Prof. Marc Burger

Spring 22

Functional Analysis II

Serie 2

Exercise 1. If X is a locally compact and Hausdorff space, then for every $f \in C_0(X)$ the following equality holds $Sp_{C_0(X)}(f) = \overline{f(X)}.$

Exercise 2 (Volterra Algebra). Let \mathcal{L} be the Lebesgues measure on [0, 1].

1. Show (using Fubini Theorem) that for any $f, g \in L^1([0,1])$,

$$f \star g(t) := \int_0^t f(t-x)g(x)d\mathcal{L}(x)$$

exists for almost every $t \in [0, 1]$ and that $f \star g \in L^1([0, 1])$.

- 2. Show that $(f,g) \mapsto f \star g$ gives a Banach algebra structure on $L^1([0,1])$.
- 3. Show that for every $f \in L^1([0,1])$ it holds $Sp(f) = \{0\}$.

Hint. Let f_0 be the constant map at 1. Compute $f_0 \star \cdots \star f_0$ and observe that $\mathbb{C}[f_0]$, the subalgebra generated by f_0 , is dense in $f \in L^1([0,1])$.