Brownian Motion and Stochastic Calculus

Exercise sheet 6

Exercise 6.1 Let $(S, \mathcal{S})=\left(\mathbb{R}^{2}, \mathcal{B}\left(\mathbb{R}^{2}\right)\right)$ and for each $x \in \mathbb{R}^{2}$, let \mathbb{P}_{x} denote the unique probability measure on $\left(S^{[0, \infty)}, \mathcal{S}^{[0, \infty)}\right)$ under which the coordinate process Y is a 2 -dimensional Brownian motion starting at x. Show that for any $x \in \mathbb{R}^{2}$,

$$
\mathbb{P}_{x}\left[\sup \left\{t \geq 0: Y_{t} \in \mathcal{O}\right\}=\infty \text { for every non-empty open set } \mathcal{O} \subseteq \mathbb{R}^{2}\right]=1
$$

Hint: For any $x \in \mathbb{R}^{2}$ and $r \geq 0$, we define $\bar{B}(x, r):=\left\{y \in \mathbb{R}^{2}:|x-y| \leq r\right\}$ and the stopping time $T_{\bar{B}(x, r)}:=\inf \left\{t \geq 0: Y_{t} \in \bar{B}(x, r)\right\}$. Use the fact that for any $x \in \mathbb{R}^{2}$ and $r>0$, we have $T_{\bar{B}(0, r)}<\infty \mathbb{P}_{x}$-a.s., and apply the strong Markov property of Brownian motion.
Remark: This exercise shows the recurrence of Brownian motion in \mathbb{R}^{2}.

Exercise 6.2

(a) Let $\left(Z_{t}\right)_{t \geq 0}$ be an adapted process with respect to a given filtration $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ such that for every bounded continuous function f, we have

$$
E\left[f\left(Z_{t}-Z_{s}\right) \mid \mathcal{F}_{s}\right]=E\left[f\left(Z_{t-s}\right)\right]
$$

Show that Z has stationary independent increments.
(b) Let W be a Brownian motion on (Ω, \mathcal{F}, P). For every $a \geq 0$, consider the entrance time

$$
T_{a}:=\inf \left\{s \geq 0: W_{s} \geq a\right\}
$$

Show that the process $\left(T_{a}\right)_{a \geq 0}$ has stationary independent increments.
(c) Let $\left(Z_{t}\right)_{t \geq 0}$ have stationary independent increments and start at $0,\left(W_{t}\right)$ be a Brownian motion independent of $\left(Z_{t}\right)$, and $\left(T_{a}\right)_{a \geq 0}$ as in (b). Show that $\left(\hat{Z}_{t}\right)_{t \geq 0}=\left(Z_{T_{t}}\right)_{t \geq 0}$ has stationary independent increments.
Remark: The process $\left(T_{t}\right)_{t \geq 0}$ is called a subordinator.
Exercise 6.3 Let $\phi: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ be a locally Lipschitz function with linear growth, meaning that

$$
\begin{aligned}
&|\phi(x)-\phi(y)| \leq C_{n}|x-y| \quad \text { for some } C_{n} \geq 0 \text { and all } x, y:|x|,|y| \leq n, \text { and } \\
&|\phi(x)| \leq C(1+|x|) \quad \text { for some } C \geq 0 .
\end{aligned}
$$

For each $x \in \mathbb{R}^{k}$, define $X^{x}:[0, \infty) \rightarrow \mathbb{R}^{k}$ as the solution to the ODE

$$
\left\{\begin{array}{l}
\frac{d X_{t}^{x}}{d t}=\phi\left(X_{t}^{x}\right), \quad t \geq 0 \tag{1}\\
X_{0}^{x}=x
\end{array}\right.
$$

Due the assumptions on ϕ, each ODE has a unique solution X^{x} (you do not need to prove this).
(a) Define the unique probability measures \mathbb{P}_{x} on $\left(S^{[0, \infty)}, \mathcal{S}^{[0, \infty)}\right)$ such that

$$
\mathbb{P}_{x}\left[Y_{t}=X_{t}^{x}\right]=1
$$

for all $x \in \mathbb{R}^{k}$ and $t \geq 0$. Show that Y is a strong Markov process.
(b) Construct an example where $\phi: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ is a continuous function and $\left(X^{x}\right)$ is a solution to (1) for each x, but the measures

$$
\mathbb{P}_{x}\left[Y_{t}=X_{t}^{x}\right]=1
$$

do not define a Markov process.

