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Exercise 1.1 Let (Ω,F , P ) be a probability space. Let X,Y, Z : Ω→ R be random variables and
suppose that Z is σ(X,Y )-measurable. Use the monotone class theorem to show that there exists a
measurable function f : R2 → R such that Z = f(X,Y ).

Hint: It may be helpful to start by assuming that Z is bounded.

Solution 1.1 Define H as the set of bounded random variables Z such that Z = f(X,Y ) for some
measurable function f : R2 → R. Moreover, define

M = {1{X∈A}1{Y ∈B} : A,B ∈ B(R)}.

It is clear thatM is closed under multiplication with

σ(M) = σ
({
{X ∈ A} ∩ {Y ∈ B} : A,B ∈ B(R)

})
= σ(X,Y ).

Note that H contains the constant 1 andM.
We show that H is closed under monotone bounded convergence. Suppose that (Zk) is a

sequence of random variables such that 0 ≤ Z1 ≤ Z2 ≤ · · · and Zk = fk(X,Y ), and suppose that
Z = supk Zk is bounded by C > 0. We have that Z = f(X,Y ) where f(x, y) = supk fk(x, y) ∧C is
a measurable function, since Z = supk fk(X,Y ) = f(X,Y ) using the bound on Z. Therefore, by the
monotone class theorem, H contains all bounded random variables that are σ(X,Y )-measurable.

Consider now a general σ(X,Y )-measurable random variable Z. For each n ∈ N, define
gn, g∞ : [0,∞]→ R by gn(x) = x1x≤n and g∞(x) = x1x<∞. We can write

gn(Z+) = f (+)
n (X,Y ), gn(Z−) = f (−)

n (X,Y )

for non-negative measurable functions f (+)
n and f (−)

n . Non-negativity can be ensured by replacing
f

(+)
n with f (+)

n ∨ 0, etc. Likewise, we can ensure that
(
f

(+)
n

)
and

(
f

(−)
n

)
are increasing in n, by

replacing f (+)
n+1 with f (+)

n+1 ∨ f
(+)
n , and analogously for f (−)

n+1. This is justified since f (+)
n (X,Y ) =

gn(Z+) ≤ gn+1(Z+) = f
(+)
n+1(X,Y ).

Define f (+)(x, y) = g∞
(

supn f
(+)
n (x, y)

)
and f (−)(x, y) = g∞

(
supn f

(−)
n (x, y)

)
. We obtain

that

Z = sup
n∈N

(Z10≤Z≤n)− sup
n∈N

(−Z1−n≤Z≤0)

= g∞
(

sup
n∈N

f (+)
n (X,Y )

)
− g∞

(
sup
n∈N

f (−)
n (X,Y )

)
= f(X,Y )

since |Z| <∞, and where f(x, y) = g∞(supn∈N f
(+)
n (x, y))− g∞(supn∈N f

(−)
n (x, y)).
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Exercise 1.2 Let (Ω,F , P ) be a probability space and assume that X = (Xt)t≥0, Y = (Yt)t≥0
are two stochastic processes on (Ω,F , P ). Two processes Z and Z ′ on (Ω,F , P ) are said to be
modifications of each other if P [Zt = Z ′t] = 1, ∀ t ≥ 0, while Z and Z ′ are indistinguishable if
P [Zt = Z ′t, ∀ t ≥ 0] = 1.

(a) Assume that X and Y are both right-continuous or both left-continuous. Show that the
processes are modifications of each other if and only if they are indistinguishable.
Remark: A stochastic process is said to have the path property P (P can be continuity,
right-continuity, differentiability, ...) if the property P holds for P -almost every path.

(b) Give an example showing that one of the implications of part (a) does not hold for general X,
Y .

Solution 1.2

(a) We show that if X is a modification of Y , then they are indistinguishable, since the converse
is obvious. Assume that X and Y are right-continuous; the proof for the left-continuous case
is analogous.
For each t ≥ 0, we define the nullset Nt := {ω : Xt(ω) 6= Yt(ω)}. We consider N := ∪t∈Q+Nt,
which remains a nullset as a countable union of null sets. Finally, we introduce the nullset
AZ := {ω : Z·(ω) not right-continuous} for Z = X,Y and we define M := AX ∪ AY ∪ N ,
which is still a nullset.
For any given ω ∈ M c, it remains to check that Xt(ω) = Yt(ω), ∀ t ≥ 0. By definition of
M , it holds that Xt(ω) = Yt(ω), ∀ t ∈ Q+. Now, take any t ≥ 0 and let (tn) be a sequence
in Q+ with tn ↓ t. The right-continuity of the paths X·(ω) and Y·(ω) then implies that
Xt(ω) = limn→∞Xtn

(ω) = limn→∞ Ytn
(ω) = Yt(ω).

(b) Take Ω = [0,∞), F = B([0,∞)) the Borel σ-algebra, and P a probability measure with
P [{ω}] = 0, ∀ ω ∈ Ω (for instance, the exponential distribution).

Set X ≡ 0 and Yt(ω) =
{

1, t = ω,

0, else.

Then P [Xt = Yt] = 1, ∀ t ≥ 0, since single points have no mass, but {Xt = Yt, ∀ t ≥ 0} = ∅.
Note that all sample paths of X are continuous, while all sample paths of Y are discontinuous
at t = ω.
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Exercise 1.3 Let X = (Xt)t≥0 be a stochastic process defined on a filtered probability space
(Ω,F , (Ft), P ). The aim of this exercise is to show the following chain of implications:

X optional⇒ X progressively measurable⇒ X product-measurable and adapted.

(a) Show that every progressively measurable process is product-measurable and adapted.

(b) Assume that X is adapted and every path of X is right-continuous. Show that X is
progressively measurable.
Remark: The same conclusion holds true if every path of X is left-continuous.
Hint: For fixed t ≥ 0, consider an approximating sequence of processes Y n on Ω× [0, t] given
by Y n

0 = X0 and Y n
u =

∑2n−1
k=0 1(tk2−n,t(k+1)2−n](u)Xt(k+1)2−n for u ∈ (0, t].

(c) Recall that the optional σ-field O is generated by the classM of all adapted processes whose
paths are all RCLL. Show that O is also generated by the subclassM of all bounded processes
inM.

(d) Use the monotone class theorem to show that every optional process is progressively measur-
able.

Solution 1.3

(a) Let X be progressively measurable. Then X|Ω×[0,t] is Ft ⊗ B[0, t]-measurable for every t ≥ 0.
For any t ≥ 0, we see that Xt = X ◦ it, where it : (Ω,Ft)→ (Ω× [0, t],Ft⊗B[0, t]), ω 7→ (ω, t)
is measurable. Therefore, Xt is Ft-measurable for every t ≥ 0. Moreover, the processes Xn

defined by Xn
u := X|Ω×[0,n]1[0,n](u), u ≥ 0, are F ⊗ B[0,∞)-measurable. Since Xn → X

pointwise (in (t, ω)) as n→∞, also X is F ⊗ B[0,∞)-measurable.

(b) Fix a t ≥ 0 and consider the sequence of processes Y n on Ω × [0, t] given by Y n
0 = X0

and Y n
u =

∑2n−1
k=1 1(tk2−n,t(k+1)2−n](u)Xt(k+1)2−n for u ∈ (0, t]. By construction, each Y n is

Ft ⊗ B[0, t]-measurable. Since Y n → X|Ω×[0,t] pointwise as n→∞ due to right-continuity,
the result follows.

(c) Let X be adapted, with all paths being RCLL. Consider the processes Xn := (X ∧ n) ∨ (−n).
Clearly, each Xn is bounded and RCLL. Thus, each Xn is σ(M)-measurable. As the pointwise
limit of theXn, alsoX is σ(M)-measurable. It follows thatO ⊆ σ(M). The converse inclusion
is trivial.

(d) If a process X is optional, then Xn := X 1{|X|≤n} is also optional and of course Xn → X; so
if each Xn is progressively measurable, then so is X, and hence we can assume without loss
of generality that X is bounded.
Let H denote the real vector space of bounded, progressively measurable processes. By part
b), H containsM. Clearly, H contains the constant process 1 and is closed under monotone
bounded convergence. Also,M is closed under multiplication. The monotone class theorem
yields that every bounded σ(M)-measurable process is contained in H. Due to c), we conclude
that every bounded optional process is progressively measurable.
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Exercise 1.4

(a) Let (Ω,F , P ) be a probability space and B a Brownian motion on [0, 1]. Let k ∈ N and

0 = s1 < t1 < s2 < t2 < . . . < tk < sk+1 = 1.

Find the law of (Bt1 , Bt2 , . . . , Btk
) conditional on (Bs1 , . . . , Bsk+1).

(b) Let D := {a2−m : m ∈ N, a ∈ {0, 1, . . . , 2m}}. Let Z1, Z2, . . . be an infinite sequence of i.i.d.
standard normal random variables. Construct in terms of the Zj a stochastic process (Wt)t∈D
such that the law of W is equal to the law of (Bt)t∈D.

Solution 1.4

(a) Note that (Bs1 , Bt1 , . . . , Btk
, Bsk+1) is a Gaussian vector. We claim that for each k,

∆k := Btk
− tk − sk

sk+1 − sk
Bsk+1 −

sk+1 − tk
sk+1 − sk

Bsk

is normally distributed with ∆k ∼ N
(

0, (sk+1−tk)(tk−sk)
sk+1−sk

)
, and moreover ∆k is independent

of (Bs1 , . . . , Bsk+1).
The first claim follows from the Gaussian distribution and rewriting

∆k := − tk − sk

sk+1 − sk
(Bsk+1 −Btk

) + sk+1 − tk
sk+1 − sk

(Btk
−Bsk

)

where the two increments are independent, from which we get the variance. For the second
claim, due to the Gaussian distribution, it is enough to show that ∆k is uncorrelated with
Bsj+1 −Bsj

for each j. This is clear for any j 6= k, while at k we have that

E[∆k(Bsk+1 −Bsk
)] = − tk − sk

sk+1 − sk
(sk+1 − tk) + sk+1 − tk

sk+1 − sk
(tk − sk) = 0.

Therefore, we conclude that the law of (Bt1 , Bt2 , . . . , Btk
) conditional on (Bs1 , . . . , Bsk+1) is

the Gaussian law N (µ,Σ), where

µk = tk − sk

sk+1 − sk
Bsk+1 + sk+1 − tk

sk+1 − sk
Bsk

and the matrix Σ is diagonal with Σkk = (sk+1−tk)(tk−sk)
sk+1−sk

.

(b) Let Dn := {a2−m : m ∈ {1, . . . , n}, a ∈ {0, 1, . . . , 2m}}. We construct W recursively on each
Dn, so that finally we obtain W on D. The first step is to define W1 = Z1, so that clearly
W

d= B on {0, 1}. If we have defined W on Dn in terms of Z1, Z2, . . . , Z2n−1 , we extend it to
Dn+1 by

W(2j−1)2−(m+1) = 1
2W(j−1)2−m + 1

2Wj2−m + 2−n
2−1Z2n+j

for j = 1, . . . , 2n. By induction, assume that W d= B on Dn. We also obtain from this
construction that the law of W |Dn+1 conditional on W |Dn is equal to the law of B|Dn+1

conditional on B|Dn
, by (a). Therefore, the inductive step is valid, and we finally obtain that

the law of W is equal to the law of B|D by the Ionescu-Tulcea theorem.
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