Prof. Marc Burger

Serie 3

Exercise 1. Verify that $C^{n}([0,1])$ with pointwise multiplication and norm

$$||f|| := \sum_{k=0}^{n} \frac{||f^{(k)}||_{\infty}}{k!}$$

is a commutative unital Banach algebra for every integer n.

Exercise 2. Show that $C^{\infty}([0,1])$ does not admit any Banach algebra norm.

Hint. Suppose by contradiction that $\|.\|$ is a Banach algebra norm on $C^{\infty}([0,1])$.

- 1. Show that C([0,1]) with the infinity norm is a semisimple Banach algebra.
- 2. Use 1. to conclude that the inclusion $C^{\infty}([0,1]) \to C([0,1])$ is continuous so that there exists c > 0 with $||f||_{\infty} \le c ||f||$ for every $f \in C^{\infty}([0,1])$.
- 3. Use the Closed Graph Theorem and the previous steps to show that the derivation $D: C^{\infty}([0,1]) \to C^{\infty}([0,1])$ sending a function to its derivative is continuous.
- 4. Reach a contradiction studying the functions $t \mapsto \exp(\alpha t)$.

Exercise 3. Verify that the Guelfand topology is the weakest topology on \hat{A} with respect to which all the functions $\hat{A} \to \mathbb{C}$ sending φ to $\varphi(x)$ for x in A are continuous.

Exercise 4. Let X be a locally compact Hausdorff space. Show that the bijection $X \to \widehat{C_0(X)}$ is a homeomorphism. **Hint.** One way to solve the exercise is to use Urysohn's Lemma.