Serie 9

Exercise 1. If A is a Banach algebra, the group G(A) of invertible elements with the topology induced from A is a topological group. Check that G(A) is locally compact if and only if A is finite dimensional.

Exercise 2. $\prod G_{\alpha}$ is a locally compact Hausdorff group if and only if all G_{α} 's are locally compact Hausdorff and the G_{α} are compact except finitely many.

Exercise 3. Let (X, d) be a metric space such that all closed balls of finite radius are compact, then the group Is(X) of isometries of (X, d) with compact open topology is locally compact.

Hint. You can use Arzelà–Ascoli Theorem: Let X be a topological space, Y a Hausdorff uniform space and $H \subset C(X, Y)$ an equicontinuous set of continuous functions such that H(x) is relatively compact in Y for each $x \in X$. Then H is relatively compact in $H \subset C(X, Y)$.

Exercise 4. Suppose $p \equiv 1 \mod(4)$, then construct inductively a sequence $x_n \in \mathbb{Z}/p^n\mathbb{Z}$ with

- $x_n^2 + 1 = 0$ in $\mathbb{Z}/p^n\mathbb{Z}$
- $\phi(x_n) = x_{n-1}$.

Thus $x^2 + 1 = 0$ has a solution in \mathbb{Z}_p .

Hint. Use that if $p \equiv 1 \mod(4)$, then -1 is a square in $\mathbb{Z}/p\mathbb{Z}$

Exercise 5. Check that the product topology on \mathbb{Z}_p as a subspace of $\prod A_n$ coincides with the topology on \mathbb{Z}_p as a subspace of the metric space \mathbb{Q}_p .

Exercise 6. Compute $\pi_0(G)$ in each of Examples 6.3 except examples 3, 6 and 7.

Exercise 7. Consider the three-dimensional Heisenberg group $H = R \rtimes_{\eta} \mathbb{R}^2$, where $eta : \mathbb{R} \to Aut(\mathbb{R}^2)$ is defined by

$$\eta(x)(y,z) = (y,z+xy),$$

for every $x, y, z \in \mathbb{R}$. Thus the group operation is given by

$$(x_1, y_1, z_1) \cdot (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2 + x_1y_2)$$

and it is easy to see that it can be identified with the matrix group

$$H \cong \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} : x, y, z \in \mathbb{R} \right\}.$$

Verify that the Lebesgue measure is the Haar measure of the Heisenberg group.