Brownian Motion and Stochastic Calculus

Exercise sheet 1

Exercise 1.1 Let (Ω, \mathcal{F}, P) be a probability space. Let $X, Y, Z: \Omega \rightarrow \mathbb{R}$ be random variables and suppose that Z is $\sigma(X, Y)$-measurable. Use the monotone class theorem to show that there exists a measurable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $Z=f(X, Y)$.

Hint: It may be helpful to start by assuming that Z is bounded.
Solution 1.1 Define \mathcal{H} as the set of bounded random variables Z such that $Z=f(X, Y)$ for some measurable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Moreover, define

$$
\mathcal{M}=\left\{\mathbb{1}_{\{X \in A\}} \mathbb{1}_{\{Y \in B\}}: A, B \in \mathcal{B}(\mathbb{R})\right\}
$$

It is clear that \mathcal{M} is closed under multiplication with

$$
\sigma(\mathcal{M})=\sigma(\{\{X \in A\} \cap\{Y \in B\}: A, B \in \mathcal{B}(\mathbb{R})\})=\sigma(X, Y)
$$

Note that \mathcal{H} contains the constant 1 and \mathcal{M}.
We show that \mathcal{H} is closed under monotone bounded convergence. Suppose that $\left(Z_{k}\right)$ is a sequence of random variables such that $0 \leq Z_{1} \leq Z_{2} \leq \cdots$ and $Z_{k}=f_{k}(X, Y)$, and suppose that $Z=\sup _{k} Z_{k}$ is bounded by $C>0$. We have that $Z=f(X, Y)$ where $f(x, y)=\sup _{k} f_{k}(x, y) \wedge C$ is a measurable function, since $Z=\sup _{k} f_{k}(X, Y)=f(X, Y)$ using the bound on Z. Therefore, by the monotone class theorem, \mathcal{H} contains all bounded random variables that are $\sigma(X, Y)$-measurable.

Consider now a general $\sigma(X, Y)$-measurable random variable Z. For each $n \in \mathbb{N}$, define $g^{n}, g^{\infty}:[0, \infty] \rightarrow \mathbb{R}$ by $g^{n}(x)=x \mathbb{1}_{x \leq n}$ and $g^{\infty}(x)=x \mathbb{1}_{x<\infty}$. We can write

$$
g^{n}\left(Z^{+}\right)=f_{n}^{(+)}(X, Y), \quad g^{n}\left(Z^{-}\right)=f_{n}^{(-)}(X, Y)
$$

for non-negative measurable functions $f_{n}^{(+)}$and $f_{n}^{(-)}$. Non-negativity can be ensured by replacing $f_{n}^{(+)}$with $f_{n}^{(+)} \vee 0$, etc. Likewise, we can ensure that $\left(f_{n}^{(+)}\right)$and $\left(f_{n}^{(-)}\right)$are increasing in n, by replacing $f_{n+1}^{(+)}$with $f_{n+1}^{(+)} \vee f_{n}^{(+)}$, and analogously for $f_{n+1}^{(-)}$. This is justified since $f_{n}^{(+)}(X, Y)=$ $g^{n}\left(Z^{+}\right) \leq g^{n+1}\left(Z^{+}\right)=f_{n+1}^{(+)}(X, Y)$.

Define $f^{(+)}(x, y)=g^{\infty}\left(\sup _{n} f_{n}^{(+)}(x, y)\right)$ and $f^{(-)}(x, y)=g^{\infty}\left(\sup _{n} f_{n}^{(-)}(x, y)\right)$. We obtain that

$$
\begin{aligned}
Z & =\sup _{n \in \mathbb{N}}\left(Z \mathbb{1}_{0 \leq Z \leq n}\right)-\sup _{n \in \mathbb{N}}\left(-Z \mathbb{1}_{-n \leq Z \leq 0}\right) \\
& =g^{\infty}\left(\sup _{n \in \mathbb{N}} f_{n}^{(+)}(X, Y)\right)-g^{\infty}\left(\sup _{n \in \mathbb{N}} f_{n}^{(-)}(X, Y)\right) \\
& =f(X, Y)
\end{aligned}
$$

since $|Z|<\infty$, and where $f(x, y)=g^{\infty}\left(\sup _{n \in \mathbb{N}} f_{n}^{(+)}(x, y)\right)-g^{\infty}\left(\sup _{n \in \mathbb{N}} f_{n}^{(-)}(x, y)\right)$.

Exercise 1.2 Let (Ω, \mathcal{F}, P) be a probability space and assume that $X=\left(X_{t}\right)_{t \geq 0}, Y=\left(Y_{t}\right)_{t \geq 0}$ are two stochastic processes on (Ω, \mathcal{F}, P). Two processes Z and Z^{\prime} on (Ω, \mathcal{F}, P) are said to be modifications of each other if $P\left[Z_{t}=Z_{t}^{\prime}\right]=1, \forall t \geq 0$, while Z and Z^{\prime} are indistinguishable if $P\left[Z_{t}=Z_{t}^{\prime}, \forall t \geq 0\right]=1$.
(a) Assume that X and Y are both right-continuous or both left-continuous. Show that the processes are modifications of each other if and only if they are indistinguishable.
Remark: A stochastic process is said to have the path property \mathcal{P} (\mathcal{P} can be continuity, right-continuity, differentiability, ...) if the property \mathcal{P} holds for P-almost every path.
(b) Give an example showing that one of the implications of part (a) does not hold for general X, Y.

Solution 1.2

(a) We show that if X is a modification of Y, then they are indistinguishable, since the converse is obvious. Assume that X and Y are right-continuous; the proof for the left-continuous case is analogous.
For each $t \geq 0$, we define the nullset $N_{t}:=\left\{\omega: X_{t}(\omega) \neq Y_{t}(\omega)\right\}$. We consider $N:=\cup_{t \in \mathbb{Q}_{+}} N_{t}$, which remains a nullset as a countable union of null sets. Finally, we introduce the nullset $A_{Z}:=\{\omega: Z .(\omega)$ not right-continuous $\}$ for $Z=X, Y$ and we define $M:=A_{X} \cup A_{Y} \cup N$, which is still a nullset.
For any given $\omega \in M^{c}$, it remains to check that $X_{t}(\omega)=Y_{t}(\omega), \forall t \geq 0$. By definition of M, it holds that $X_{t}(\omega)=Y_{t}(\omega), \forall t \in \mathbb{Q}_{+}$. Now, take any $t \geq 0$ and let $\left(t_{n}\right)$ be a sequence in \mathbb{Q}_{+}with $t_{n} \downarrow t$. The right-continuity of the paths $X .(\omega)$ and Y. (ω) then implies that $X_{t}(\omega)=\lim _{n \rightarrow \infty} X_{t_{n}}(\omega)=\lim _{n \rightarrow \infty} Y_{t_{n}}(\omega)=Y_{t}(\omega)$.
(b) Take $\Omega=[0, \infty), \mathcal{F}=\mathcal{B}([0, \infty))$ the Borel σ-algebra, and P a probability measure with $P[\{\omega\}]=0, \forall \omega \in \Omega$ (for instance, the exponential distribution).
Set $X \equiv 0$ and $Y_{t}(\omega)= \begin{cases}1, & t=\omega, \\ 0, & \text { else. }\end{cases}$
Then $P\left[X_{t}=Y_{t}\right]=1, \forall t \geq 0$, since single points have no mass, but $\left\{X_{t}=Y_{t}, \forall t \geq 0\right\}=\emptyset$. Note that all sample paths of X are continuous, while all sample paths of Y are discontinuous at $t=\omega$.

Exercise 1.3 Let $X=\left(X_{t}\right)_{t \geq 0}$ be a stochastic process defined on a filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right), P\right)$. The aim of this exercise is to show the following chain of implications:
X optional $\Rightarrow X$ progressively measurable $\Rightarrow X$ product-measurable and adapted.
(a) Show that every progressively measurable process is product-measurable and adapted.
(b) Assume that X is adapted and every path of X is right-continuous. Show that X is progressively measurable.
Remark: The same conclusion holds true if every path of X is left-continuous.
Hint: For fixed $t \geq 0$, consider an approximating sequence of processes Y^{n} on $\Omega \times[0, t]$ given by $Y_{0}^{n}=X_{0}$ and $Y_{u}^{n}=\sum_{k=0}^{2^{n}-1} 1_{\left(t k 2^{-n}, t(k+1) 2^{-n}\right]}(u) X_{t(k+1) 2^{-n}}$ for $u \in(0, t]$.
(c) Recall that the optional σ-field \mathcal{O} is generated by the class $\overline{\mathcal{M}}$ of all adapted processes whose paths are all RCLL. Show that \mathcal{O} is also generated by the subclass \mathcal{M} of all bounded processes in $\overline{\mathcal{M}}$.
(d) Use the monotone class theorem to show that every optional process is progressively measurable.

Solution 1.3

(a) Let X be progressively measurable. Then $\left.X\right|_{\Omega \times[0, t]}$ is $\mathcal{F}_{t} \otimes \mathcal{B}[0, t]$-measurable for every $t \geq 0$. For any $t \geq 0$, we see that $X_{t}=X \circ i_{t}$, where $i_{t}:\left(\Omega, \mathcal{F}_{t}\right) \rightarrow\left(\Omega \times[0, t], \mathcal{F}_{t} \otimes \mathcal{B}[0, t]\right), \omega \mapsto(\omega, t)$ is measurable. Therefore, X_{t} is \mathcal{F}_{t}-measurable for every $t \geq 0$. Moreover, the processes X^{n} defined by $X_{u}^{n}:=\left.X\right|_{\Omega \times[0, n]} 1_{[0, n]}(u), u \geq 0$, are $\mathcal{F} \otimes \mathcal{B}[0, \infty)$-measurable. Since $X^{n} \rightarrow X$ pointwise (in (t, ω)) as $n \rightarrow \infty$, also X is $\mathcal{F} \otimes \mathcal{B}[0, \infty)$-measurable.
(b) Fix a $t \geq 0$ and consider the sequence of processes Y^{n} on $\Omega \times[0, t]$ given by $Y_{0}^{n}=X_{0}$ and $Y_{u}^{n}=\sum_{k=1}^{2^{n}-1} 1_{\left(t k 2^{-n}, t(k+1) 2^{-n}\right]}(u) X_{t(k+1) 2^{-n}}$ for $u \in(0, t]$. By construction, each Y^{n} is $\mathcal{F}_{t} \otimes \mathcal{B}[0, t]$-measurable. Since $\left.Y^{n} \rightarrow X\right|_{\Omega \times[0, t]}$ pointwise as $n \rightarrow \infty$ due to right-continuity, the result follows.
(c) Let X be adapted, with all paths being RCLL. Consider the processes $X^{n}:=(X \wedge n) \vee(-n)$. Clearly, each X^{n} is bounded and RCLL. Thus, each X^{n} is $\sigma(\mathcal{M})$-measurable. As the pointwise limit of the X^{n}, also X is $\sigma(\mathcal{M})$-measurable. It follows that $\mathcal{O} \subseteq \sigma(\mathcal{M})$. The converse inclusion is trivial.
(d) If a process X is optional, then $X^{n}:=X 1_{\{|X| \leq n\}}$ is also optional and of course $X^{n} \rightarrow X$; so if each X^{n} is progressively measurable, then so is X, and hence we can assume without loss of generality that X is bounded.
Let \mathcal{H} denote the real vector space of bounded, progressively measurable processes. By part b), \mathcal{H} contains \mathcal{M}. Clearly, \mathcal{H} contains the constant process 1 and is closed under monotone bounded convergence. Also, \mathcal{M} is closed under multiplication. The monotone class theorem yields that every bounded $\sigma(\mathcal{M})$-measurable process is contained in \mathcal{H}. Due to c), we conclude that every bounded optional process is progressively measurable.

Exercise 1.4

(a) Let (Ω, \mathcal{F}, P) be a probability space and B a Brownian motion on $[0,1]$. Let $k \in \mathbb{N}$ and

$$
0=s_{1}<t_{1}<s_{2}<t_{2}<\ldots<t_{k}<s_{k+1}=1
$$

Find the law of $\left(B_{t_{1}}, B_{t_{2}}, \ldots, B_{t_{k}}\right)$ conditional on $\left(B_{s_{1}}, \ldots, B_{s_{k+1}}\right)$.
(b) Let $\mathcal{D}:=\left\{a 2^{-m}: m \in \mathbb{N}, a \in\left\{0,1, \ldots, 2^{m}\right\}\right\}$. Let Z_{1}, Z_{2}, \ldots be an infinite sequence of i.i.d. standard normal random variables. Construct in terms of the Z_{j} a stochastic process $\left(W_{t}\right)_{t \in \mathcal{D}}$ such that the law of W is equal to the law of $\left(B_{t}\right)_{t \in \mathcal{D}}$.

Solution 1.4

(a) Note that $\left(B_{s_{1}}, B_{t_{1}}, \ldots, B_{t_{k}}, B_{s_{k+1}}\right)$ is a Gaussian vector. We claim that for each k,

$$
\Delta_{k}:=B_{t_{k}}-\frac{t_{k}-s_{k}}{s_{k+1}-s_{k}} B_{s_{k+1}}-\frac{s_{k+1}-t_{k}}{s_{k+1}-s_{k}} B_{s_{k}}
$$

is normally distributed with $\Delta_{k} \sim \mathcal{N}\left(0, \frac{\left(s_{k+1}-t_{k}\right)\left(t_{k}-s_{k}\right)}{s_{k+1}-s_{k}}\right)$, and moreover Δ_{k} is independent of $\left(B_{s_{1}}, \ldots, B_{s_{k+1}}\right)$.
The first claim follows from the Gaussian distribution and rewriting

$$
\Delta_{k}:=-\frac{t_{k}-s_{k}}{s_{k+1}-s_{k}}\left(B_{s_{k+1}}-B_{t_{k}}\right)+\frac{s_{k+1}-t_{k}}{s_{k+1}-s_{k}}\left(B_{t_{k}}-B_{s_{k}}\right)
$$

where the two increments are independent, from which we get the variance. For the second claim, due to the Gaussian distribution, it is enough to show that Δ_{k} is uncorrelated with $B_{s_{j+1}}-B_{s_{j}}$ for each j. This is clear for any $j \neq k$, while at k we have that

$$
E\left[\Delta_{k}\left(B_{s_{k+1}}-B_{s_{k}}\right)\right]=-\frac{t_{k}-s_{k}}{s_{k+1}-s_{k}}\left(s_{k+1}-t_{k}\right)+\frac{s_{k+1}-t_{k}}{s_{k+1}-s_{k}}\left(t_{k}-s_{k}\right)=0
$$

Therefore, we conclude that the law of $\left(B_{t_{1}}, B_{t_{2}}, \ldots, B_{t_{k}}\right)$ conditional on $\left(B_{s_{1}}, \ldots, B_{s_{k+1}}\right)$ is the Gaussian law $\mathcal{N}(\mu, \Sigma)$, where

$$
\mu_{k}=\frac{t_{k}-s_{k}}{s_{k+1}-s_{k}} B_{s_{k+1}}+\frac{s_{k+1}-t_{k}}{s_{k+1}-s_{k}} B_{s_{k}}
$$

and the matrix Σ is diagonal with $\Sigma_{k k}=\frac{\left(s_{k+1}-t_{k}\right)\left(t_{k}-s_{k}\right)}{s_{k+1}-s_{k}}$.
(b) Let $\mathcal{D}^{n}:=\left\{a 2^{-m}: m \in\{1, \ldots, n\}, a \in\left\{0,1, \ldots, 2^{m}\right\}\right\}$. We construct W recursively on each \mathcal{D}^{n}, so that finally we obtain W on \mathcal{D}. The first step is to define $W_{1}=Z_{1}$, so that clearly $W \stackrel{d}{=} B$ on $\{0,1\}$. If we have defined W on \mathcal{D}^{n} in terms of $Z_{1}, Z_{2}, \ldots, Z_{2^{n-1}}$, we extend it to \mathcal{D}^{n+1} by

$$
W_{(2 j-1) 2^{-(m+1)}}=\frac{1}{2} W_{(j-1) 2^{-m}}+\frac{1}{2} W_{j 2^{-m}}+2^{-\frac{n}{2}-1} Z_{2^{n}+j}
$$

for $j=1, \ldots, 2^{n}$. By induction, assume that $W \stackrel{d}{=} B$ on \mathcal{D}^{n}. We also obtain from this construction that the law of $\left.W\right|_{\mathcal{D}_{n+1}}$ conditional on $\left.W\right|_{\mathcal{D}_{n}}$ is equal to the law of $\left.B\right|_{\mathcal{D}_{n+1}}$ conditional on $\left.B\right|_{\mathcal{D}_{n}}$, by (a). Therefore, the inductive step is valid, and we finally obtain that the law of W is equal to the law of $\left.B\right|_{\mathcal{D}}$ by the Ionescu-Tulcea theorem.

