Brownian Motion and Stochastic Calculus

Exercise sheet 11

Exercise 11.1 Let $\theta \in \mathbb{R}, \sigma>0$ and $W=\left(W_{t}\right)_{t \geq 0}$ be a Brownian motion defined on a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$ satisfying the usual conditions.
(a) Find a strong solution to the Langevin equation

$$
d X_{t}=-\theta X_{t} d t+\sigma d W_{t}, \quad X_{0}=x \in \mathbb{R}
$$

Hint: Consider $U_{t}=e^{\theta t} X_{t}$.
Remark: For $\theta>0$, this SDE describes exponential convergence to zero "with noise".
(b) Show that there exists a Brownian motion B such that $Y:=X^{2}$ satisfies the SDE

$$
d Y_{t}=\left(-2 \theta Y_{t}+\sigma^{2}\right) d t+2 \sigma \sqrt{Y_{t}} d B_{t}
$$

In other words, show that $(\Omega, \mathcal{F}, \mathbb{F}, P, B, Y)$ is a weak solution of the $\operatorname{SDE}(\star)$.

Solution 11.1

(a) Itô's formula applied to the process $U=\left(U_{t}\right)_{t \geq 0}$ given by $U_{t}=e^{\theta t} X_{t}$ yields

$$
d U_{t}=\theta e^{\theta t} X_{t} d t+e^{\theta t}\left(-\theta X_{t} d t+\sigma d W_{t}\right)=\sigma e^{\theta t} d W_{t}
$$

Thus, if X is a solution to the Langevin equation, then $U_{t}=U_{0}+\int_{0}^{t} \sigma e^{\theta s} d W_{s}$. Conversely, if

$$
X_{t}=e^{-\theta t} U_{t}=e^{-\theta t}\left(U_{0}+\sigma \int_{0}^{t} e^{\theta s} d W_{s}\right)=e^{-\theta t}\left(x+\sigma \int_{0}^{t} e^{\theta s} d W_{s}\right)
$$

then, by Itô's formula,

$$
d X_{t}=-\theta X_{t} d t+\sigma e^{-\theta t} e^{\theta t} d W_{t}=-\theta X_{t} d t+\sigma d W_{t}
$$

so that X solves the Langevin equation with $X_{0}=x$.
(b) By Itô's formula,

$$
\begin{aligned}
d Y_{t} & =2 X_{t}\left(-\theta X_{t} d t+\sigma d W_{t}\right)+\sigma^{2} d t \\
& =\left(-2 \theta X_{t}^{2}+\sigma^{2}\right) d t+2 \sigma X_{t} d W_{t} \\
& =\left(-2 \theta Y_{t}+\sigma^{2}\right) d t+2 \sigma \sqrt{Y_{t}} \operatorname{sign}\left(X_{t}\right) d W_{t}
\end{aligned}
$$

The result then follows from the fact that $B_{t}:=\int_{0}^{t} \operatorname{sign}\left(X_{s}\right) d W_{s}$ is a Brownian motion, by Lévy's characterisation theorem.

Exercise 11.2 Let $\left(W_{t}\right)_{t \geq 0}$ be a Brownian motion defined on a probability space (Ω, \mathcal{F}, P). Consider the SDE

$$
\begin{equation*}
d X_{t}=\left(\sqrt{1+X_{t}^{2}}+\frac{1}{2} X_{t}\right) d t+\sqrt{1+X_{t}^{2}} d W_{t}, \quad X_{0}=x \in \mathbb{R} \tag{1}
\end{equation*}
$$

(a) Show that for any $x \in \mathbb{R}$, the SDE defined in (1) has a unique strong solution.
(b) Show that $\left(X_{t}\right)_{t \geq 0}$ defined by $X_{t}=\sinh \left(\sinh ^{-1}(x)+t+W_{t}\right)$ is the unique solution of (1).

Hint: Consider the process $\left(Y_{t}\right)_{t \geq 0}$ defined by $Y_{t}:=\sinh ^{-1}\left(X_{t}\right)$.

Solution 11.2

(a) We see that the SDE is of the form

$$
d X_{t}=a\left(X_{t}\right) d t+b\left(X_{t}\right) d W_{t}, \quad X_{0}=x \in \mathbb{R}
$$

where

$$
a(x)=\sqrt{1+x^{2}}+\frac{x}{2} \quad \text { and } \quad b(x)=\sqrt{1+x^{2}} .
$$

We observe that

$$
\sup _{x \in \mathbb{R}}\left|b^{\prime}(x)\right|=\sup _{x \in \mathbb{R}}\left|\frac{x}{\sqrt{1+x^{2}}}\right| \leq 1
$$

as well as

$$
\sup _{x \in \mathbb{R}}\left|a^{\prime}(x)\right|=\sup _{x \in \mathbb{R}}\left|\frac{x}{\sqrt{1+x^{2}}}+\frac{1}{2}\right| \leq \frac{3}{2}
$$

Thus, by the mean value theorem, we obtain that $a(\cdot)$ and $b(\cdot)$ satisfy the Lipschitz condition

$$
|a(y)-a(z)|+|b(y)-b(z)| \leq \frac{5}{2}|y-z|, \quad y, z \in \mathbb{R}
$$

Moreover, for any $x \in \mathbb{R}$,

$$
\begin{aligned}
|a(x)| & =\left|\sqrt{1+x^{2}}+\frac{x}{2}\right| \leq\left|1+|x|+\frac{x}{2}\right| \leq \frac{3}{2}(1+|x|) \\
|b(x)| & =\left|\sqrt{1+x^{2}}\right| \leq 1+|x|
\end{aligned}
$$

so that $a(\cdot)$ and $b(\cdot)$ are also of linear growth. Thus, for any $x \in \mathbb{R}$, there exists a unique strong solution to (1) by Theorem 4.7.4 in the lecture notes.
(b) For $f:=\sinh ^{-1} \in C^{2}$ (the inverse function of the hyperbolic sine), we have the derivatives

$$
f^{\prime}(x)=\frac{1}{\sqrt{1+x^{2}}} \quad \text { and } \quad f^{\prime \prime}(x)=-\frac{x}{\left(1+x^{2}\right)^{3 / 2}}
$$

Thus, if X solves (1), we can apply Itô's formula to $Y_{t}:=f\left(X_{t}\right)$ to obtain that

$$
d Y_{t}=d f\left(X_{t}\right)=d t+d W_{t}, \quad Y_{0}=\sinh ^{-1}(x)
$$

which implies that $Y_{t}=\sinh ^{-1}(x)+t+W_{t}$. Conversely, letting

$$
X_{t}=\sinh \left(\sinh ^{-1}(x)+t+W_{t}\right), \quad t \geq 0
$$

we have by Itô's formula that

$$
\begin{aligned}
d X_{t} & =\cosh \left(\sinh ^{-1}(x)+t+W_{t}\right)\left(d t+d W_{t}\right)+\frac{1}{2} X_{t} d t \\
& =\left(\sqrt{1+X_{t}^{2}}+\frac{1}{2} X_{t}\right) d t+\sqrt{1+X_{t}^{2}} d W_{t}
\end{aligned}
$$

so X solves (1). Alternatively, we can omit the converse computation and simply note from (a) that (1) has a unique solution.

Exercise 11.3

(a) Let $x_{0} \in \mathbb{R}, W$ be a Brownian motion and $\left(\mu_{t}\right)_{t \geq 0}$ a bounded predictable process on a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$. Show that there exists a unique adapted solution $\left(X_{t}\right)_{t \geq 0}$ to the equation

$$
X_{t}=x_{0}+\int_{0}^{t} \mu_{s} d s+\int_{0}^{t} X_{s} d W_{s}
$$

which is given by

$$
X_{t}=\mathcal{E}(W)_{t}\left(x_{0}+\int_{0}^{t}\left(\mathcal{E}(W)_{s}\right)^{-1} \mu_{s} d s\right)
$$

In particular, if $x_{0} \geq 0$ and $\mu_{t} \geq 0$ for all $t \geq 0$, then $X_{t} \geq 0$ for all $t \geq 0$.
(b) Let $x_{1}, x_{2} \in \mathbb{R}$ and $a_{1}, a_{2}: \mathbb{R}_{+} \times \mathbb{R} \rightarrow \mathbb{R}$ be continuous functions that are Lipschitz and have linear growth, as in Theorem (4.7.4) of the lecture notes. Suppose that $x_{1} \geq x_{2}$ and $a_{1}(t, x) \geq a_{2}(t, x)$ for all $t \geq 0, x \in \mathbb{R}$. Show that there exist unique solutions X^{1} and X^{2} to the SDEs

$$
\begin{aligned}
& X_{t}^{1}=x_{1}+\int_{0}^{t} a_{1}\left(s, X_{s}^{1}\right) d s+\int_{0}^{t} X_{s}^{1} d W_{s} \\
& X_{t}^{2}=x_{2}+\int_{0}^{t} a_{2}\left(s, X_{s}^{2}\right) d s+\int_{0}^{t} X_{s}^{2} d W_{s}
\end{aligned}
$$

and that $X_{t}^{1} \geq X_{t}^{2}$ for all $t \geq 0$ almost surely,
Hint: Argue that $a_{2}\left(s, X_{s}^{1}\right)-a_{2}\left(s, X_{s}^{2}\right)=\pi_{s}\left(X_{s}^{1}-X_{s}^{2}\right)$, where π is a predictable process bounded by K (the Lipschitz constant). A Girsanov transformation may also be useful.

Solution 11.3

(a) To prove that the solution is unique, suppose that X and \tilde{X} are two solutions. Then,

$$
X_{t}-\tilde{X}_{t}=\int_{0}^{t}\left(X_{s}-\tilde{X}_{s}\right) d W_{s}
$$

Thus, $X-\tilde{X}$ satisfies a linear SDE, which has the unique solution

$$
X_{t}-\tilde{X}_{t}=\mathcal{E}(W)_{t}\left(X_{0}-\tilde{X}_{0}\right)=0
$$

Therefore, $X=\tilde{X}$.
To show the given X is a solution, first note that it is adapted. We apply Itô's formula to the function $f\left(z_{1}, z_{2}\right)=z_{1}\left(x_{0}+z_{2}\right)$ with the processes $Z_{t}^{1}=\mathcal{E}(W)_{t}$ and $Z_{t}^{2}=\int_{0}^{t}\left(\mathcal{E}(W)_{s}\right)^{-1} \mu_{s} d s$. This gives

$$
d X_{t}=\mathcal{E}(W)_{t}\left(\mathcal{E}(W)_{t}\right)^{-1} \mu_{t} d t+\left(x_{0}+\int_{0}^{t}\left(\mathcal{E}(W)_{s}\right)^{-1} \mu_{s} d s\right) \mathcal{E}(W)_{t} d W_{t}=\mu_{t} d t+X_{t} d W_{t}
$$

as we wanted.
Since $\mathcal{E}(W)_{t} \geq 0$ for all $t \geq 0$, it is clear from the formula that $X_{t} \geq 0$ for all $t \geq 0$.
(b) Since a_{1} and a_{2} are Lipschitz and have linear growth, and likewise for $b(t, x)=x$, it follows that the SDEs have unique strong solutions. Denote $U_{t}=X_{t}^{1}-X_{t}^{2}$ and $u=x_{1}-x_{2}$. Taking the difference, we have that

$$
U_{t}=u+\int_{0}^{t}\left(a_{1}\left(s, X_{s}^{1}\right)-a_{2}\left(s, X_{s}^{2}\right)\right) d s+\int_{0}^{t} U_{s} d W_{s}
$$

Note that we can write

$$
\int_{0}^{t}\left(a_{1}\left(s, X_{s}^{1}\right)-a_{2}\left(s, X_{s}^{2}\right)\right) d s=\int_{0}^{t} \mu_{s} d s+\int_{0}^{t}\left(a_{2}\left(s, X_{s}^{1}\right)-a_{2}\left(s, X_{s}^{2}\right)\right) d s
$$

where $\mu_{t}:=a_{1}\left(t, X_{t}^{1}\right)-a_{2}\left(t, X_{t}^{1}\right) \geq 0$ for all $t \geq 0$ a.s., by assumption. Since a_{2} is Lipschitz, we can find a measurable function $\bar{\pi}: \mathbb{R}_{+} \times \mathbb{R} \times \mathbb{R}$ that is bounded by K and such that

$$
a_{2}\left(t, y_{1}\right)-a_{2}\left(t, y_{2}\right)=\left(y_{1}-y_{2}\right) \bar{\pi}\left(t, y_{1}, y_{2}\right)
$$

For example, where $y_{1} \neq y_{2}$, we can simply set $\bar{\pi}\left(t, y_{1}, y_{2}\right)=\frac{a_{2}\left(t, y_{1}\right)-a_{2}\left(t, y_{2}\right)}{y_{1}-y_{2}}$. Letting $\pi_{t}=\bar{\pi}\left(t, X_{t}^{1}, X_{t}^{2}\right)$, we have that

$$
U_{t}=u+\int_{0}^{t} \mu_{s} d s+\int_{0}^{t} \pi_{s} U_{s} d s+\int_{0}^{t} U_{s} d W_{s}
$$

Let $T>0$. Since π is bounded, we have by Novikov's criterion that the density

$$
\frac{d Q}{d P}=\mathcal{E}(-\pi \cdot W)_{T}
$$

defines an equivalent measure Q. By Girsanov's theorem,

$$
W_{t}^{*}=W_{t}+\int_{0}^{t} \mathbb{1}_{\{s \in[0, T]\}} d\langle\pi \bullet W, W\rangle_{s}=W_{t}+\int_{0}^{t \wedge T} \pi_{s} d s
$$

is a Brownian motion under Q. Therefore, it holds under Q that

$$
U_{t}=u+\int_{0}^{t} \mu_{s} d s+\int_{0}^{t} U_{s} d W_{s}^{*}, \quad 0 \leq t \leq T
$$

Since $u \geq 0$ and $\mu \geq 0$, it follows by (a) that $U=X^{1}-X^{2} \geq 0$ as well, as we wanted.

Exercise 11.4

(a) Let W be a Brownian motion on a probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$ and $\bar{f}: \mathbb{R} \rightarrow \mathbb{R}$ be a measurable bounded odd function. That is, $\bar{f}(-x)=-\bar{f}(x)$ or, equivalently,

$$
\bar{f}(x)=f(x) \mathbb{1}_{\{x>0\}}-f(-x) \mathbb{1}_{\{x<0\}},
$$

for some bounded measurable function $f:(0, \infty) \rightarrow \mathbb{R}$. Show that the process

$$
Y=\bar{f}(W) \cdot W
$$

is adapted with respect to the P-augmented filtration $\mathbb{F}^{|W|}$ generated by $|W|$ and all nullsets. Hint: Start by considering $f(x)=\sin (\lambda x)$ for $\lambda>0$ and applying Itô's theorem. Conclude by approximation.
(b) Let X be a Brownian motion and define $B=\operatorname{sign}(X) \cdot X$, so that B is a Brownian motion and the process $X=\operatorname{sign}(X) \cdot B$ solves the Tanaka equation as in Example (4.7.10). Show that X is not adapted to the filtration generated by B.

Solution 11.4

(a) Suppose that $f(x)=\sin (\lambda x)$. By Itô's formula applied to $\cos (\lambda x)$, we have that

$$
-\frac{\cos \left(\lambda W_{t}\right)}{\lambda}=-\frac{1}{\lambda}+\int_{0}^{t} \sin \left(\lambda W_{t}\right) d W_{t}+\frac{1}{2} \int_{0}^{t} \lambda \cos \left(\lambda W_{t}\right) d t
$$

Rearranging gives

$$
Y_{t}=\frac{1-\cos \left(\lambda\left|W_{t}\right|\right)}{\lambda}-\frac{1}{2} \int_{0}^{t} \lambda \cos \left(\lambda\left|W_{t}\right|\right) d t
$$

using the fact that cosine is an even function. Therefore, $f(W) \cdot W_{t}$ is $\mathcal{F}_{t}^{|W|}$-measurable. Since $f(W) \bullet W$ is linear in f, this property extends to all linear combinations

$$
f_{k}(x)=\sum_{k=1}^{K} a_{k} \sin \left(\lambda_{k} x\right)
$$

for $a_{1}, \ldots, a_{k} \in \mathbb{R}$ and $\lambda_{1}, \ldots, \lambda_{k}>0$.
Let $f:(0, \infty) \rightarrow \mathbb{R}$ be measurable and bounded by $C>0$. Note that W is predictable as it is adapted and continuous, so that $f(W)$ is also predictable because f is measurable. By properties of Fourier series, we can find a sequence $\left(f_{k}\right)$ as above such that $\left\|f_{k}\right\|_{\infty} \leq C$ for each k and $f_{k}(x) \rightarrow f(x)$ for Lebesgue-almost all $x>0$ (one way to show this is to approximate f in $L^{2}((0, n))$ for each $n \in \mathbb{N}$ and take a diagonal sequence).
Let $A=\left\{x>0: f_{k}(x) \rightarrow f(x)\right\}$, so that $A^{c}=\mathbb{R}_{+} \backslash A$ has Lebesgue measure 0 . Since the sequence $\left(f_{k}\right)$ is uniformly bounded and converges pointwise to f on A, it follows from Theorem 4.2.19 that for each $t \geq 0$,

$$
\int_{0}^{t}\left(f_{k}\left(W_{s}\right)-f\left(W_{s}\right)\right) \mathbb{1}_{\left\{W_{s} \in A\right\}} d W_{s} \rightarrow 0
$$

in probability. Also, note that by Fubini,

$$
E\left[\int_{0}^{\infty} \mathbb{1}_{\left\{W_{s} \in A^{c}\right\}} d\langle W\rangle_{s}\right]=\int_{0}^{\infty} P\left[W_{s} \in A^{c}\right] d s=0
$$

since $P\left[W_{s} \in A^{c}\right]=0$ as W_{s} has a continuous density on \mathbb{R} with respect to Lebesgue measure for each $s>0$. Noting that the f_{k} and f are bounded, it follows by construction of the stochastic integral that

$$
\int_{0}^{t}\left(f_{k}\left(W_{s}\right)-f\left(W_{s}\right)\right) \mathbb{1}_{\left\{W_{s} \in A^{c}\right\}} d W_{s}=0
$$

for all $t \geq 0$ and $k \in \mathbb{N}$ a.s. Adding the two cases, we conclude that for each $t \geq 0$

$$
\int_{0}^{t} f_{k}\left(W_{s}\right) \mathbb{1}_{\left\{W_{s}>0\right\}} d W_{s} \rightarrow \int_{0}^{t} f\left(W_{s}\right) \mathbb{1}_{\left\{W_{s}>0\right\}} d W_{s}
$$

in probability as $k \rightarrow \infty$. We can similarly show that

$$
\int_{0}^{t}-f_{k}\left(-W_{s}\right) \mathbb{1}_{\left\{W_{s}<0\right\}} d W_{s} \rightarrow \int_{0}^{t}-f\left(-W_{s}\right) \mathbb{1}_{\left\{W_{s}<0\right\}} d W_{s}
$$

in probability, therefore

$$
Y_{t}^{k}:=\int_{0}^{t} \bar{f}_{k}\left(W_{s}\right) d W_{s} \rightarrow \int_{0}^{t} \bar{f}\left(W_{s}\right) d W_{s}=Y_{t}
$$

in probability. By taking a subsequence, we can take the convergence to be P-almost sure. By construction, each Y_{t}^{k} is $\mathcal{F}_{t}^{|W|}$-measurable, so the same is true of the limit Y_{t}. This shows the result.
(b) By (a) applied to $(W, Y):=(X, B)$, and since sign is an odd function, we have that B is adapted with respect to the filtration $\mathbb{F}^{|X|} \subseteq \mathbb{F}^{X}$. In other words, $\mathcal{F}_{t}^{B} \subseteq F_{t}^{|X|} \subseteq F_{t}^{X}$ for each $t \geq 0$. It remains to show that X is not adapted to $\mathcal{F}^{|X|}$. One argument is as follows. We claim that for all bounded $\mathcal{F}_{t}^{|X|}$-measurable random variables Z, it holds that

$$
E\left[X_{t} Z\right]=E\left[-X_{t} Z\right]=0
$$

Indeed, if Z has the form

$$
Z=\prod_{j=1}^{J} f_{j}\left(\left|X_{s_{j}}\right|\right)
$$

for $0 \leq s_{1}<\cdots<s_{j} \leq t$ and bounded measurable functions f_{j}, then

$$
E\left[X_{t} Z\right]=E\left[X_{t} \prod_{j=1}^{J} f_{j}\left(\left|X_{s_{j}}\right|\right)\right]=E\left[-X_{t} \prod_{j=1}^{J} f_{j}\left(\left|-X_{s_{j}}\right|\right)\right]=E\left[-X_{t} Z\right]
$$

using the fact that $-X$ is a Brownian motion and therefore has the same law as X. The claim then follows by an easy application of the monotone class theorem.
As a consequence of $(\star \star)$, it holds that

$$
E\left[\begin{array}{l|l|l}
X_{t} & \left.\mathcal{F}_{t}^{|X|}\right]=E\left[-X_{t}\right. & \left.\mathcal{F}_{t}^{|X|}\right]=0 \quad \text { a.s. }
\end{array}\right.
$$

But this cannot be the case if X_{t} is $\mathcal{F}_{t}^{|X|}$ measurable, since $X_{t} \neq 0$ a.s. Therefore, X cannot be adapted with respect to $\left(\mathcal{F}_{t}^{|X|}\right)$ nor $\left(\mathcal{F}_{t}^{B}\right)$.

