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Exercise 10.1 Let (Q, F,F, P) be a filtered probability space satisfying the usual conditions.

(a)

Let W, W be two Brownian motions with respect to P and (Ft)i>0. Show that we have
d{W, W), = p; dt for some predictable process p taking values in [—1, 1].

Hint: Use the Kunita—Watanabe decomposition.

The filtration F is called P-continuous if all local (P,F)-martingales are continuous. Show
that F is P-continuous if and only if F is @)-continuous for all Q ~ P.

Suppose that F is P-continuous and let S = (S;):>0 be a local (Q,F)-martingale for some
@ ~ P. Show that S is a continuous P-semimartingale of the form

S:SO+M+/ad<M> (1)

for some M € Mg ,,.(P) and some a € Lj, (M).

loc

Hint: Use Girsanov’s theorem to find a semimartingale decomposition for S under P. Then
use the Kunita—Watanabe decomposition under P to describe its finite variation part.

Remark: If S has the form (1), one says that it satisfies the structure condition SC. This is a
useful concept in mathematical finance.

Solution 10.1

(a)

Using the Kunita-Watanabe decomposition, we can write W = p*W + N for some predictable
integrand p € L (W) and some local martingale N € MG 1o strongly orthogonal to W.
Then, by orthogonality and associativity of the stochastic integral,

t t
(W,W)e = (peW + N, W), = / psd(W)s + (W,N), = / psds, t>0.
0 0

Moreover, because (W, N) = 0,

t t
/1ds:t:(W>t:<p-W+N>t:/ p2ds+ (N);, t>0.
0 0

Hence [,(1 — p2)ds = (N) is an increasing process. It follows that p* < 1 dt ® P-a.e.

We show the implication “=-", since “<=” is trivial. Fix Q ~ P and let (ZtQ)tZO be the density
process of @ with respect to P. Since Z% is a (P, F)-martingale, Z? is continuous. Note that
ZtQ > 0 for all t > 0 a.s., since Q ~ P. Therefore, 1/Z% is also continuous.

Let X be a local (Q,F)-martingale Then Z2X is a local (P, F)-martingale and thus continuous
P-a.s. Therefore, X = 5(Z9X) is continuous P-a.s. As @ ~ P, we have that X is also
continuous Q-a.s. Since X is an arbitrary local Q-martingale, we find that F is Q-continuous
for any @ ~ P.
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(c) Let ZT be the density process of P with respect to Q. Note that Z& = 1, and moreover Z% is
strictly positive and continuous by (b). Therefore, we can write Z¥ = (L) for L € M§,,.(Q)

defined by L = le *Zp.

By Girsanov’s theorem, since S is a local @Q-martingale, we obtain the local P-martingale

M =S — Sy —(L,S — So) € Mg 0.(P).
Rewriting, we have the P-semimartingale decomposition
S=5S+M+ <L,S—So>,

and it only remains to show that (L, S — Sp) = [ad(M) for some o € LZ (M).

Since L € MG ,,.(Q), by Girsanov’s theorem we have that L:=L-(L)c MG 1oc(P). Applying
the Kunita—Watanabe decomposition to L with respect to M, we obtain that L = JadM+N
for some o € L, (M) and some N € MG .(P) such that N L M. Since S — Sy — M and

loc

L — L are continuous finite variation processes, their quadratic variation is 0. Therefore,

(L,S — So) = (L, M) = </adM+N,M> :/ad<M>,

as we wanted.
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Exercise 10.2 Let B = (B!, B2, B3) be a Brownian motion in R3 and Z = (Z!, Z2%, Z3) a standard
normal random variable. Define the process M = (M;);>0 by

1
M =—— .
"7 Z+ By

Note that P[B; # x,Vt > 0] = 1 for any x € R?\ {0}; see Exercise 9.4.

(a)
(b)

()

(d)

Show that P[B; # —Z,Vt > 0] =1, so that M is a.s. well defined.

Show that |Z + By|? ~ Gammal(3, 2(t}+1)) for each t > 0, i.e., its density is given by

_ 20+ 1) 2y y
fily) = T(3/2) exp <_2(t+1)> . y>0.

Show that M is a continuous local martingale. Moreover, show that M is bounded in L?, i.e.,
SUp; > E[|M;)?] < .

Show that M is a strict local martingale, i.e., M is not a martingale.

Hint: Show that E[M;] — 0 as t — oo.

Remark: This is the standard example of a local martingale which is not a (true) martingale.
It also shows that even boundedness in L? (which implies uniform integrability) does not
guarantee the martingale property.

Solution 10.2

(a)

By independence, we have that
P[B, # —Z,%t > 0] = E[P[B; # —x,t > 0]|4=z| > E[l{z.0y] = 1,
since Z has a Gaussian distribution, so that P[Z = 0] = 0.
We first find the distribution f; of |Z' + B}|?. Note that Z' 4+ B} ~ N(0,t + 1). Thus, for
y > 0, we have that

L2
e 20t+D) dz

vy 1
Pz + B <yl = [

a /0 V2r(t+1)

Changing variables to u = 22, we find that

22
e 2+ dz.

o u
e 204D

Y 1 1
Bl < :2/ B —
B <=2 | s 3

Differentiating in y, we obtain that

P dz.

_ Z—1/2 Y Z—1/2 Y

ft(y) = m@im = (2(t—|— 1))1/2F(1/2)e 2(t+1) |

Therefore, |Z' + B> ~ Gamma(3, ﬁ) By properties of the Gamma distribution, if
Yi,...,Y, ~ Gamma(q, 8) are i.i.d. random variables, then Y; + - -- +Y,, ~ Gamma(na, f3).
Since Z' 4+ B!, Z? + B2, Z3 + B? are i.i.d., we have that

. . 3 1
Z+Bif* =12" + B[ +12° + B[ +12° + B}|" ~ Gamma (2’ 2(t+1)> |
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(c) Let f:R3\ {0} — R, be defined by f(y) = | In Exercise 9.4, we already showed that

M= (o +1B) = Mo+ [ V(BB
0

since f is C? and harmonic in its domain. In particular, since V f(Bs) is continuous, it is
locally bounded so that M is a local martingale.

To show that (M;) is bounded in L?, note that by (a),

#1417

B 00 1 (2(t—|— 1))73/2y1/2 y
‘/o v T P (‘2<t+1>> @

o ra/z) 1 > (2t + 1))y 12 y
T(3/2)2(t + 1) /0 [(1/2) 5P (_Q(t n 1)) dy

(/2 1

T T(1/2) 2(t+1)

t>0,

EESE

as I'(z + 1) = 2T'(z) for > 0 and since we integrate the density of a Gamma(3, m)
distribution. Therefore, sup,, E[M?] = 1 < co.

(d) Fort >0,
1 (2t + 1)y ( y )
E[M,| = — p dy
M)W TeR 20+ 1)
1 o0

= (t+1)) Lex
F(3/2)«/2(t+1)/0 (& p( t+1 >

= ﬁ —0
vt

as t — oo. Since E[M] = |71\ > 0, M cannot be a martingale.
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Exercise 10.3 Consider a probability space (€2, F, P) supporting a Brownian motion W = (W});>o.
Denote by F = (F;):>0 the P-augmentation of the raw filtration generated by W. Moreover, fix
T >0,a<b,and let F':= 1y,<w,<p}- The goal of this exercise is to find explicitly the integrand
H € L (W) in the It6 representation

F:Mﬂ+Ame%. )

(a) Show that the martingale M = (M;);>¢ given by M; := E[F|F;] has the representation
Mt:g(Wt,t), O§1‘2<T‘7

for a C? function g : R x [0,T) — R. Compute g in terms of the distribution function ® of
the standard normal distribution.

(b) Let (t,) be a sequence of times such that ¢, , T. Use It6’s formula to find predictable
processes H™ such that

M' — My = H"W, for each n € N.
Hint: Since M is a martingale, you do not need to calculate all the terms in It6’s formula.

(¢) Find H such that (x) holds.

Solution 10.3

(a) We use the fact that Wpr — Wy ~ N(0,T —t) is independent of F;. Therefore,

7

Mtzp[anggb\J—'t]
a—Wt WT—Wt b—Wt
=P < <
L/T—t T VT -t T NJT -t

:¢<b—Wt>_q><a—Wt>
T—t T—t

= g(Wt7t)7

oo t) = @ (bT—_t) o (T—_t)

(b) By It6’s formula, and since M is a martingale, we have that

08,008, = i (e (I oy (LB

where

2T — 1) 2T —t)

This holds on [0, 7)), where g is C2. In particular, we have that M — My = H"«W, where

H{' = ﬂ{te[o,tn}}%(th) (EXp <_m> S <_M)> '

(c) We claim that (%) holds, where H is defined by
1 (a— Wt)z) ( (b— Wt)2>)
Ho=1 = (exp (BT e (U )
RN = ) < P ( 2T — 1) R T
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Since P[Wr € R\ {a,b}] = 1 and W is continuous a.s., it is easy to see that lim; ~p H; = 0 a.s.
Thus, H is continuous, hence locally bounded, so that H*W is well defined and a continuous
process. Likewise, we see that My = g(Wy,t) — Li,<w,<p) a.s. ast 7 T. Since it holds that

M, = (H"*W);, = (H*W);,, foreachneN,
we can take the limit n oo to obtain that
MT = H'WT.

Noting that My = E[F], My = F and
T oo
HWr z/ HydW, z/ HydW,
0 0

as H; =0 for t > T, we conclude that (x) holds.

Remark: We can show that W — W, and F; are independent as follows. Let Z be a F;-
measurable random variable. Since F is the augmentation of the raw filtration F° generated
by W, there exists some F_-measurable random variable Z such that Z = Z a.s. Therefore,
for any bounded measurable function f : R — R, we have that

E[Zf(Wr — W3)] = E[Zf(Wr — Wy)] = E[Z|E[f(Wr — Wy)] = E[Z]E[f(Wr — W),

which shows the claim.
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