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Brownian Motion and Stochastic Calculus
Exercise sheet 0

This exercise sheet is optional and the solutions are not to be submitted. These exercises may be
helpful with recalling topics from the "Probability Theory" course, or in (quickly) learning them in
preparation for the present course.

Exercise 0.1 Let (Ω,F , P ) be a probability space and Y1, Y2, . . . a sequence of independent random
variables such that E[Yk] = 0 and E

[
|Yk|α

]
≤ 1

kβ
for some α > 1 and β > 0.

(a) Show that the process (Sk)k≥0 defined by Sk :=
∑k
j=1 Yj is a martingale with respect to its

natural filtration.

(b) Give a sufficient condition on α and β such that (Sk) converges P -almost surely as k →∞.
For which p ≥ 1 does it follow that (Sk) converges in Lp as k →∞?

(c) For M > 0, let τM be the hitting time defined by

τM := inf{k ≥ 0 : |Sk| ≥M}.

Assuming the condition from (b), show that P [τM <∞] = O(M−α) as M →∞.

Solution 0.1

(a) We observe that the natural filtration of (Sk) is given by Fk := σ(S1, . . . , Sk) = σ(Y1, . . . , Yk).
Clearly, S is adapted. Using the fact that

E
[
|Yk|

]
≤ E

[
|Yk|α

]1/α
<∞

by Hölder’s inequality and the assumption, we find that the Yk are integrable and therefore
so are the Sk. Finally, by independence it follows that

E[Sk+1 − Sk | Fk] = E
[
Yk+1 | σ(Y1, · · · , Yk)

]
= E[Yk+1]
= 0

so that (Sk) is a martingale.

(b) We use Doob’s supermartingale convergence theorem. Since (Sk) is a martingale, the P -almost
sure convergence follows if

sup
k≥1

E
[
|Sk|

]
<∞.

Note that we have the inequality

E
[
|Sk|

]
≤ E

[
|Sk|α

]1/α ≤ k∑
j=1

E
[
|Yj |α

]1/α ≤ k∑
j=1

1
jβ/α

≤
∞∑
j=1

1
jβ/α

<∞

if β/α > 1, and the last inequality is uniform over k. Therefore, (Sk) converges P -almost
surely if β > α.
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For the Lp-convergence, we can only ensure that Sk ∈ Lp if p ≤ α, so that

E
[
|Sk|p

]1/p ≤ E[|Sk|α]1/α ≤ k∑
j=1

E
[
|Yj |α

]1/α
<∞.

We have that (Sk) is bounded in Lα, since

sup
k≥1

E
[
|Sk|α

]1/α ≤ ∞∑
j=1

1
jβ/α

<∞.

It follows from a corollary to the martingale convergence theorem1 that (Sk) converges in L1

and Lα to S∞. This also gives convergence in Lp for any p ∈ [1, α].

(c) We have that

P [τM <∞] = P

[
sup
j≥1
|Sj | ≥M

]
= lim
k→∞

P

[
sup

1≤j≤k
|Sj | ≥M

]
.

Note that (|Sj |α) is a submartingale by Jensen’s inequality. We can use Doob’s inequality to
bound

P

[
sup

1≤j≤k
|Sj | ≥M

]
= P

[
sup

1≤j≤k
|Sj |α ≥Mα

]
≤ 1
Mα

E [|Sk|α] ≤ 1
Mα

 ∞∑
j=1

1
jβ/α

α

.

Since this bound is uniform over k, we find that

P [τM <∞] ≤ min

1, 1
Mα

 ∞∑
j=1

1
jβ/α

α = O(M−α)

as M →∞.

1Corollary. Let p > 1 and let (Mk)k∈N be a martingale such that supk E[|Mk|p] <∞. Then, (Mk) converges
a.s. and in Lp to M∞ ∈ Lp.
Proof. The bound in Lp implies that {Mk : k ∈ N} is uniformly integrable, therefore (Mk) converges a.s. and in L1

to M∞ ∈ L1, by the martingale convergence theorem. By Doob’s Lp inequality, it holds that for each n ∈ N,

E

[
sup

1≤k≤n

|Mk|p
]
≤
(

p

p− 1

)p

E[|Mk|p] ≤
(

p

p− 1

)p

sup
n

E[|Mn|p],

and by the monotone convergence theorem we obtain that

E

[
sup

k

|Mk|p
]
≤
(

p

p− 1

)p

sup
n

E[|Mn|p].

It then follows by Fatou’s lemma that M∞ ∈ Lp and by the dominated convergence theorem (using 2p supk |Mk|p as
the bound for |Mk −M∞|p) that Mk →M∞ in Lp.
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Exercise 0.2 Let X be a real-valued random variable with standard normal distribution as law
and Y a random variable independent of X with law defined by

P [Y = 1] = p and P [Y = −1] = 1− p, (0 ≤ p ≤ 1).

We define Z := XY .
(a) What is the law of Z? Is the vector (X,Z) a Gaussian vector?

(b) Calculate Cov(X,Z). For which p ∈ [0, 1] are the random variables X and Z uncorrelated,
i.e. Cov(X,Z) = 0?

(c) Show that for each p ∈ [0, 1], the random variables X and Z are not independent.

Solution 0.2
(a) We show that Z ∼ N (0, 1) by calculating its characteristic function. Using the independence

of X and Y and that X and −X ∼ N (0, 1), we get for each t ∈ R that

ϕZ(t) := E
[
eitZ

]
= E

[
eitX 1{Y=1}

]
+ E

[
e−itX 1{Y=−1}

]
= E

[
eitX

]
P
[
Y = 1

]
+ E

[
e−itX

]
P
[
Y = −1

]
= e−

1
2 t

2
.

To check whether (X,Z) is a Gaussian vector, we need to check if for all λ1, λ2 ∈ R, the
random variable λ1X + λ2Z is normally distributed. Fix any λ1, λ2 ∈ R.
For p ∈ {0, 1} we see that

λ1X + λ2Z = cX

for some c ∈ {λ1 +λ2, λ1−λ2}. Therefore, as X ∼ N (0, 1) we get that λ1X+λ2Z ∼ N (0, c2)
and thus (X,Z) is a Gaussian vector.
Now, let p ∈ [0, 1] \ {0, 1}. Assume by contradiction that (X,Z) is a Gaussian vector. Then,
X + Z is normally distributed. But then P [X + Z = 0] ∈ {0, 1} as X + Z is normally
distributed, which contradicts the fact that

P
[
X + Z = 0

]
= P

[
Y = −1 or X = 0

]
= 1− p 6∈ {0, 1}.

We conclude that
(X,Z) is a Gaussian vector ⇐⇒ p ∈ {0, 1}.

(b) Using that X ∼ N (0, 1), the independence of X and Y and that E[Y ] = 2p− 1, we get

Cov
(
X,Z

)
= E

[
X2 Y

]
− E

[
X
]
E
[
X Y

]
= E

[
X2] E[Y ]

= Var
(
X
)
E
[
Y
]

= 2p− 1.

Therefore,
Cov

(
X,Z

)
= 0⇐⇒ p = 1/2.

(c) Assume by contradiction that X and Z are independent. Then, as Z ∼ N (0, 1),

0 = P
[
|Z| > 1

∣∣∣ |X| ≤ 1
]

= P
[
|Z| > 1

]
6= 0

which gives a contradiction.
Alternative proof: For p ∈ (0, 1), if X and Z were independent, (X,Z) would be a Gaussian
vector, since X and Z are normally distributed by (a). This contradicts the second part of
(a). For p ∈ {0, 1}, it is clear that we do not have independence, since in that case

X = Z a.s. or X = −Z a.s.
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Exercise 0.3 We consider several examples of weak convergence. Results related with characteristic
functions may be helpful with the proofs.

(a) Construct a sequence of rescaled binomial random variables Xn and a standard normal
random variable X such that Xn ⇒ X as n→∞.

(b) Construct a sequence of rescaled binomial random variables Xn and a Poisson random variable
X such that Xn ⇒ X as n→∞.

(c) Construct a sequence of rescaled geometric random variables Xn and an exponential random
variable X such that Xn ⇒ X as n→∞.

(d) Let X be a real-valued random variable with distribution function F . Construct a sequence
of random variables Xn such that Xn ⇒ X as n→∞ and each Xn has a continuous density
function fn.

Solution 0.3

(a) Let Xn = Yn−np√
np(1−p)

, where Yn ∼ B(n, p) for p ∈ (0, 1). Then Xn ⇒ N (0, 1). This can
be shown with the central limit theorem: if Z1, Z2, . . . are independent Bernoulli random
variables with parameter p, then the equality in law Yn

d= Ỹn =
∑n
j=1 Zj holds. It follows by

the CLT that Xn
d= Ỹn−np√

np(1−p)
⇒ N (0, 1).

(b) Let Xn ∼ B(n, λ/n) for some fixed λ ∈ R and n > λ. The characteristic function is

ψXn(t) =
(

1 + λ

n

(
eit − 1

))n
.

Taking the limit as n→∞, we obtain that for each t ∈ R,

ψXn(t)→ ψ(t) = exp
(
λ
(
eit − 1

))
.

This is the characteristic function of a Poisson random variable X ∼ Poi(λ); therefore
Xn ⇒ X.

(c) Let Xn = 1
nYn where Yn ∼ Geom(p/n), for p ∈ (0, 1). The characteristic function is

ψXn(t) =
p
ne

it/n

1−
(
1− p

ne
it/n
) = p

ne−it/n − n+ p
.

Noting that e−it/n = 1− it/n+O(1/n2), we obtain that for each t ∈ R,

ψXn(t)→ ψ(t) = p

p− it
.

This is the characteristic function of an exponential random variable X ∼ Exp(p); therefore
Xn ⇒ X.

(d) One idea is to perturb X by an independent random variable Yn ∼ N
(
0, 1

n2

)
. This leads us

to construct random variables Xn with cumulative distribution function

Fn(x) =
∫ +∞

−∞
Φ
(
n(x− y)

)
dF (y),
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where Φ is the distribution function of a standard normal random variable. We note that Fn
is increasing for each n, with Fn(−∞) = 0 and Fn(+∞) = 1. Moreover, Fn is continuous and
even differentiable with density

fn(x) =
∫ +∞

−∞
exp

(
−n

2(x− y)2

2

)
dF (y).

Finally, we note using the dominated convergence theorem that

lim
n→∞

Fn(x) =
∫ +∞

−∞

(
1{y<x} + 1

21{y=x}

)
dF (y) = F (x)

at points of continuity of F , therefore Xn ⇒ X.
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