Brownian Motion and Stochastic Calculus

Exercise sheet 3

Exercise 3.1 Given a measurable space (Ω, \mathcal{F}) with a filtration $\mathbb{F}=\left(\mathcal{F}_{t}\right)_{t \geq 0}$, we set $\mathcal{F}_{\infty}=$ $\sigma\left(\bigcup_{t \geq 0} \mathcal{F}_{t}\right)$ and define for any \mathbb{F}-stopping time τ the σ-field

$$
\mathcal{F}_{\tau}:=\left\{A \in \mathcal{F}_{\infty}: A \cap\{\tau \leq t\} \in \mathcal{F}_{t} \text { for all } t \geq 0\right\}
$$

Let S, T be two \mathbb{F}-stopping times. Show that:
(a) if $S \leq T$, then $\mathcal{F}_{S} \subseteq \mathcal{F}_{T}$, and in general, $\mathcal{F}_{S \wedge T}=\mathcal{F}_{S} \cap \mathcal{F}_{T}$.
(b) $\{S<T\},\{S \leq T\}$ belong to $\mathcal{F}_{S} \cap \mathcal{F}_{T}$. Moreover, for any $A \in \mathcal{F}_{S}, A \cap\{S<T\}$ and $A \cap\{S \leq T\}$ belong to $\mathcal{F}_{S \wedge T}$.
(c) For any stopping time τ,

$$
\mathcal{F}_{\tau}=\sigma\left(X_{\tau}: X \text { an optional process }\right)
$$

Exercise 3.2 Let $\left(B_{t}\right)_{t \geq 0}$ be a Brownian motion and consider the process X defined by

$$
X_{t}:=e^{-t} B_{e^{2 t}}, \quad t \in \mathbb{R}
$$

(a) Show that $X_{t} \sim \mathcal{N}(0,1), \quad \forall t \in \mathbb{R}$.
(b) Show that the process $\left(X_{t}\right)_{t \in \mathbb{R}}$ is time reversible, i.e. $\left(X_{t}\right)_{t \geq 0} \stackrel{(\mathrm{~d})}{=}\left(X_{-t}\right)_{t \geq 0}$.

Hint: Use the time inversion property of Brownian motion, i.e., if W is a Brownian motion,

$$
\tilde{W}_{t}:= \begin{cases}0, & \text { if } t=0 \\ t W_{1 / t}, & \text { if } t>0\end{cases}
$$

is also a Brownian motion.
Remark: The process X is called an Ornstein-Uhlenbeck process.
Exercise 3.3 Let W be a Brownian motion with respect to its natural filtration. Show that

$$
M_{t}^{(1)}=e^{t / 2} \cos W_{t}, \quad M_{t}^{(2)}=t W_{t}-\int_{0}^{t} W_{u} d u, \quad M_{t}^{(3)}=W_{t}^{3}-3 t W_{t}
$$

are martingales.
Hint: You may want to use the formula for the characteristic function of a Gaussian random variable. A trigonometric identity for $\cos (a+b)$ may also be useful; alternatively, you may use that for independent random variables X and Y and if the density f_{X} exists, we have

$$
E[g(X, Y) \mid Y]=\int_{\mathbb{R}} g(x, Y) f_{X}(x) d x
$$

for any bounded measurable function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$.

Exercise 3.4 Let $\rho \in(0,1)$. For a bounded measurable function $f:[0,1] \rightarrow \mathbb{R}$, set $f(t)=f(0)$ for $t<0$ and define the moving average function $\mathrm{MA}_{\rho} f$ by

$$
\left(\operatorname{MA}_{\rho} f\right)(t)=\frac{1}{\rho} \int_{t-\rho}^{t} f(u) d u
$$

Define $\tau(f)=\inf \left\{t \geq 0: f(t) \geq\left(\operatorname{MA}_{\rho} f\right)(t)+1\right\} \wedge 1$. Show that if X^{n} is an approximation to a Brownian motion W as in Donsker's theorem, then $\tau\left(X^{n}\right) \rightarrow \tau(W)$ in distribution.

