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Exercise 11.1 Let θ ∈ R, σ > 0 and W = (Wt)t≥0 be a Brownian motion defined on a filtered
probability space (Ω,F ,F, P ) satisfying the usual conditions.

(a) Find a strong solution to the Langevin equation

dXt = −θXt dt+ σ dWt, X0 = x ∈ R.

Hint: Consider Ut = eθtXt.
Remark: For θ > 0, this SDE describes exponential convergence to zero “with noise”.

(b) Show that there exists a Brownian motion B such that Y := X2 satisfies the SDE

dYt = (−2θYt + σ2) dt+ 2σ
√
Yt dBt. (?)

In other words, show that (Ω,F ,F, P,B, Y ) is a weak solution of the SDE (?).

Solution 11.1

(a) Itô’s formula applied to the process U = (Ut)t≥0 given by Ut = eθtXt yields

dUt = θeθtXt dt+ eθt(−θXt dt+ σ dWt) = σeθt dWt.

Thus, if X is a solution to the Langevin equation, then Ut = U0 +
∫ t

0 σe
θs dWs. Conversely, if

Xt = e−θtUt = e−θt
(
U0 + σ

∫ t

0
eθs dWs

)
= e−θt

(
x+ σ

∫ t

0
eθs dWs

)
,

then, by Itô’s formula,

dXt = −θXtdt+ σe−θteθtdWt = −θXt dt+ σ dWt,

so that X solves the Langevin equation with X0 = x.

(b) By Itô’s formula,

dYt = 2Xt(−θXt dt+ σ dWt) + σ2 dt

= (−2θX2
t + σ2) dt+ 2σXt dWt

= (−2θYt + σ2) dt+ 2σ
√
Yt sign(Xt) dWt.

The result then follows from the fact that Bt :=
∫ t

0 sign(Xs) dWs is a Brownian motion, by
Lévy’s characterisation theorem.
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Exercise 11.2 Let (Wt)t≥0 be a Brownian motion defined on a probability space (Ω,F , P ).
Consider the SDE

dXt =
(√

1 +X2
t + 1

2Xt

)
dt +

√
1 +X2

t dWt, X0 = x ∈ R. (1)

(a) Show that for any x ∈ R, the SDE defined in (1) has a unique strong solution.

(b) Show that (Xt)t≥0 defined by Xt = sinh
(

sinh−1(x) + t+Wt

)
is the unique solution of (1).

Hint: Consider the process (Yt)t≥0 defined by Yt := sinh−1(Xt).

Solution 11.2

(a) We see that the SDE is of the form

dXt = a(Xt) dt+ b(Xt) dWt, X0 = x ∈ R,

where
a(x) =

√
1 + x2 + x

2 and b(x) =
√

1 + x2.

We observe that
sup
x∈R
|b′(x)| = sup

x∈R

∣∣∣ x√
1 + x2

∣∣∣ ≤ 1

as well as
sup
x∈R
|a′(x)| = sup

x∈R

∣∣∣ x√
1 + x2

+ 1
2

∣∣∣ ≤ 3
2 .

Thus, by the mean value theorem, we obtain that a(·) and b(·) satisfy the Lipschitz condition

|a(y)− a(z)|+ |b(y)− b(z)| ≤ 5
2 |y − z|, y, z ∈ R.

Moreover, for any x ∈ R,

|a(x)| =
∣∣∣√1 + x2 + x

2

∣∣∣ ≤ ∣∣∣1 + |x|+ x

2

∣∣∣ ≤ 3
2
(
1 + |x|

)
,

|b(x)| =
∣∣∣√1 + x2

∣∣∣ ≤ 1 + |x|,

so that a(·) and b(·) are also of linear growth. Thus, for any x ∈ R, there exists a unique
strong solution to (1) by Theorem 4.7.4 in the lecture notes.

(b) For f := sinh−1 ∈ C2 (the inverse function of the hyperbolic sine), we have the derivatives

f ′(x) = 1√
1 + x2

and f ′′(x) = − x

(1 + x2)3/2 .

Thus, if X solves (1), we can apply Itô’s formula to Yt := f(Xt) to obtain that

dYt = df(Xt) = dt+ dWt, Y0 = sinh−1(x),

which implies that Yt = sinh−1(x) + t+Wt. Conversely, letting

Xt = sinh
(

sinh−1(x) + t+Wt

)
, t ≥ 0,

we have by Itô’s formula that

dXt = cosh
(

sinh−1(x) + t+Wt

)
(dt+ dWt) + 1

2Xtdt

=
(√

1 +X2
t + 1

2Xt

)
dt +

√
1 +X2

t dWt,

so X solves (1). Alternatively, we can omit the converse computation and simply note from
(a) that (1) has a unique solution.
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Exercise 11.3

(a) Let x0 ∈ R, W be a Brownian motion and (µt)t≥0 a bounded predictable process on a filtered
probability space (Ω,F ,F, P ). Show that there exists a unique adapted solution (Xt)t≥0 to
the equation

Xt = x0 +
∫ t

0
µsds+

∫ t

0
XsdWs,

which is given by

Xt = E(W )t
(
x0 +

∫ t

0

(
E(W )s

)−1
µsds

)
.

In particular, if x0 ≥ 0 and µt ≥ 0 for all t ≥ 0, then Xt ≥ 0 for all t ≥ 0.

(b) Let x1, x2 ∈ R and a1, a2 : R+ × R → R be continuous functions that are Lipschitz and
have linear growth, as in Theorem (4.7.4) of the lecture notes. Suppose that x1 ≥ x2 and
a1(t, x) ≥ a2(t, x) for all t ≥ 0, x ∈ R. Show that there exist unique solutions X1 and X2 to
the SDEs

X1
t = x1 +

∫ t

0
a1(s,X1

s )ds+
∫ t

0
X1
sdWs,

X2
t = x2 +

∫ t

0
a2(s,X2

s )ds+
∫ t

0
X2
sdWs,

and that X1
t ≥ X2

t for all t ≥ 0 almost surely,
Hint: Argue that a2(s,X1

s ) − a2(s,X2
s ) = πs(X1

s − X2
s ), where π is a predictable process

bounded by K (the Lipschitz constant). A Girsanov transformation may also be useful.

Solution 11.3

(a) To prove that the solution is unique, suppose that X and X̃ are two solutions. Then,

Xt − X̃t =
∫ t

0
(Xs − X̃s)dWs.

Thus, X − X̃ satisfies a linear SDE, which has the unique solution

Xt − X̃t = E(W )t(X0 − X̃0) = 0.

Therefore, X = X̃.
To show the given X is a solution, first note that it is adapted. We apply Itô’s formula to the
function f(z1, z2) = z1 (x0 + z2) with the processes Z1

t = E(W )t and Z2
t =

∫ t
0 (E(W )s)−1

µsds.
This gives

dXt = E(W )t
(
E(W )t

)−1
µtdt+

(
x0 +

∫ t

0

(
E(W )s

)−1
µsds

)
E(W )tdWt = µtdt+XtdWt,

as we wanted.
Since E(W )t ≥ 0 for all t ≥ 0, it is clear from the formula that Xt ≥ 0 for all t ≥ 0.

(b) Since a1 and a2 are Lipschitz and have linear growth, and likewise for b(t, x) = x, it follows
that the SDEs have unique strong solutions. Denote Ut = X1

t −X2
t and u = x1 − x2. Taking

the difference, we have that

Ut = u+
∫ t

0

(
a1(s,X1

s )− a2(s,X2
s )
)
ds+

∫ t

0
UsdWs.
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Note that we can write∫ t

0

(
a1(s,X1

s )− a2(s,X2
s )
)
ds =

∫ t

0
µsds+

∫ t

0

(
a2(s,X1

s )− a2(s,X2
s )
)
ds,

where µt := a1(t,X1
t )− a2(t,X1

t ) ≥ 0 for all t ≥ 0 a.s., by assumption. Since a2 is Lipschitz,
we can find a measurable function π̄ : R+ × R× R that is bounded by K and such that

a2(t, y1)− a2(t, y2) = (y1 − y2)π̄(t, y1, y2).

For example, where y1 6= y2, we can simply set π̄(t, y1, y2) = a2(t,y1)−a2(t,y2)
y1−y2

. Letting
πt = π̄(t,X1

t , X
2
t ), we have that

Ut = u+
∫ t

0
µsds+

∫ t

0
πsUsds+

∫ t

0
UsdWs.

Let T > 0. Since π is bounded, we have by Novikov’s criterion that the density

dQ

dP
= E(−π •W )T

defines an equivalent measure Q. By Girsanov’s theorem,

W ∗t = Wt +
∫ t

0
1{s∈[0,T ]}d〈π •W,W 〉s = Wt +

∫ t∧T

0
πsds

is a Brownian motion under Q. Therefore, it holds under Q that

Ut = u+
∫ t

0
µsds+

∫ t

0
UsdW

∗
s , 0 ≤ t ≤ T.

Since u ≥ 0 and µ ≥ 0, it follows by (a) that U = X1 −X2 ≥ 0 as well, as we wanted.
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Exercise 11.4

(a) Let W be a Brownian motion on a probability space (Ω,F ,F, P ) and f̄ : R → R be a
measurable bounded odd function. That is, f̄(−x) = −f̄(x) or, equivalently,

f̄(x) = f(x)1{x>0} − f(−x)1{x<0},

for some bounded measurable function f : (0,∞)→ R. Show that the process

Y = f̄(W )•W

is adapted with respect to the P -augmented filtration F|W | generated by |W | and all nullsets.
Hint: Start by considering f(x) = sin(λx) for λ > 0 and applying Itô’s theorem. Conclude by
approximation.

(b) Let X be a Brownian motion and define B = sign(X)•X, so that B is a Brownian motion
and the process X = sign(X)•B solves the Tanaka equation as in Example (4.7.10). Show
that X is not adapted to the filtration generated by B.

Solution 11.4

(a) Suppose that f(x) = sin(λx). By Itô’s formula applied to cos(λx), we have that

−cos(λWt)
λ

= − 1
λ

+
∫ t

0
sin(λWt)dWt + 1

2

∫ t

0
λ cos(λWt)dt.

Rearranging gives

Yt = 1− cos(λ|Wt|)
λ

− 1
2

∫ t

0
λ cos(λ|Wt|)dt,

using the fact that cosine is an even function. Therefore, f(W )•Wt is F |W |t -measurable.
Since f(W )•W is linear in f , this property extends to all linear combinations

fk(x) =
K∑
k=1

ak sin(λkx),

for a1, . . . , ak ∈ R and λ1, . . . , λk > 0.
Let f : (0,∞) → R be measurable and bounded by C > 0. Note that W is predictable
as it is adapted and continuous, so that f(W ) is also predictable because f is measurable.
By properties of Fourier series, we can find a sequence (fk) as above such that ‖fk‖∞ ≤ C
for each k and fk(x) → f(x) for Lebesgue-almost all x > 0 (one way to show this is to
approximate f in L2((0, n)) for each n ∈ N and take a diagonal sequence).
Let A = {x > 0 : fk(x) → f(x)}, so that Ac = R+ \ A has Lebesgue measure 0. Since
the sequence (fk) is uniformly bounded and converges pointwise to f on A, it follows from
Theorem 4.2.19 that for each t ≥ 0,∫ t

0

(
fk(Ws)− f(Ws)

)
1{Ws∈A}dWs → 0

in probability. Also, note that by Fubini,

E

[∫ ∞
0

1{Ws∈Ac}d〈W 〉s
]

=
∫ ∞

0
P [Ws ∈ Ac]ds = 0,
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since P [Ws ∈ Ac] = 0 as Ws has a continuous density on R with respect to Lebesgue measure
for each s > 0. Noting that the fk and f are bounded, it follows by construction of the
stochastic integral that ∫ t

0

(
fk(Ws)− f(Ws)

)
1{Ws∈Ac}dWs = 0

for all t ≥ 0 and k ∈ N a.s. Adding the two cases, we conclude that for each t ≥ 0∫ t

0
fk(Ws)1{Ws>0}dWs →

∫ t

0
f(Ws)1{Ws>0}dWs

in probability as k →∞. We can similarly show that∫ t

0
−fk(−Ws)1{Ws<0}dWs →

∫ t

0
−f(−Ws)1{Ws<0}dWs

in probability, therefore

Y kt :=
∫ t

0
f̄k(Ws)dWs →

∫ t

0
f̄(Ws)dWs = Yt

in probability. By taking a subsequence, we can take the convergence to be P -almost sure.
By construction, each Y kt is F |W |t -measurable, so the same is true of the limit Yt. This shows
the result.

(b) By (a) applied to (W,Y ) := (X,B), and since sign is an odd function, we have that B is
adapted with respect to the filtration F|X| ⊆ FX . In other words, FBt ⊆ F

|X|
t ⊆ FXt for each

t ≥ 0. It remains to show that X is not adapted to F |X|. One argument is as follows. We
claim that for all bounded F |X|t -measurable random variables Z, it holds that

E[XtZ] = E[−XtZ] = 0. (??)

Indeed, if Z has the form

Z =
J∏
j=1

fj(|Xsj |)

for 0 ≤ s1 < · · · < sj ≤ t and bounded measurable functions fj , then

E[XtZ] = E

Xt

J∏
j=1

fj(|Xsj |)

 = E

−Xt

J∏
j=1

fj(| −Xsj |)

 = E[−XtZ],

using the fact that −X is a Brownian motion and therefore has the same law as X. The
claim then follows by an easy application of the monotone class theorem.
As a consequence of (??), it holds that

E
[
Xt

∣∣∣ F |X|t

]
= E

[
−Xt

∣∣∣ F |X|t

]
= 0 a.s.

But this cannot be the case if Xt is F |X|t measurable, since Xt 6= 0 a.s. Therefore, X cannot
be adapted with respect to (F |X|t ) nor (FBt ).
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