathbb{Q}}$ of \mathbb{Q} is defined as

$$\mathbb{A}_{\mathbb{Q}} := \left\{ (x_{\infty}, x_2, x_3, x_5, \ldots) \in \mathbb{R} \times \prod_{p \in \mathbb{P}} \mathbb{Q}_p \; \middle| \; |x|_p \le 1 \text{ for all, except finitely many primes } p \right\}.$$

We endow $\mathbb{A}_{\mathbb{Q}}$ with a topology as follows: for every $S \subset \mathbb{P}$ finite consider

$$\mathbb{A}_S := \mathbb{R} \times \prod_{p \in S} \mathbb{Q}_p \times \prod_{p \notin S} \mathbb{Z}_p,$$

with the product topology, then $\mathbb{A}_{\mathbb{Q}} = \bigcup_{S \in \mathbb{P}} \mathbb{A}_S$ and we define $V \subset \mathbb{A}_{\mathbb{Q}}$ as open if and only if $V \cap \mathbb{A}_S$ is open in each \mathbb{A}_S for every $S \subset \mathbb{P}$ finite.

Exercise 3. Show that $(\mathbb{A}_{\mathbb{Q}}, +)$ is a locally compact, abelian Hausdorff group. Moreover, show that there exists an injection

$$\begin{array}{cccc} \mathbb{Q} & \longrightarrow & \mathbb{A}_{\mathbb{Q}}; \\ x & \longmapsto & (x, x, x, \ldots) \end{array}$$

Finally, show that $i(\mathbb{Q})$ is a discrete subgroup of $\mathbb{A}_{\mathbb{Q}}$ and $\mathbb{A}_{\mathbb{Q}}/i(\mathbb{Q})$ is compact.