Brownian Motion and Stochastic Calculus

Exercise sheet 3

Exercise 3.1 Given a measurable space (Ω, \mathcal{F}) with a filtration $\mathbb{F} = (\mathcal{F}_t)_{t\geq 0}$, we set $\mathcal{F}_{\infty} = \sigma\left(\bigcup_{t\geq 0}\mathcal{F}_t\right)$ and define for any \mathbb{F} -stopping time τ the σ -field

$$\mathcal{F}_{\tau} := \left\{ A \in \mathcal{F}_{\infty} : A \cap \{ \tau \le t \} \in \mathcal{F}_t \text{ for all } t \ge 0 \right\}.$$

Let S, T be two \mathbb{F} -stopping times. Show that:

- (a) if $S \leq T$, then $\mathcal{F}_S \subseteq \mathcal{F}_T$, and in general, $\mathcal{F}_{S \wedge T} = \mathcal{F}_S \cap \mathcal{F}_T$.
- (b) $\{S < T\}$, $\{S \le T\}$ belong to $\mathcal{F}_S \cap \mathcal{F}_T$. Moreover, for any $A \in \mathcal{F}_S$, $A \cap \{S < T\}$ and $A \cap \{S \le T\}$ belong to $\mathcal{F}_{S \wedge T}$.
- (c) For any stopping time τ ,

$$\mathcal{F}_{\tau} = \sigma(X_{\tau} : X \text{ an optional process}).$$

Exercise 3.2 Let $(B_t)_{t\geq 0}$ be a Brownian motion and consider the process X defined by

$$X_t := e^{-t} B_{e^{2t}}, \quad t \in \mathbb{R}.$$

- (a) Show that $X_t \sim \mathcal{N}(0, 1), \quad \forall t \in \mathbb{R}.$
- (b) Show that the process $(X_t)_{t \in \mathbb{R}}$ is time reversible, i.e. $(X_t)_{t \ge 0} \stackrel{\text{(d)}}{=} (X_{-t})_{t \ge 0}$. *Hint:* Use the time inversion property of Brownian motion, i.e., if W is a Brownian motion,

$$\tilde{W}_t := \begin{cases} 0, & \text{if } t = 0, \\ tW_{1/t}, & \text{if } t > 0, \end{cases}$$

is also a Brownian motion.

Remark: The process X is called an Ornstein–Uhlenbeck process.

Exercise 3.3 Let W be a Brownian motion with respect to its natural filtration. Show that

$$M_t^{(1)} = e^{t/2} \cos W_t, \qquad M_t^{(2)} = tW_t - \int_0^t W_u du, \qquad M_t^{(3)} = W_t^3 - 3tW_t$$

are martingales.

Hint: You may want to use the formula for the characteristic function of a Gaussian random variable. A trigonometric identity for $\cos(a + b)$ may also be useful; alternatively, you may use that for independent random variables X and Y and if the density f_X exists, we have

$$E[g(X,Y) \mid Y] = \int_{\mathbb{R}} g(x,Y) f_X(x) dx$$

for any bounded measurable function $g: \mathbb{R}^2 \to \mathbb{R}$.

Exercise 3.4 Let $\rho \in (0, 1)$. For a bounded measurable function $f : [0, 1] \to \mathbb{R}$, set f(t) = f(0) for t < 0 and define the moving average function $MA_{\rho}f$ by

$$(\mathrm{MA}_{\rho}f)(t) = \frac{1}{\rho} \int_{t-\rho}^{t} f(u) du.$$

Define $\tau(f) = \inf\{t \ge 0 : f(t) \ge (MA_{\rho}f)(t) + 1\} \land 1$. Show that if X^n is an approximation to a Brownian motion W as in Donsker's theorem, then $\tau(X^n) \to \tau(W)$ in distribution.