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Exercise 11.1 Let § € R,0 > 0 and W = (W;);>0 be a Brownian motion defined on a filtered
probability space (Q, F,F, P) satisfying the usual conditions.

(a) Find a strong solution to the Langevin equation
dX; = —-0X;dt+ocdW;, Xg=zx€cR.

Hint: Consider U, = et X,.

Remark: For 6 > 0, this SDE describes exponential convergence to zero “with noise”.
(b) Show that there exists a Brownian motion B such that Y := X? satisfies the SDE

dY; = (—20Y; + 02) dt + 20\/Y; dB;. (%)
In other words, show that (2, F,F, P, B,Y) is a weak solution of the SDE (x).
Solution 11.1
(a) 1t&’s formula applied to the process U = (Uy);>0 given by U; = e X, yields
dU; = 0" X, dt + ' (—0X, dt + o dW,) = e’ dW,.

Thus, if X is a solution to the Langevin equation, then U; = Uy + fot oef dW,. Conversely, if

t t
X, =e U, =% (Uo + 0/ ¥ dWs) =0 (ac + O’/ s dWs) ,
0 0

then, by It0’s formula,
dX; = —0X,dt + oe” e dW, = —0X, dt + o dW,
so that X solves the Langevin equation with Xy = x.
(b) By Itd’s formula,

dY; = 2X(—0X, dt + o dW;) + o* dt
= (=20X? + %) dt + 20X, dW;
= (=20Y; + %) dt + 20/Y; sign(X;) dW;.

The result then follows from the fact that B; := fot sign(X,) dWy is a Brownian motion, by
Lévy’s characterisation theorem.
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Exercise 11.2 Let (W;);>0 be a Brownian motion defined on a probability space (2, F, P).
Consider the SDE

dXt:(\/l—f—Xf—i—%Xt)dt—&—Ml—i—deWt, Xo=z€R. (1)

(a) Show that for any x € R, the SDE defined in (1) has a unique strong solution.
(b) Show that (X;);>o defined by X; = sinh (sinh ™" (z) + ¢ + W;) is the unique solution of (1).
Hint: Consider the process (Y:)>0 defined by Y; := sinh_l(Xt).

Solution 11.2
(a) We see that the SDE is of the form

dXt = a(Xt) dt + b(Xt) th, Xo =xc R,

where "
a(z) = 1+x2+§ and b(x) =14 22,

We observe that

sup |0 (z)| = sup ‘ ‘
z€R| | zeR V1 + 2
as well as
sup |a’(x)| = sup ’ ‘ <
z€eR lo'(@)| = z€R V1 + 22 2 2’

Thus, by the mean value theorem, we obtain that a(-) and b(-) satisfy the Lipschitz condition

a(y) — a()] +1(6) ~ )| < Sy — 2, oz € R

Moreover, for any x € R,
3
a(@)| = [VI+a2+ 2| < [1+Jo] + 3| < 5 (1+ o)),
b(z)| = ‘\/1+x2‘ <14 |z,

so that a(-) and b(+) are also of linear growth. Thus, for any z € R, there exists a unique
strong solution to (1) by Theorem 4.7.4 in the lecture notes.

(b) For f:=sinh™' € C? (the inverse function of the hyperbolic sine), we have the derivatives

f'(x) =

__r
(1+22)32°

Thus, if X solves (1), we can apply Itd’s formula to Y; := f(X}) to obtain that
dY, = df(X;) = dt +dW;, Yy =sinh™(z),

and f"(z)=—

which implies that Y; = sinh™!(x) 4+ t + W;. Conversely, letting
X; =sinh (sinh™'(z) +t + W;), ¢>0,

we have by It6’s formula that

1
dX; = cosh (sinh ™' (2) +t + W;) (dt + dW;) + 5 Xudt

1
= (1/1+X,52+§Xt) dt + /14 X} dWy,

so X solves (1). Alternatively, we can omit the converse computation and simply note from
(a) that (1) has a unique solution.
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Exercise 11.3

(a) Let o € R, W be a Brownian motion and (:);>0 & bounded predictable process on a filtered
probability space (2, F,F, P). Show that there exists a unique adapted solution (X;);>o to
the equation

X =x9+ /Ot,usds + /OtXSdWS7
which is given by .
X, = E(W), (mo +/0 (E(W)S)_lusds) .
In particular, if 29 > 0 and gy > 0 for all t > 0, then X; > 0 for all ¢ > 0.

(b) Let 21,22 € R and aj,as : Ry x R — R be continuous functions that are Lipschitz and
have linear growth, as in Theorem (4.7.4) of the lecture notes. Suppose that x; > z2 and
ai(t,x) > az(t,x) for all t > 0,2 € R. Show that there exist unique solutions X! and X? to
the SDEs

t t
Xﬁ:zﬁ/ al(s,Xsl)der/ Xlaw,,
0 0
t t
X2 =x2+/ ag(s,XSQ)ds—i—/ X2adw,,
0 0

and that th > th for all ¢ > 0 almost surely,

Hint: Argue that as(s, X1) — aa(s, X2) = 7s(X! — X2), where 7 is a predictable process
bounded by K (the Lipschitz constant). A Girsanov transformation may also be useful.

Solution 11.3

(a) To prove that the solution is unique, suppose that X and X are two solutions. Then,
~ t ~
X, — X, = / (Xs — Xs)dWs.
0

Thus, X — X satisfies a linear SDE, which has the unique solution
X — Xy = EW)(Xo — Xo) = 0.

Therefore, X = X.

To show the given X is a solution, first note that it is adapted. We apply 1t0’s formula to the
function f(z1,22) = 21 (%o + 22) with the processes Z} = £(W); and Z? = fot (EW),) ™" psds.
This gives

t
dXt = g(W)t(g(W)t)ilﬂtdt + (iCO + / (E(W)S)lﬂ,sd8> 5(W)tth = ,U,tdt + Xtth,
0

as we wanted.
Since E(W); > 0 for all ¢ > 0, it is clear from the formula that X; > 0 for all ¢ > 0.
(b) Since a; and ay are Lipschitz and have linear growth, and likewise for b(t,z) = x, it follows

that the SDEs have unique strong solutions. Denote U; = X} — X? and u = z1 — z5. Taking
the difference, we have that

t t
Ut:u+/ (a1(s, X)) — aa(s, X2)) ds+/ UsdW.
0 0
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Note that we can write

[ o x2) ot ) s = [

where 1y == a1(t, X}') — az(t, X}) > 0 for all ¢ > 0 a.s., by assumption. Since ay is Lipschitz,
we can find a measurable function 7 : Ry x R x R that is bounded by K and such that

t t
usder/ (CLQ(S,X;)*GQ(&XE)) ds,
0

0’2(t7y1) - a’?(t7y2) = (yl - 92)7_"'(@191;3/2)-

For example, where 1 # 32, we can simply set 7(t,y1,y2) = W

m = 7(t, X}, X?), we have that

Letting

t t t
U; = u+/ usds—l—/ WsUst-i-/ UgdWs.
0 0 0

Let T > 0. Since 7 is bounded, we have by Novikov’s criterion that the density

aQ _

dP 5(*7T‘W)T

defines an equivalent measure . By Girsanov’s theorem,

t tAT
Wt* =W, +/ ]]-{SE[O,T]}d<7r.W7 W>S =W —l—/ Teds
0 0

is a Brownian motion under . Therefore, it holds under @ that
t t
Utzu—i—/ usds+/ UgdWy, 0<t<T.
0 0

Since u > 0 and p > 0, it follows by (a) that U = X! — X2 > 0 as well, as we wanted.
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Exercise 11.4

(a)

(b)

Let W be a Brownian motion on a probability space (2, F,F, P) and f:R = Rbea
measurable bounded odd function. That is, f(—x) = — f(x) or, equivalently,

f(@) = f(@)lzs0y — f(=2)L{z<o),
for some bounded measurable function f : (0,00) — R. Show that the process
Y = f(W)W

is adapted with respect to the P-augmented filtration FI"! generated by |W| and all nullsets.

Hint: Start by considering f(x) = sin(Az) for A > 0 and applying It&’s theorem. Conclude by
approximation.

Let X be a Brownian motion and define B = sign(X)+X, so that B is a Brownian motion
and the process X = sign(X)+B solves the Tanaka equation as in Example (4.7.10). Show
that X is not adapted to the filtration generated by B.

Solution 11.4

(a)

Suppose that f(z) = sin(Az). By Ito’s formula applied to cos(Az), we have that

W 1 Lt
_cosOWy) 1 / Sin(AW,)dW, + - / A cos(AW; )dt.
A A 0 2 0

Rearranging gives

1—cos(A\W)) 1 [t
= LoD L s
0

% A 2

using the fact that cosine is an even function. Therefore, f(W)+W; is }'tlw‘—measurable.

Since f(W)*W is linear in f, this property extends to all linear combinations

K
fe(z) = Z ag sin(A\px),
k=1

for aj,...,ax € Rand Aq,..., A > 0.

Let f : (0,00) — R be measurable and bounded by C' > 0. Note that W is predictable
as it is adapted and continuous, so that f(W) is also predictable because f is measurable.
By properties of Fourier series, we can find a sequence (fi) as above such that || fi]lec < C
for each k and fi(x) — f(x) for Lebesgue-almost all z > 0 (one way to show this is to
approximate f in L?((0,n)) for each n € N and take a diagonal sequence).

Let A ={z > 0: fr(x) = f(x)}, so that A° = Ry \ A has Lebesgue measure 0. Since
the sequence (fi) is uniformly bounded and converges pointwise to f on A, it follows from
Theorem 4.2.19 that for each ¢t > 0,

/0 (fk(WS) - f(Ws))]l{WseA}dWS —0

in probability. Also, note that by Fubini,

E U ]I{WSGAc}d<W>S] :/ P[W, € Alds = 0,
0 0
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since P[W € A¢] = 0 as W has a continuous density on R with respect to Lebesgue measure
for each s > 0. Noting that the f; and f are bounded, it follows by construction of the
stochastic integral that

t
/0 (Fe(W2) = FOW)) Lw, ey dWs = 0

for all ¢t > 0 and k € N a.s. Adding the two cases, we conclude that for each ¢t > 0

/ Te(Ws)Liw, >0y dWs —>/ FWo)Liw, >0y dWs

in probability as k — co. We can similarly show that

/ (- 1{W<o}dWH/ W) L, <oy dWV,

in probability, therefore

/fk dW—>/f AW, =Y,

in probability. By taking a subsequence, we can take the convergence to be P-almost sure.

By construction, each Y}* is .7-',5|W‘—meausurauble7 so the same is true of the limit Y;. This shows
the result.

By (a) applied to (W,Y) := (X, B), and since sign is an odd function, we have that B is

adapted with respect to the filtration FIXI C FX. In other words, .7-}3 - Ft‘X| C FtX for each
t > 0. It remains to show that X is not adapted to F!XI. One argument is as follows. We
claim that for all bounded ftlx‘—measurable random variables Z, it holds that

E[X:Z)=E[-X:Z]=0. (%)
Indeed, if Z has the form

J
H |ij

for 0 < s; <--- < s; <t and bounded measurable functions f;, then

J
EX.Z)=E | X, [[ £i(IXs,)| = E |-X, H £ill = X, | = B[-X.2],
j=1

using the fact that —X is a Brownian motion and therefore has the same law as X. The
claim then follows by an easy application of the monotone class theorem.

As a consequence of (%), it holds that

E [Xt

]_-tIX\] = E[ - X ‘ ft‘Xl} =0 as.

But this cannot be the case if X; is ]—}!X‘ measurable, since X; # 0 a.s. Therefore, X cannot
be adapted with respect to (]:th‘) nor (FP).
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