Brownian Motion and Stochastic Calculus

Exercise sheet 1

Exercise 1.1 Let (Ω, \mathcal{F}, P) be a probability space. Let $X, Y, Z : \Omega \to \mathbb{R}$ be random variables and suppose that Z is $\sigma(X, Y)$ -measurable. Use the monotone class theorem to show that there exists a measurable function $f : \mathbb{R}^2 \to \mathbb{R}$ such that Z = f(X, Y).

Hint: It may be helpful to start by assuming that Z is bounded.

Solution 1.1 Define \mathcal{H} as the set of bounded random variables Z such that Z = f(X, Y) for some measurable function $f : \mathbb{R}^2 \to \mathbb{R}$. Moreover, define

$$\mathcal{M} = \{\mathbb{1}_{\{X \in A\}} \mathbb{1}_{\{Y \in B\}} : A, B \in \mathcal{B}(\mathbb{R})\}.$$

It is clear that \mathcal{M} is closed under multiplication with

$$\sigma(\mathcal{M}) = \sigma\Big(\big\{\{X \in A\} \cap \{Y \in B\} : A, B \in \mathcal{B}(\mathbb{R})\big\}\Big) = \sigma(X, Y).$$

Note that \mathcal{H} contains the constant 1 and \mathcal{M} .

We show that \mathcal{H} is closed under monotone bounded convergence. Suppose that (Z_k) is a sequence of random variables such that $0 \leq Z_1 \leq Z_2 \leq \cdots$ and $Z_k = f_k(X,Y)$, and suppose that $Z = \sup_k Z_k$ is bounded by C > 0. We have that Z = f(X,Y) where $f(x,y) = \sup_k f_k(x,y) \wedge C$ is a measurable function, since $Z = \sup_k f_k(X,Y) = f(X,Y)$ using the bound on Z. Therefore, by the monotone class theorem, \mathcal{H} contains all bounded random variables that are $\sigma(X,Y)$ -measurable.

Consider now a general $\sigma(X, Y)$ -measurable random variable Z. For each $n \in \mathbb{N}$, define $g^n, g^{\infty} : [0, \infty] \to \mathbb{R}$ by $g^n(x) = x \mathbb{1}_{x \leq n}$ and $g^{\infty}(x) = x \mathbb{1}_{x < \infty}$. We can write

$$g^{n}(Z^{+}) = f_{n}^{(+)}(X, Y),$$
 $g^{n}(Z^{-}) = f_{n}^{(-)}(X, Y)$

for non-negative measurable functions $f_n^{(+)}$ and $f_n^{(-)}$. Non-negativity can be ensured by replacing $f_n^{(+)}$ with $f_n^{(+)} \vee 0$, etc. Likewise, we can ensure that $\left(f_n^{(+)}\right)$ and $\left(f_n^{(-)}\right)$ are increasing in n, by replacing $f_{n+1}^{(+)}$ with $f_{n+1}^{(+)} \vee f_n^{(+)}$, and analogously for $f_{n+1}^{(-)}$. This is justified since $f_n^{(+)}(X,Y) = g^n(Z^+) \leq g^{n+1}(Z^+) = f_{n+1}^{(+)}(X,Y)$.

Define $f^{(+)}(x,y) = g^{\infty}\left(\sup_{n} f_{n}^{(+)}(x,y)\right)$ and $f^{(-)}(x,y) = g^{\infty}\left(\sup_{n} f_{n}^{(-)}(x,y)\right)$. We obtain that

$$Z = \sup_{n \in \mathbb{N}} \left(Z \mathbb{1}_{0 \le Z \le n} \right) - \sup_{n \in \mathbb{N}} \left(-Z \mathbb{1}_{-n \le Z \le 0} \right)$$
$$= g^{\infty} \left(\sup_{n \in \mathbb{N}} f_n^{(+)}(X, Y) \right) - g^{\infty} \left(\sup_{n \in \mathbb{N}} f_n^{(-)}(X, Y) \right)$$
$$= f(X, Y)$$

since $|Z| < \infty$, and where $f(x, y) = g^{\infty}(\sup_{n \in \mathbb{N}} f_n^{(+)}(x, y)) - g^{\infty}(\sup_{n \in \mathbb{N}} f_n^{(-)}(x, y)).$

Exercise 1.2 Let (Ω, \mathcal{F}, P) be a probability space and assume that $X = (X_t)_{t\geq 0}$, $Y = (Y_t)_{t\geq 0}$ are two stochastic processes on (Ω, \mathcal{F}, P) . Two processes Z and Z' on (Ω, \mathcal{F}, P) are said to be *modifications* of each other if $P[Z_t = Z'_t] = 1$, $\forall t \geq 0$, while Z and Z' are *indistinguishable* if $P[Z_t = Z'_t, \forall t \geq 0] = 1$.

(a) Assume that X and Y are both right-continuous or both left-continuous. Show that the processes are modifications of each other if and only if they are indistinguishable.

Remark: A stochastic process is said to have the path property \mathcal{P} (\mathcal{P} can be continuity, right-continuity, differentiability, ...) if the property \mathcal{P} holds for *P*-almost every path.

(b) Give an example showing that one of the implications of part (a) does not hold for general X, Y.

Solution 1.2

(a) We show that if X is a modification of Y, then they are indistinguishable, since the converse is obvious. Assume that X and Y are right-continuous; the proof for the left-continuous case is analogous.

For each $t \ge 0$, we define the nullset $N_t := \{\omega : X_t(\omega) \ne Y_t(\omega)\}$. We consider $N := \bigcup_{t \in \mathbb{Q}_+} N_t$, which remains a nullset as a countable union of null sets. Finally, we introduce the nullset $A_Z := \{\omega : Z_{\cdot}(\omega) \text{ not right-continuous}\}$ for Z = X, Y and we define $M := A_X \cup A_Y \cup N$, which is still a nullset.

For any given $\omega \in M^c$, it remains to check that $X_t(\omega) = Y_t(\omega), \forall t \ge 0$. By definition of M, it holds that $X_t(\omega) = Y_t(\omega), \forall t \in \mathbb{Q}_+$. Now, take any $t \ge 0$ and let (t_n) be a sequence in \mathbb{Q}_+ with $t_n \downarrow t$. The right-continuity of the paths $X_{\cdot}(\omega)$ and $Y_{\cdot}(\omega)$ then implies that $X_t(\omega) = \lim_{n \to \infty} X_{t_n}(\omega) = \lim_{n \to \infty} Y_{t_n}(\omega) = Y_t(\omega)$.

(b) Take $\Omega = [0, \infty)$, $\mathcal{F} = \mathcal{B}([0, \infty))$ the Borel σ -algebra, and P a probability measure with $P[\{\omega\}] = 0, \forall \omega \in \Omega$ (for instance, the exponential distribution).

Set
$$X \equiv 0$$
 and $Y_t(\omega) = \begin{cases} 1, & t = \omega, \\ 0, & \text{else.} \end{cases}$

Then $P[X_t = Y_t] = 1$, $\forall t \ge 0$, since single points have no mass, but $\{X_t = Y_t, \forall t \ge 0\} = \emptyset$. Note that all sample paths of X are continuous, while all sample paths of Y are discontinuous at $t = \omega$. **Exercise 1.3** Let $X = (X_t)_{t \ge 0}$ be a stochastic process defined on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t), P)$. The aim of this exercise is to show the following chain of implications:

X optional \Rightarrow X progressively measurable \Rightarrow X product-measurable and adapted.

- (a) Show that every progressively measurable process is product-measurable and adapted.
- (b) Assume that X is adapted and every path of X is right-continuous. Show that X is progressively measurable. *Remark:* The same conclusion holds true if every path of X is left-continuous. *Hint:* For fixed t ≥ 0, consider an approximating sequence of processes Yⁿ on Ω × [0, t] given by Y₀ⁿ = X₀ and Y_uⁿ = Σ^{2ⁿ⁻¹}_{k=0} 1_{(tk2⁻ⁿ,t(k+1)2⁻ⁿ]}(u)X_{t(k+1)2⁻ⁿ} for u ∈ (0, t].
- (c) Recall that the optional σ -field \mathcal{O} is generated by the class $\overline{\mathcal{M}}$ of all adapted processes whose paths are all RCLL. Show that \mathcal{O} is also generated by the subclass \mathcal{M} of all *bounded* processes in $\overline{\mathcal{M}}$.
- (d) Use the monotone class theorem to show that every optional process is progressively measurable.

Solution 1.3

- (a) Let X be progressively measurable. Then $X|_{\Omega\times[0,t]}$ is $\mathcal{F}_t \otimes \mathcal{B}[0,t]$ -measurable for every $t \geq 0$. For any $t \geq 0$, we see that $X_t = X \circ i_t$, where $i_t : (\Omega, \mathcal{F}_t) \to (\Omega \times [0,t], \mathcal{F}_t \otimes \mathcal{B}[0,t]), \omega \mapsto (\omega,t)$ is measurable. Therefore, X_t is \mathcal{F}_t -measurable for every $t \geq 0$. Moreover, the processes X^n defined by $X_u^n := X|_{\Omega\times[0,n]} \mathbb{1}_{[0,n]}(u), u \geq 0$, are $\mathcal{F} \otimes \mathcal{B}[0,\infty)$ -measurable. Since $X^n \to X$ pointwise (in (t, ω)) as $n \to \infty$, also X is $\mathcal{F} \otimes \mathcal{B}[0,\infty)$ -measurable.
- (b) Fix a $t \geq 0$ and consider the sequence of processes Y^n on $\Omega \times [0,t]$ given by $Y_0^n = X_0$ and $Y_u^n = \sum_{k=1}^{2^n-1} \mathbb{1}_{(tk2^{-n},t(k+1)2^{-n}]}(u)X_{t(k+1)2^{-n}}$ for $u \in (0,t]$. By construction, each Y^n is $\mathcal{F}_t \otimes \mathcal{B}[0,t]$ -measurable. Since $Y^n \to X|_{\Omega \times [0,t]}$ pointwise as $n \to \infty$ due to right-continuity, the result follows.
- (c) Let X be adapted, with all paths being RCLL. Consider the processes $X^n := (X \wedge n) \vee (-n)$. Clearly, each X^n is bounded and RCLL. Thus, each X^n is $\sigma(\mathcal{M})$ -measurable. As the pointwise limit of the X^n , also X is $\sigma(\mathcal{M})$ -measurable. It follows that $\mathcal{O} \subseteq \sigma(\mathcal{M})$. The converse inclusion is trivial.
- (d) If a process X is optional, then $X^n := X \mathbb{1}_{\{|X| \leq n\}}$ is also optional and of course $X^n \to X$; so if each X^n is progressively measurable, then so is X, and hence we can assume without loss of generality that X is bounded. Let \mathcal{H} denote the real vector space of bounded, progressively measurable processes. By part b), \mathcal{H} contains \mathcal{M} . Clearly, \mathcal{H} contains the constant process 1 and is closed under monotone bounded convergence. Also, \mathcal{M} is closed under multiplication. The monotone class theorem yields that every bounded $\sigma(\mathcal{M})$ -measurable process is contained in \mathcal{H} . Due to c), we conclude that every bounded optional process is progressively measurable.

Exercise 1.4

(a) Let (Ω, \mathcal{F}, P) be a probability space and B a Brownian motion on [0, 1]. Let $k \in \mathbb{N}$ and

$$0 = s_1 < t_1 < s_2 < t_2 < \ldots < t_k < s_{k+1} = 1.$$

Find the law of $(B_{t_1}, B_{t_2}, \ldots, B_{t_k})$ conditional on $(B_{s_1}, \ldots, B_{s_{k+1}})$.

(b) Let $\mathcal{D} := \{a2^{-m} : m \in \mathbb{N}, a \in \{0, 1, \dots, 2^m\}\}$. Let Z_1, Z_2, \dots be an infinite sequence of i.i.d. standard normal random variables. Construct in terms of the Z_j a stochastic process $(W_t)_{t \in \mathcal{D}}$ such that the law of W is equal to the law of $(B_t)_{t \in \mathcal{D}}$.

Solution 1.4

(a) Note that $(B_{s_1}, B_{t_1}, \ldots, B_{t_k}, B_{s_{k+1}})$ is a Gaussian vector. We claim that for each k,

$$\Delta_k := B_{t_k} - \frac{t_k - s_k}{s_{k+1} - s_k} B_{s_{k+1}} - \frac{s_{k+1} - t_k}{s_{k+1} - s_k} B_{s_k}$$

is normally distributed with $\Delta_k \sim \mathcal{N}\left(0, \frac{(s_{k+1}-t_k)(t_k-s_k)}{s_{k+1}-s_k}\right)$, and moreover Δ_k is independent of $(B_{s_1}, \ldots, B_{s_{k+1}})$.

The first claim follows from the Gaussian distribution and rewriting

$$\Delta_k := -\frac{t_k - s_k}{s_{k+1} - s_k} (B_{s_{k+1}} - B_{t_k}) + \frac{s_{k+1} - t_k}{s_{k+1} - s_k} (B_{t_k} - B_{s_k})$$

where the two increments are independent, from which we get the variance. For the second claim, due to the Gaussian distribution, it is enough to show that Δ_k is uncorrelated with $B_{s_{j+1}} - B_{s_j}$ for each j. This is clear for any $j \neq k$, while at k we have that

$$E[\Delta_k(B_{s_{k+1}} - B_{s_k})] = -\frac{t_k - s_k}{s_{k+1} - s_k}(s_{k+1} - t_k) + \frac{s_{k+1} - t_k}{s_{k+1} - s_k}(t_k - s_k) = 0.$$

Therefore, we conclude that the law of $(B_{t_1}, B_{t_2}, \ldots, B_{t_k})$ conditional on $(B_{s_1}, \ldots, B_{s_{k+1}})$ is the Gaussian law $\mathcal{N}(\mu, \Sigma)$, where

$$\mu_k = \frac{t_k - s_k}{s_{k+1} - s_k} B_{s_{k+1}} + \frac{s_{k+1} - t_k}{s_{k+1} - s_k} B_{s_k}$$

and the matrix Σ is diagonal with $\Sigma_{kk} = \frac{(s_{k+1}-t_k)(t_k-s_k)}{s_{k+1}-s_k}$.

(b) Let $\mathcal{D}^n := \{a2^{-m} : m \in \{1, \ldots, n\}, a \in \{0, 1, \ldots, 2^m\}\}$. We construct W recursively on each \mathcal{D}^n , so that finally we obtain W on \mathcal{D} . The first step is to define $W_1 = Z_1$, so that clearly $W \stackrel{d}{=} B$ on $\{0, 1\}$. If we have defined W on \mathcal{D}^n in terms of $Z_1, Z_2, \ldots, Z_{2^{n-1}}$, we extend it to \mathcal{D}^{n+1} by

$$W_{(2j-1)2^{-(m+1)}} = \frac{1}{2}W_{(j-1)2^{-m}} + \frac{1}{2}W_{j2^{-m}} + 2^{-\frac{n}{2}-1}Z_{2^{n}+j}$$

for $j = 1, ..., 2^n$. By induction, assume that $W \stackrel{d}{=} B$ on \mathcal{D}^n . We also obtain from this construction that the law of $W|_{\mathcal{D}_{n+1}}$ conditional on $W|_{\mathcal{D}_n}$ is equal to the law of $B|_{\mathcal{D}_{n+1}}$ conditional on $B|_{\mathcal{D}_n}$, by (a). Therefore, the inductive step is valid, and we finally obtain that the law of W is equal to the law of $B|_{\mathcal{D}}$ by the Ionescu-Tulcea theorem.