Brownian Motion and Stochastic Calculus

Exercise sheet 8

Exercise 8.1 Let (N_t) be a Poisson process with rate $\lambda > 0$ on $(\Omega, \mathcal{F}, \mathbb{F}, P)$.

- (a) Find a martingale M and a predictable finite variation process A both null at 0 such that $N_t = M_t + A_t$ for all $t \ge 0$.
- (b) Compute [M] and $\langle M \rangle$ for your choice in (a).
- (c) Check by direct calculations that $M^2 [M]$ is a martingale.

Exercise 8.2 Let $(M_t)_{t\geq 0}$ be a local martingale on $(\Omega, \mathcal{F}, \mathbb{F}, P)$, i.e. there exists a sequence of stopping times (τ_n) such that $\tau_n \nearrow \infty$ a.s. and each process $M^{\tau_n} \mathbb{1}_{\{\tau_n > 0\}}$ is a martingale. Suppose that \mathbb{F} satisfies the usual conditions.

Show that if $M_0 \in L^1$ and $M \ge 0$, i.e. $M_t \ge 0$ *P*-a.s. for all $t \ge 0$, then M is a supermartingale.

Exercise 8.3

(a) For any $M \in \mathcal{M}_{0,\text{loc}}^c$, define as usual $M_t^* := \sup_{0 \le s \le t} |M_s|$ for $t \ge 0$. Prove that for any $t \ge 0$ and C, K > 0, we have

$$P[M_t^* > C] \le \frac{4K}{C^2} + P[\langle M \rangle_t > K].$$

Hint: Stop $\langle M \rangle$ and use the Markov and Doob inequalities.

Remark: This result allows us to control the running supremum of M in terms of the quadratic variation of M.

(b) Let M be a right-continuous local martingale null at 0. Show that there exists a localizing sequence $(\tau_n)_{n \in \mathbb{N}}$ such that M^{τ_n} is a uniformly integrable martingale for each n.

Exercise 8.4

- (a) Let $f, g: [0, \infty) \to \mathbb{R}$ be such that g is right-continuous and has finite variation and f is g-integrable in the Lebesgue–Stieltjes sense. Show that the function $h(t) := \int_0^t f(s) dg(s)$ is right-continuous. Moreover, show that if g is continuous, then h is continuous.
- (b) Let $f: [0, \infty) \to \mathbb{R}$ be a function with finite variation. Show that f has left and right limits, i.e. the limits $f(t-) = \lim_{s \nearrow t} f(s)$ and $f(t+) = \lim_{u \searrow t} f(u)$ exist for t > 0 and $t \ge 0$, respectively.
- (c) Let $f, g : [0, \infty) \to \mathbb{R}$ be two right-continuous functions of finite variation. Show the integration-by-parts formula, i.e. show that for each t > 0,

$$f(t)g(t) - f(0)g(0) = \int_0^t f(s) \, dg(s) + \int_0^t g(s-) \, df(s) = \int_0^t f(s-) \, dg(s) + \int_0^t g(s) \, df(s).$$

(d) Show also the formula

$$f(t) g(t) - f(0) g(0) = \int_0^t f(s-) dg(s) + \int_0^t g(s-) df(s) + \sum_{0 < s \le t} \Delta f(s) \Delta g(s) + \int_0^t g(s-) df(s) dg(s) + \int_0^t g(s-) df(s) dg(s) dg(s) + \int_0^t g(s-) dg(s) dg$$

where $\Delta f(t) = f(t) - f(t-)$ and $\Delta g(t) = g(t) - g(t-)$.

1/2

Exercise 8.5 Let (Ω, \mathcal{F}, P) be a probability space and let Z be a random variable which is symmetric around 0 and not in L^1 , that is, $Z \stackrel{d}{=} -Z$ and $E[Z^+] = E[Z^-] = \infty$. As an example, one can let Z have a Cauchy distribution with density $f_Z(x) = \frac{1}{\pi(1+x^2)}, x \in \mathbb{R}$. Consider the discrete filtration

$$\mathcal{F}_0 := \{\emptyset, \Omega\}, \quad \mathcal{F}_1 := \sigma(|Z|), \quad \mathcal{F}_2 := \sigma(Z)$$

and the stochastic process $(X_i)_{i=0,1,2}$ defined by $X_0 = X_1 = 0$ and $X_2 = Z$. Show that X is a local martingale with respect to \mathbb{F} , but not a martingale.