Brownian Motion and Stochastic Calculus

Exercise sheet 10

Exercise 10.1 Let $(\Omega, \mathcal{F}, \mathbb{F}, P)$ be a filtered probability space satisfying the usual conditions.
(a) Let W, \tilde{W} be two Brownian motions with respect to P and $\left(\mathcal{F}_{t}\right)_{t \geq 0}$. Show that we have $d\langle W, \tilde{W}\rangle_{t}=\rho_{t} d t$ for some predictable process ρ taking values in $[-1,1]$.
Hint: Use the Kunita-Watanabe decomposition.
(b) The filtration \mathbb{F} is called P-continuous if all local (P, \mathbb{F})-martingales are continuous. Show that \mathbb{F} is P-continuous if and only if \mathbb{F} is Q-continuous for all $Q \approx P$.
(c) Suppose that \mathbb{F} is P-continuous and let $S=\left(S_{t}\right)_{t \geq 0}$ be a local (Q, \mathbb{F})-martingale for some $Q \approx P$. Show that S is a continuous P-semimartingale of the form

$$
\begin{equation*}
S=S_{0}+M+\int \alpha d\langle M\rangle \tag{1}
\end{equation*}
$$

for some $M \in \mathcal{M}_{0, \text { loc }}^{c}(P)$ and some $\alpha \in L_{\mathrm{loc}}^{2}(M)$.
Hint: Use Girsanov's theorem to find a semimartingale decomposition for S under P. Then use the Kunita-Watanabe decomposition under P to describe its finite variation part.
Remark: If S has the form (1), one says that it satisfies the structure condition $S C$. This is a useful concept in mathematical finance.

Solution 10.1

(a) Using the Kunita-Watanabe decomposition, we can write $W=\rho \bullet \tilde{W}+N$ for some predictable integrand $\rho \in L_{\mathrm{loc}}^{2}(\tilde{W})$ and some local martingale $N \in \mathcal{M}_{0, \text { loc }}^{c}$ strongly orthogonal to \tilde{W}. Then, by orthogonality and associativity of the stochastic integral,

$$
\langle W, \tilde{W}\rangle_{t}=\langle\rho \bullet \tilde{W}+N, \tilde{W}\rangle_{t}=\int_{0}^{t} \rho_{s} d\langle\tilde{W}\rangle_{s}+\langle\tilde{W}, N\rangle_{t}=\int_{0}^{t} \rho_{s} d s, \quad t \geq 0
$$

Moreover, because $\langle\tilde{W}, N\rangle \equiv 0$,

$$
\int_{0}^{t} 1 d s=t=\langle W\rangle_{t}=\langle\rho \cdot \tilde{W}+N\rangle_{t}=\int_{0}^{t} \rho_{s}^{2} d s+\langle N\rangle_{t}, \quad t \geq 0
$$

Hence $\int_{0}^{\circ}\left(1-\rho_{s}^{2}\right) d s=\langle N\rangle$ is an increasing process. It follows that $\rho^{2} \leq 1 d t \otimes P$-a.e.
(b) We show the implication " \Rightarrow ", since " \Leftarrow " is trivial. Fix $Q \approx P$ and let $\left(Z_{t}^{Q}\right)_{t \geq 0}$ be the density process of Q with respect to P. Since Z^{Q} is a (P, \mathbb{F})-martingale, Z^{Q} is continuous. Note that $Z_{t}^{Q}>0$ for all $t \geq 0$ a.s., since $Q \approx P$. Therefore, $1 / Z^{Q}$ is also continuous.
Let X be a local (Q, \mathbb{F})-martingale Then $Z^{Q} X$ is a local (P, \mathbb{F})-martingale and thus continuous P-a.s. Therefore, $X=\frac{1}{Z^{Q}}\left(Z^{Q} X\right)$ is continuous P-a.s. As $Q \approx P$, we have that X is also continuous Q-a.s. Since X is an arbitrary local Q-martingale, we find that \mathbb{F} is Q-continuous for any $Q \approx P$.
(c) Let Z^{P} be the density process of P with respect to Q. Note that $Z_{0}^{P}=1$, and moreover Z^{P} is strictly positive and continuous by (b). Therefore, we can write $Z^{P}=\mathcal{E}(L)$ for $L \in \mathcal{M}_{0, \text { loc }}^{c}(Q)$ defined by $L=\frac{1}{Z^{P}} \cdot Z_{P}$.
By Girsanov's theorem, since S is a local Q-martingale, we obtain the local P-martingale

$$
M:=S-S_{0}-\left\langle L, S-S_{0}\right\rangle \in \mathcal{M}_{0, \mathrm{loc}}^{c}(P)
$$

Rewriting, we have the P-semimartingale decomposition

$$
S=S_{0}+M+\left\langle L, S-S_{0}\right\rangle
$$

and it only remains to show that $\left\langle L, S-S_{0}\right\rangle=\int \alpha d\langle M\rangle$ for some $\alpha \in L_{\text {loc }}^{2}(M)$.
Since $L \in \mathcal{M}_{0, \text { loc }}^{c}(Q)$, by Girsanov's theorem we have that $\tilde{L}:=L-\langle L\rangle \in \mathcal{M}_{0, \text { loc }}^{c}(P)$. Applying the Kunita-Watanabe decomposition to \tilde{L} with respect to M, we obtain that $\tilde{L}=\int \alpha d M+N$ for some $\alpha \in L_{\text {loc }}^{2}(M)$ and some $N \in \mathcal{M}_{0, \text { loc }}^{c}(P)$ such that $N \perp M$. Since $S-S_{0}-M$ and $L-\tilde{L}$ are continuous finite variation processes, their quadratic variation is 0 . Therefore,

$$
\left\langle L, S-S_{0}\right\rangle=\langle\tilde{L}, M\rangle=\left\langle\int \alpha d M+N, M\right\rangle=\int \alpha d\langle M\rangle
$$

as we wanted.

Exercise 10.2 Let $B=\left(B^{1}, B^{2}, B^{3}\right)$ be a Brownian motion in \mathbb{R}^{3} and $Z=\left(Z^{1}, Z^{2}, Z^{3}\right)$ a standard normal random variable. Define the process $M=\left(M_{t}\right)_{t \geq 0}$ by

$$
M_{t}=\frac{1}{\left|Z+B_{t}\right|}
$$

Note that $P\left[B_{t} \neq x, \forall t \geq 0\right]=1$ for any $x \in \mathbb{R}^{3} \backslash\{0\}$; see Exercise 9.4.
(a) Show that $P\left[B_{t} \neq-Z, \forall t \geq 0\right]=1$, so that M is a.s. well defined.
(b) Show that $\left|Z+B_{t}\right|^{2} \sim \operatorname{Gamma}\left(\frac{3}{2}, \frac{1}{2(t+1)}\right)$ for each $t>0$, i.e., its density is given by

$$
f_{t}(y)=\frac{(2(t+1))^{-3 / 2} y^{1 / 2}}{\Gamma(3 / 2)} \exp \left(-\frac{y}{2(t+1)}\right), \quad y \geq 0
$$

(c) Show that M is a continuous local martingale. Moreover, show that M is bounded in L^{2}, i.e., $\sup _{t \geq 0} E\left[\left|M_{t}\right|^{2}\right]<\infty$.
(d) Show that M is a strict local martingale, i.e., M is not a martingale.

Hint: Show that $E\left[M_{t}\right] \rightarrow 0$ as $t \rightarrow \infty$.
Remark: This is the standard example of a local martingale which is not a (true) martingale. It also shows that even boundedness in L^{2} (which implies uniform integrability) does not guarantee the martingale property.

Solution 10.2

(a) By independence, we have that

$$
P\left[B_{t} \neq-Z, \forall t \geq 0\right]=E\left[\left.P\left[B_{t} \neq-x, \forall t \geq 0\right]\right|_{x=Z}\right] \geq E\left[\mathbb{1}_{\{Z \neq 0\}}\right]=1
$$

since Z has a Gaussian distribution, so that $P[Z=0]=0$.
(b) We first find the distribution \tilde{f}_{t} of $\left|Z^{1}+B_{t}^{1}\right|^{2}$. Note that $Z^{1}+B_{t}^{1} \sim \mathcal{N}(0, t+1)$. Thus, for $y \geq 0$, we have that

$$
\begin{aligned}
P\left[\left|Z^{1}+B_{t}^{1}\right|^{2} \leq y\right] & =\int_{-\sqrt{y}}^{\sqrt{y}} \frac{1}{\sqrt{2 \pi(t+1)}} e^{-\frac{z^{2}}{2(t+1)}} d z \\
& =2 \int_{0}^{\sqrt{y}} \frac{1}{\sqrt{2 \pi(t+1)}} e^{-\frac{z^{2}}{2(t+1)}} d z
\end{aligned}
$$

Changing variables to $u=z^{2}$, we find that

$$
P\left[\left|B_{t}^{1}\right|^{2} \leq y\right]=2 \int_{0}^{y} \frac{1}{\sqrt{2 \pi(t+1)}} e^{-\frac{u}{2(t+1)}} \frac{1}{2 \sqrt{z}} d z
$$

Differentiating in y, we obtain that

$$
\tilde{f}_{t}(y)=\frac{z^{-1 / 2}}{(2(t+1))^{1 / 2} \sqrt{\pi}} e^{-\frac{y}{2(t+1)}}=\frac{z^{-1 / 2}}{(2(t+1))^{1 / 2} \Gamma(1 / 2)} e^{-\frac{y}{2(t+1)}}
$$

Therefore, $\left|Z^{1}+B_{t}^{1}\right|^{2} \sim \operatorname{Gamma}\left(\frac{1}{2}, \frac{1}{2(t+1)}\right)$. By properties of the Gamma distribution, if $Y_{1}, \ldots, Y_{n} \sim \operatorname{Gamma}(\alpha, \beta)$ are i.i.d. random variables, then $Y_{1}+\cdots+Y_{n} \sim \operatorname{Gamma}(n \alpha, \beta)$. Since $Z^{1}+B^{1}, Z^{2}+B^{2}, Z^{3}+B^{3}$ are i.i.d., we have that

$$
\left|Z+B_{t}\right|^{2}=\left|Z^{1}+B_{t}^{1}\right|^{2}+\left|Z^{2}+B_{t}^{2}\right|^{2}+\left|Z^{3}+B_{t}^{3}\right|^{2} \sim \operatorname{Gamma}\left(\frac{3}{2}, \frac{1}{2(t+1)}\right)
$$

(c) Let $f: \mathbb{R}^{3} \backslash\{0\} \rightarrow \mathbb{R}_{+}$be defined by $f(y)=\frac{1}{|y|}$. In Exercise $\mathbf{9 . 4}$, we already showed that

$$
M_{t}=f\left(x+\left|B_{t}\right|\right)=M_{0}+\int_{0}^{t} \nabla f\left(B_{s}\right) d B_{s}
$$

since f is C^{2} and harmonic in its domain. In particular, since $\nabla f\left(B_{s}\right)$ is continuous, it is locally bounded so that M is a local martingale.
To show that $\left(M_{t}\right)$ is bounded in L^{2}, note that by (a),

$$
\begin{aligned}
E\left[M_{t}^{2}\right] & =E\left[\frac{1}{\left|Z+B_{t}\right|^{2}}\right] \\
& =\int_{0}^{\infty} \frac{1}{y} \frac{(2(t+1))^{-3 / 2} y^{1 / 2}}{\Gamma(3 / 2)} \exp \left(-\frac{y}{2(t+1)}\right) d y \\
& =\frac{\Gamma(1 / 2)}{\Gamma(3 / 2)} \frac{1}{2(t+1)} \int_{0}^{\infty} \frac{(2(t+1))^{-1 / 2} y^{-1 / 2}}{\Gamma(1 / 2)} \exp \left(-\frac{y}{2(t+1)}\right) d y \\
& =\frac{2 \Gamma(1 / 2)}{\Gamma(1 / 2)} \frac{1}{2(t+1)} \cdot 1 \\
& =\frac{1}{t+1}, \quad t>0
\end{aligned}
$$

as $\Gamma(x+1)=x \Gamma(x)$ for $x>0$ and since we integrate the density of a Gamma $\left(\frac{1}{2}, \frac{1}{2(t+1)}\right)$ distribution. Therefore, $\sup _{t \geq 0} E\left[M_{t}^{2}\right]=1<\infty$.
(d) For $t>0$,

$$
\begin{aligned}
E\left[M_{t}\right] & =\int_{0}^{\infty} \frac{1}{\sqrt{y}} \frac{(2(t+1))^{-3 / 2} y^{1 / 2}}{\Gamma(3 / 2)} \exp \left(-\frac{y}{2(t+1)}\right) d y \\
& =\frac{1}{\Gamma(3 / 2) \sqrt{2(t+1)}} \int_{0}^{\infty}(2(t+1))^{-1} \exp \left(-\frac{y}{2(t+1)}\right) d y \\
& =\frac{\sqrt{2}}{\sqrt{\pi t}} \rightarrow 0
\end{aligned}
$$

as $t \rightarrow \infty$. Since $E\left[M_{0}\right]=\frac{1}{|x|}>0, M$ cannot be a martingale.

Exercise 10.3 Consider a probability space (Ω, \mathcal{F}, P) supporting a Brownian motion $W=\left(W_{t}\right)_{t \geq 0}$. Denote by $\mathbb{F}=\left(\mathcal{F}_{t}\right)_{t \geq 0}$ the P-augmentation of the raw filtration generated by W. Moreover, fix $T>0, a<b$, and let $F:=\mathbb{1}_{\left\{a \leq W_{T} \leq b\right\}}$. The goal of this exercise is to find explicitly the integrand $H \in L_{\mathrm{loc}}^{2}(W)$ in the Itô representation

$$
F=E[F]+\int_{0}^{\infty} H_{s} d W_{s}
$$

(a) Show that the martingale $M=\left(M_{t}\right)_{t \geq 0}$ given by $M_{t}:=E\left[F \mid \mathcal{F}_{t}\right]$ has the representation

$$
M_{t}=g\left(W_{t}, t\right), \quad 0 \leq t<T
$$

for a C^{2} function $g: \mathbb{R} \times[0, T) \rightarrow \mathbb{R}$. Compute g in terms of the distribution function Φ of the standard normal distribution.
(b) Let $\left(t_{n}\right)$ be a sequence of times such that $t_{n} \nearrow T$. Use Itô's formula to find predictable processes H^{n} such that

$$
M^{t_{n}}-M_{0}=H^{n} \bullet W, \quad \text { for each } n \in \mathbb{N}
$$

Hint: Since M is a martingale, you do not need to calculate all the terms in Itô's formula.
(c) Find H such that (\star) holds.

Solution 10.3

(a) We use the fact that $W_{T}-W_{t} \sim \mathcal{N}(0, T-t)$ is independent of \mathcal{F}_{t}. Therefore,

$$
\begin{aligned}
M_{t} & =P\left[a \leq W_{T} \leq b \mid \mathcal{F}_{t}\right] \\
& =P\left[\left.\frac{a-W_{t}}{\sqrt{T-t}} \leq \frac{W_{T}-W_{t}}{\sqrt{T-t}} \leq \frac{b-W_{t}}{\sqrt{T-t}} \right\rvert\, \mathcal{F}_{t}\right] \\
& =\Phi\left(\frac{b-W_{t}}{\sqrt{T-t}}\right)-\Phi\left(\frac{a-W_{t}}{\sqrt{T-t}}\right) \\
& =g\left(W_{t}, t\right)
\end{aligned}
$$

where

$$
g(x, t)=\Phi\left(\frac{b-x}{\sqrt{T-t}}\right)-\Phi\left(\frac{a-x}{\sqrt{T-t}}\right) .
$$

(b) By Itô's formula, and since M is a martingale, we have that

$$
d M_{t}=\partial_{x} g\left(W_{t}, t\right) d W_{t}=\frac{1}{\sqrt{2 \pi(T-t)}}\left(\exp \left(-\frac{\left(a-W_{t}\right)^{2}}{2(T-t)}\right)-\exp \left(-\frac{\left(b-W_{t}\right)^{2}}{2(T-t)}\right)\right) d W_{t}
$$

This holds on $[0, T)$, where g is C^{2}. In particular, we have that $M^{t_{n}}-M_{0}=H^{n} \bullet W$, where

$$
H_{t}^{n}=\mathbb{1}_{\left\{t \in\left[0, t_{n}\right]\right\}} \frac{1}{\sqrt{2 \pi(T-t)}}\left(\exp \left(-\frac{\left(a-W_{t}\right)^{2}}{2(T-t)}\right)-\exp \left(-\frac{\left(b-W_{t}\right)^{2}}{2(T-t)}\right)\right)
$$

(c) We claim that (\star) holds, where H is defined by

$$
H_{t}=\mathbb{1}_{t \in[0, T)} \frac{1}{\sqrt{2 \pi(T-t)}}\left(\exp \left(-\frac{\left(a-W_{t}\right)^{2}}{2(T-t)}\right)-\exp \left(-\frac{\left(b-W_{t}\right)^{2}}{2(T-t)}\right)\right)
$$

Since $P\left[W_{T} \in \mathbb{R} \backslash\{a, b\}\right]=1$ and W is continuous a.s., it is easy to see that $\lim _{t \nmid T} H_{t}=0$ a.s. Thus, H is continuous, hence locally bounded, so that $H \bullet W$ is well defined and a continuous process. Likewise, we see that $M_{t}=g\left(W_{t}, t\right) \rightarrow \mathbb{1}_{\left\{a \leq W_{T} \leq b\right\}}$ a.s. as $t \nearrow T$. Since it holds that

$$
M_{t_{n}}=\left(H^{n} \cdot W\right)_{t_{n}}=(H \cdot W)_{t_{n}}, \quad \text { for each } n \in \mathbb{N}
$$

we can take the limit $n \nearrow \infty$ to obtain that

$$
M_{T}=H \cdot W_{T}
$$

Noting that $M_{0}=E[F], M_{T}=F$ and

$$
H \cdot W_{T}=\int_{0}^{T} H_{s} d W_{s}=\int_{0}^{\infty} H_{s} d W_{s}
$$

as $H_{t}=0$ for $t \geq T$, we conclude that (\star) holds.
Remark: We can show that $W_{T}-W_{t}$ and \mathcal{F}_{t} are independent as follows. Let Z be a $\mathcal{F}_{t^{-}}$ measurable random variable. Since \mathbb{F} is the augmentation of the raw filtration \mathbb{F}^{0} generated by W, there exists some \mathcal{F}_{t}^{0}-measurable random variable \tilde{Z} such that $Z=\tilde{Z}$ a.s. Therefore, for any bounded measurable function $f: \mathbb{R} \rightarrow \mathbb{R}$, we have that

$$
E\left[Z f\left(W_{T}-W_{t}\right)\right]=E\left[\tilde{Z} f\left(W_{T}-W_{t}\right)\right]=E[\tilde{Z}] E\left[f\left(W_{T}-W_{t}\right)\right]=E[Z] E\left[f\left(W_{T}-W_{t}\right)\right]
$$

which shows the claim.

