Brownian Motion and Stochastic Calculus

Exercise sheet 10

Exercise 10.1 Let $(\Omega, \mathcal{F}, \mathbb{F}, P)$ be a filtered probability space satisfying the usual conditions.

- (a) Let W, W̃ be two Brownian motions with respect to P and (F_t)_{t≥0}. Show that we have d⟨W, W̃⟩_t = ρ_t dt for some predictable process ρ taking values in [-1, 1].
 Hint: Use the Kunita–Watanabe decomposition.
- (b) The filtration \mathbb{F} is called *P*-continuous if all local (P, \mathbb{F}) -martingales are continuous. Show that \mathbb{F} is *P*-continuous if and only if \mathbb{F} is *Q*-continuous for all $Q \approx P$.
- (c) Suppose that \mathbb{F} is *P*-continuous and let $S = (S_t)_{t \ge 0}$ be a local (Q, \mathbb{F}) -martingale for some $Q \approx P$. Show that S is a continuous *P*-semimartingale of the form

$$S = S_0 + M + \int \alpha \, d\langle M \rangle \tag{1}$$

for some $M \in \mathcal{M}_{0,\text{loc}}^c(P)$ and some $\alpha \in L^2_{\text{loc}}(M)$.

Hint: Use Girsanov's theorem to find a semimartingale decomposition for S under P. Then use the Kunita–Watanabe decomposition under P to describe its finite variation part.

Remark: If S has the form (1), one says that it satisfies the *structure condition SC*. This is a useful concept in mathematical finance.

Exercise 10.2 Let $B = (B^1, B^2, B^3)$ be a Brownian motion in \mathbb{R}^3 and $Z = (Z^1, Z^2, Z^3)$ a standard normal random variable. Define the process $M = (M_t)_{t \ge 0}$ by

$$M_t = \frac{1}{|Z + B_t|}.$$

Note that $P[B_t \neq x, \forall t \ge 0] = 1$ for any $x \in \mathbb{R}^3 \setminus \{0\}$; see Exercise 9.4.

- (a) Show that $P[B_t \neq -Z, \forall t \ge 0] = 1$, so that M is a.s. well defined.
- (b) Show that $|Z + B_t|^2 \sim \text{Gamma}(\frac{3}{2}, \frac{1}{2(t+1)})$ for each t > 0, i.e., its density is given by

$$f_t(y) = \frac{(2(t+1))^{-3/2} y^{1/2}}{\Gamma(3/2)} \exp\left(-\frac{y}{2(t+1)}\right), \quad y \ge 0.$$

- (c) Show that M is a continuous local martingale. Moreover, show that M is bounded in L^2 , i.e., $\sup_{t>0} E[|M_t|^2] < \infty$.
- (d) Show that M is a strict local martingale, i.e., M is not a martingale.

Hint: Show that $E[M_t] \to 0$ as $t \to \infty$.

Remark: This is the standard example of a local martingale which is not a (true) martingale. It also shows that even boundedness in L^2 (which implies uniform integrability) does not guarantee the martingale property. **Exercise 10.3** Consider a probability space (Ω, \mathcal{F}, P) supporting a Brownian motion $W = (W_t)_{t \geq 0}$. Denote by $\mathbb{F} = (\mathcal{F}_t)_{t \geq 0}$ the *P*-augmentation of the raw filtration generated by *W*. Moreover, fix T > 0, a < b, and let $F := \mathbb{1}_{\{a \leq W_T \leq b\}}$. The goal of this exercise is to find explicitly the integrand $H \in L^2_{loc}(W)$ in the Itô representation

$$F = E[F] + \int_0^\infty H_s \, dW_s. \tag{(\star)}$$

(a) Show that the martingale $M = (M_t)_{t \geq 0}$ given by $M_t := E[F|\mathcal{F}_t]$ has the representation

$$M_t = g(W_t, t), \quad 0 \le t < T,$$

for a C^2 function $g : \mathbb{R} \times [0,T) \to \mathbb{R}$. Compute g in terms of the distribution function Φ of the standard normal distribution.

(b) Let (t_n) be a sequence of times such that $t_n \nearrow T$. Use Itô's formula to find predictable processes H^n such that

$$M^{t_n} - M_0 = H^n \bullet W$$
, for each $n \in \mathbb{N}$.

Hint: Since M is a martingale, you do not need to calculate all the terms in Itô's formula.

(c) Find H such that (\star) holds.