Prof. Marc Burger

Spring 22

Functional Analysis II

Serie 6

Consider X a compact Hausdorff space, \mathcal{B} its σ -algebra of Borel sets, \mathcal{H} a Hilbert space and a resolution of the identity $E: \mathcal{B} \to \mathcal{L}(\mathcal{H})$. For $f: X \to \mathbb{C}$, set $||f|| := \sup_{x \in X} |f(x)|$ and define

 $\mathcal{B}^{\infty}(X) := \{ f : X \to \mathbb{C} \mid f \text{ is Borel measurable and bounded} \}.$

Exercise 1. Show that provided with $\|.\|$, the space $\mathcal{B}^{\infty}(X)$ is a C^* -algebra.

As defined in the lecture, for any $f \in \mathcal{B}^{\infty}(X)$ denote $||f||_{\infty}$ its essential supremum and define

$$N := \{ f \in \mathcal{B}^{\infty}(X) \mid \|f\|_{\infty} = 0 \}.$$

Exercise 2. For $f, g \in \mathcal{B}^{\infty}(X)$, show that:

- 1. $||f||_{\infty} \leq ||f||,$
- 2. $||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$,
- 3. $\|f \cdot g\|_{\infty} \leq \|f\|_{\infty} \cdot \|g\|_{\infty}$.

Exercise 3. For every $f \in \mathcal{B}^{\infty}(X)$ and every $g \in N$, show that $||f + g||_{\infty} = ||f||_{\infty}$.

Exercise 4. Show that the quotient norm on $\mathcal{B}^{\infty}(X)/N$ is given by $\|[f]\| = \|f\|_{\infty}$.

Exercise 5. Show that $L^{\infty} := \mathcal{B}^{\infty}(X)/N$, endowed with the quotient norm, is a C^* -algebra and for every $[f] \in L^{\infty}(E)$, the spectrum of [f] coincides with the essential image EssIm(f) of any representation of [f].