Prof. Marc Burger

Spring 22

Functional Analysis II

Serie 8

Exercise 1. Let X be a compact Hausdorff space and μ a positive regular measure on X. For every $f \in C(X)$ show that the multiplication operator defined on $L^2(X, \mu)$ by

$$M_f g(x) \colon f(x)g(x), \ f \in L^2(X,\mu)$$

has norm $\|M_f\| = \|f\|_{\infty}$ where $\|\cdot\|_{\infty}$ refers to the norm of f seen as an element of $L^{\infty}(X,\mu)$. Define also

$$A := \left\{ M_f \mid f \in C(X) \right\} \subset \mathcal{L} \left(L^2(X, \mu) \right).$$

- 1. Show that A is a commutative sub- C^* -algebra of $\mathcal{L}(L^2(X,\mu))$,
- 2. Taking into account that $\widehat{C}(X)$ can be identified with X, determine \hat{A} ,
- 3. Determine the resolution of identity on \hat{A} given by the Spectral Theorem.