Brownian Motion and Stochastic Calculus

Exercise sheet 12

Exercise 12.1 Consider the SDE

$$
\begin{align*}
d X_{t}^{x} & =a\left(X_{t}^{x}\right) d t+b\left(X_{t}^{x}\right) d W_{t} \tag{1}\\
X_{0}^{x} & =x
\end{align*}
$$

where W is an \mathbb{R}^{m}-valued Brownian motion and the functions $a: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ and $b: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d \times m}$ are measurable and locally bounded (i.e., bounded on compact sets). Let $U \subseteq \mathbb{R}^{d}$ be a bounded open set such that the stopping time $T_{U}^{x}:=\inf \left\{s \geq 0: X_{s}^{x} \notin U\right\}$ is P-integrable for all $x \in U$. Consider the boundary problem

$$
\begin{align*}
L u(x)+c(x) u(x) & =-f(x) & & \text { for } x \in U \tag{2}\\
u(x) & =g(x) & & \text { for } x \in \partial U,
\end{align*}
$$

where $c, f \in C_{b}(U)$ and $g \in C_{b}(\partial U)$ are given functions such that $c \leq 0$ on U, and the linear operator L is defined by

$$
L f(x):=\sum_{i=1}^{d} a_{i}(x) \frac{\partial f}{\partial x^{i}}(x)+\frac{1}{2} \sum_{i, j=1}^{d}\left(b b^{\top}\right)_{i j}(x) \frac{\partial^{2} f}{\partial x^{i} \partial x^{j}}(x) .
$$

Suppose that $\left(X_{t}^{x}\right)_{t \geq 0}$ solves the $\operatorname{SDE}(1)$ for some $x \in U$ and $u \in C^{2}(U) \cap C(\bar{U})$ is a solution to the boundary problem (2). Show that

$$
u(x)=E\left[g\left(X_{T_{U}^{x}}^{x}\right) \exp \left(\int_{0}^{T_{U}^{x}} c\left(X_{s}^{x}\right) d s\right)\right]+E\left[\int_{0}^{T_{U}^{x}} f\left(X_{s}^{x}\right) \exp \left(\int_{0}^{s} c\left(X_{r}^{x}\right) d r\right) d s\right]
$$

Solution 12.1 For each $n \in \mathbb{N}$ such that $\operatorname{dist}\left(x, U^{c}\right)>1 / n$, define the stopping time

$$
T_{n}:=\inf \left\{s \geq 0: \operatorname{dist}\left(X_{s}^{x}, U^{c}\right) \leq \frac{1}{n}\right\}
$$

There exist functions $u_{n} \in C^{2}\left(\mathbb{R}^{d} ; \mathbb{R}\right)$ such that $u=u_{n}$ on the set $\left\{z \in U: \operatorname{dist}\left(z, U^{c}\right) \geq \frac{1}{n}\right\}$. (see the remark at the end). Let

$$
Y_{t}^{n}:=u_{n}\left(X_{t}^{x}\right) \exp \left(\int_{0}^{t} c\left(X_{s}^{x}\right) d s\right)
$$

By Itô's formula, we have that

$$
Y_{t}^{n}=u_{n}(x)+\int_{0}^{t} \exp \left(\int_{0}^{s} c\left(X_{r}^{x}\right) d r\right)\left(\left(L u_{n}\left(X_{s}^{x}\right)+c\left(X_{s}^{x}\right) u_{n}\left(X_{s}^{x}\right)\right) d s+\nabla u_{n}\left(X_{s}^{x}\right) b\left(X_{s}^{x}\right) d W_{s}\right)
$$

As b and c are bounded on $U \subseteq \mathbb{R}$ and $u_{n} \in C_{c}^{2}$, we can easily check that the process

$$
M_{t}^{n}=\int_{0}^{t \wedge T_{n}} \exp \left(\int_{0}^{s} c\left(X_{r}^{x}\right) d r\right) \nabla u_{n}\left(X_{s}^{x}\right) b\left(X_{s}^{x}\right) d W_{s}
$$

is in $\mathcal{H}_{0}^{2, c}$ (since $\left(X^{x}\right)^{T_{n}}$ does not leave U), so that M^{n} is a true martingale. Taking expectations, we obtain

$$
E\left[Y_{t \wedge T_{n}}^{n}\right]-u_{n}(x)=E\left[\int_{0}^{t \wedge T_{n}}\left(L u_{n}\left(X_{s}^{x}\right)+c\left(X_{s}^{x}\right) u_{n}\left(X_{s}^{x}\right)\right) \exp \left(\int_{0}^{s} c\left(X_{r}^{x}\right) d r\right) d s\right]
$$

By the definition of T_{n}^{x}, we have $u_{n}\left(X_{t \wedge T_{n}}^{x}\right)=u\left(X_{t \wedge T_{n}}^{x}\right)$ for $t \geq 0$, as $\operatorname{dist}\left(X_{t \wedge T_{n}}^{x}, U^{c}\right) \geq \frac{1}{n}$. Moreover, $u_{n}(x)=u(x)$ as $\operatorname{dist}\left(x, U^{c}\right)>1 / n$. Since u solves (2), we get

$$
\begin{equation*}
u(x)=E\left[u\left(X_{t \wedge T_{n}}^{x}\right) \exp \left(\int_{0}^{t \wedge T_{n}} c\left(X_{s}^{x}\right) d s\right)\right]+E\left[\int_{0}^{t \wedge T_{n}} f\left(X_{s}^{x}\right) \exp \left(\int_{0}^{s} c\left(X_{r}^{x}\right) d r\right) d s\right] \tag{3}
\end{equation*}
$$

By continuity of the process $\left(\operatorname{dist}\left(X_{t}^{x}, U^{c}\right)\right)$, we have that $T_{n} \nearrow T_{U}^{x}<\infty$, which is integrable by assumption. Since $c \leq 0$, for any $n \in \mathbb{N}$ and $t \geq 0$, we have that

$$
\begin{aligned}
& \left|u\left(X_{t \wedge T_{n}}^{x}\right) \exp \left(\int_{0}^{t \wedge T_{n}} c\left(X_{s}^{x}\right) d s\right)\right| \leq \sup _{y \in \bar{U}}|u(y)|<\infty \\
& \left|\int_{0}^{t \wedge T_{n}} f\left(X_{s}^{x}\right) \exp \left(\int_{0}^{s} c\left(X_{r}^{x}\right) d r\right)\right| \leq T_{U}^{x} \sup _{y \in \bar{U}}|f(y)|
\end{aligned}
$$

Note that $X_{T_{U}^{x}}^{x} \in \partial U$ by the definition of T_{U}^{x}, so that $u\left(X_{T_{U}^{x}}^{x}\right)=g\left(X_{T_{U}^{x}}^{x}\right)$ by (2). By the dominated convergence theorem, we can let $t \rightarrow \infty$ and $n \rightarrow \infty$ in (3) to conclude

$$
u(x)=E\left[g\left(X_{T_{U}^{x}}^{x}\right) \exp \left(\int_{0}^{T_{U}^{x}} c\left(X_{s}^{x}\right) d s\right)\right]+E\left[\int_{0}^{T_{U}^{x}} f\left(X_{s}^{x}\right) \exp \left(\int_{0}^{s} c\left(X_{r}^{x}\right) d r\right) d s\right]
$$

Remark: In order to find the smooth extensions u_{n}, we can use the following lemma.
Lemma 1. Let $K \subseteq \mathbb{R}^{n}$ be compact and $C \subseteq \mathbb{R}^{n}$ be closed such that $C \cap K=\emptyset$. Then, there exists a smooth function $\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $\psi(x)=1$ for all $x \in K$ and $\psi(x)=0$ for all $x \in C$.

Proof. The set K is covered by the union of open balls

$$
\bigcup\left\{B_{\varepsilon}(x): x \in K \text { and } \varepsilon \in(0, \operatorname{dist}(x, C)\}\right.
$$

so that each ball satisfies $B_{\varepsilon}(x) \cap C=\emptyset$. Since K is compact, there exists a finite subcover by open balls $B_{j}:=B_{\varepsilon_{j}}\left(x_{j}\right)$, where $j=1, \ldots, J$. We can find "bump functions" on each B_{j}, i.e., smooth functions $\rho_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $\rho_{j}(x)>0$ for all $x \in B_{j}$ and $\rho_{j}(x)=0$ for all $x \in \mathbb{R}^{n} \backslash B_{j}$.

Let $\tilde{\psi}:=\sum_{j=1}^{J} \rho_{j}$. By construction, we have that $\tilde{\psi}$ is nonnegative, with $\tilde{\psi}(x)>0$ for all $x \in K$ while $\tilde{\psi}(x)=0$ for all $x \in C$. Since K is compact, we have that $\inf _{x \in K} \psi(x)=c_{0}>0$. We can construct a smooth function $\phi: \mathbb{R} \rightarrow \mathbb{R}$ such that $\phi(x)=0$ for all $x \leq 0$ and $\phi(x)=1$ for all $x \geq c_{0}$. Setting $\psi(x)=\phi(\tilde{\psi}(x))$, it is easy to check that ψ satisfies the required properties.

In the setting of the exercise, let

$$
\begin{aligned}
K & :=\left\{x \in U: \operatorname{dist}\left(x, U^{c}\right) \geq 1 / n\right\} \\
C & :=\left\{x \in U: \operatorname{dist}\left(x, U^{c}\right) \leq 1 /(n+1)\right\} \supseteq \overline{U^{c}}
\end{aligned}
$$

with corresponding ψ_{n} given by the lemma. We can find an extension $u_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ as

$$
u_{n}(x)=u(x) \psi_{n}(x)
$$

where $u_{n}(x)=0$ for $x \in U^{c} \subseteq C$. It is easy to check that u_{n} satisfies the required properties.

Exercise 12.2

(a) Show that the spaces \mathcal{R}^{2} and \mathcal{A}^{2} defined in page 174 are Banach spaces.
(b) Let β, γ be bounded predictable processes and define

$$
Y=\mathcal{E}\left(-\int \beta_{s} d s-\int \gamma_{s} d W_{s}\right)
$$

Show that, for any $T>0$, the random variable

$$
Y_{T}^{*}:=\sup _{0 \leq s \leq T}\left|Y_{s}\right|
$$

is in L^{p} for every $p<\infty$ (see page 180).

Solution 12.2

(a) It is clear that \mathcal{R}^{2} is a normed space (up to equivalence classes) with norms $\|\cdot\|_{\mathcal{R}^{2}}$. This follows from the corresponding norm properties of the sup- and L^{2}-norms. For example, to show subadditivity, we have for $X, Y \in \mathcal{R}^{2}$ that

$$
\|X+Y\|_{\mathcal{R}^{2}}=\left\|(X+Y)_{T}^{*}\right\|_{L^{2}(P)} \leq\left\|X_{T}^{*}+Y_{T}^{*}\right\|_{L^{2}(P)} \leq\left\|X_{T}^{*}\right\|_{L^{2}(P)}+\left\|Y_{T}^{*}\right\|_{L^{2}(P)}=\|X\|_{\mathcal{R}^{2}}+\|Y\|_{\mathcal{R}^{2}}
$$

To prove that \mathcal{R}^{2} is complete, let $\left(X^{n}\right)$ be a Cauchy sequence in \mathcal{R}^{2}. Let $\left(X^{n_{m}}\right)$ be an arbitrary subsequence. Note that, for $k \geq 0$, we have by the Markov inequality that

$$
\left\|(X-Y)_{T}^{*}\right\|_{L^{2}(P)} \leq 2^{-2 k} \Rightarrow P\left[(X-Y)_{T}^{*}>2^{-k}\right] \leq 2^{-2 k}
$$

Therefore, since $\left(X^{n_{m}}\right)$ is Cauchy in \mathcal{R}^{2}, we can find a further subsequence ($X^{n_{m_{k}}}$) such that

$$
P\left[\left(X^{n_{m_{k+1}}}-X^{n_{m_{k}}}\right)_{T}^{*}>2^{-k}\right] \leq 2^{-2 k}
$$

for each $k \in \mathbb{N}$. By Borel-Cantelli, we have that $P[A]=1$, where

$$
A=\bigcup_{K \in \mathbb{N}} \bigcap_{k \geq K}\left\{\left(X^{n_{m_{k+1}}}-X^{n_{m_{k}}}\right)_{T}^{*} \leq 2^{-k}\right\}
$$

This implies that, for P-almost all $\omega \in \Omega,\left(X^{n_{m_{k}}}(\omega)\right)$ is a Cauchy sequence of RCLL functions with respect to the uniform norm. Since the space of RCLL functions is a Banach space, for P-almost all ω there exists an RCLL function $X(\omega)$ such that $X^{n_{m_{k}}}(\omega) \rightarrow X(\omega)$ uniformly as $k \rightarrow \infty$. Define X arbitrarily on the remaining nullset. We claim that $X \in \mathcal{R}^{2}$ and $X^{n_{m_{k}}} \rightarrow X$ in \mathcal{R}^{2}.
For each $t \in[0, T]$ and almost all $\omega \in \Omega$, we have that $X_{t}(\omega)=\lim _{k \rightarrow \infty} X_{t}^{n_{m_{k}}}(\omega)$. Since each $X^{n_{m_{k}}}$ is adapted and the filtration satisfies the usual conditions (in particular, it is P-complete), we get that X is adapted. We also know that X is RCLL by construction. By uniform convergence, we have that $X_{T}^{*}(\omega)=\lim _{k \rightarrow \infty}\left(X^{n_{m_{k}}}\right)_{T}^{*}(\omega)$ for almost all ω. Therefore, by Fatou's lemma and the Cauchy property,

$$
E\left[\left(X_{T}^{*}\right)^{2}\right]=E\left[\lim _{k \rightarrow \infty}\left(\left(X^{n_{m_{k}}}\right)_{T}^{*}\right)^{2}\right] \leq \liminf _{k \rightarrow \infty} E\left[\left(\left(X^{n_{m_{k}}}\right)_{T}^{*}\right)^{2}\right]<\infty
$$

This shows that $X \in \mathcal{R}^{2}$.
To prove that $X^{n_{m_{k}}} \rightarrow X$ in \mathcal{R}^{2}, it suffices to show that $\left|X^{n_{m_{k}}}-X\right|_{T}^{*} \rightarrow 0$ in $L^{2}(P)$. Indeed, each $\left|X^{n_{m_{k}}}-X\right|_{T}^{*} \in L^{2}(P)$ since $X^{n_{m_{k}}}, X \in \mathcal{R}^{2}$. Moreover, the sequence $\left(\left|X^{n_{m_{k}}}-X\right|_{T}^{*}\right)$ is Cauchy in L^{2}. Indeed, for $k, k^{\prime} \geq K$ we have by the reverse triangle inequality

$$
\left\|\left(\left(X^{n_{m_{k}}}-X\right)_{T}^{*}-\left(X^{n_{m_{k^{\prime}}}}-X\right)_{T}^{*}\right)\right\|_{L^{2}} \leq\left\|\left(X^{n_{m_{k}}}-X^{n_{m_{k^{\prime}}}}\right)_{T}^{*}\right\|_{L^{2}}=\left\|X^{n_{m_{k}}}-X^{n_{m_{k^{\prime}}}}\right\|_{\mathcal{R}^{2}} \rightarrow 0
$$

uniformly over k, k^{\prime} as $K \rightarrow \infty$, since $\left(X^{n_{m_{k}}}\right)$ is Cauchy in \mathcal{R}^{2}. By completeness of L^{2}, the sequence $\left(\left|X^{n_{m_{k}}}-X\right|_{T}^{*}\right)$ has a limit in L^{2}. Since it also converges to 0 almost surely, we have that $\left|X^{n_{m_{k}}}-X\right|_{T}^{*} \rightarrow 0$ in $L^{2}(P)$, so we conclude that $X^{n_{m_{k}}} \rightarrow X$ in \mathcal{R}^{2}, as we wanted. We showed that any subsequence ($X^{n_{m}}$) has a further subsequence ($X^{n_{m_{k}}}$) that converges in \mathcal{R}^{2}, therefore the original Cauchy sequence $\left(X^{n}\right)$ converges in \mathcal{R}^{2}.
To show that \mathcal{A}^{2} is a Banach space, we just need to identify

$$
\mathcal{A}^{2}=L^{2}(\Omega \times[0, T], \mathcal{P}, P \otimes d t)
$$

where \mathcal{P} is the predictable σ-algebra. Since this is an L^{2} space, we know that it is complete.
(b) Let β and γ be bounded by constants $B, C>0$ respectively. For any $p \geq 1$ we have that

$$
E\left[\exp \left(\frac{\langle-p \gamma \cdot W\rangle_{T}}{2}\right)\right]=E\left[\exp \left(\frac{p^{2}}{2} \int_{0}^{T}\left|\gamma_{s}\right|^{2} d s\right)\right] \leq \exp \left(\frac{T C^{2} p^{2}}{2}\right)<\infty
$$

so by Novikov's criterion, $\mathcal{E}(-p \gamma \bullet W)$ is a true martingale. Therefore, we have that

$$
\begin{aligned}
E\left[\mathcal{E}(-\gamma \bullet W)_{T}^{p}\right] & =E\left[\exp \left(-\int_{0}^{T} p \gamma_{s} d W_{s}-\int_{0}^{T} \frac{p \gamma_{s}^{2}}{2} d s\right)\right] \\
& \leq \exp \left(\frac{T\left(p^{2}-p\right) C^{2}}{2}\right) E\left[\mathcal{E}(-p \gamma \bullet W)_{T}\right] \\
& =\exp \left(\frac{T\left(p^{2}-p\right) C^{2}}{2}\right)
\end{aligned}
$$

By Doob's L^{p}-inequality, we obtain that

$$
E\left[\sup _{0 \leq t \leq T} \mathcal{E}(-\gamma \cdot W)_{t}^{p}\right] \leq\left(\frac{p}{p-1}\right)^{p} \exp \left(\frac{T\left(p^{2}-p\right) C^{2}}{2}\right)
$$

Therefore, bounding the finite variation term we conclude

$$
\begin{aligned}
E\left[\left(Y_{T}^{*}\right)^{p}\right] & =E\left[\sup _{t \in[0, T]} \mathcal{E}\left(-\int \beta_{s} d s-\int \gamma_{s} d W_{s}\right)_{t}^{p}\right] \\
& \leq\left(\frac{p}{p-1}\right)^{p} \exp \left(T p B+\frac{T\left(p^{2}-p\right) C^{2}}{2}\right)<\infty
\end{aligned}
$$

Exercise 12.3 Consider a probability space (Ω, \mathcal{F}, P) supporting a Brownian motion $W=\left(W_{t}\right)_{t \geq 0}$. Denote by $\mathbb{F}=\left(\mathcal{F}_{t}\right)_{t \geq 0}$ the P-augmentation of the (raw) filtration generated by W. Let $T>0$, $\alpha>0$ and let F be a bounded, \mathcal{F}_{T}-measurable random variable.
(a) Show that the process $X=\left(X_{t}\right)_{0 \leq t \leq T}$ given by

$$
X_{t}=-\alpha \log E\left[\exp (-F / \alpha) \mid \mathcal{F}_{t}\right]
$$

solves the BSDE

$$
\begin{aligned}
d X_{t} & =\frac{1}{2 \alpha} Z_{t}^{2} d t+Z_{t} d W_{t} \\
X_{T} & =F
\end{aligned}
$$

Hint: We have that $X_{t}=-\alpha \log Y_{t}$, where $Y_{t}:=E\left[\exp (-F / \alpha) \mid \mathcal{F}_{t}\right]$. Apply Itô's representation theorem to Y_{T} and Itô's formula to X to derive a solution pair $(X, Z) \in \mathcal{R}^{2} \times L^{2}(W)$ for the BSDE.
Remark: Note that the generator of this BSDE is not Lipschitz, but quadratic in Z.
(b) Let $b \in \mathbb{R}$. Show that the process $X=\left(X_{t}\right)_{0 \leq t \leq T}$ given by

$$
X_{t}=-\alpha\left(\frac{1}{2} b^{2}(t-T)-b W_{t}+\log E\left[\exp \left(b W_{T}-F / \alpha\right) \mid \mathcal{F}_{t}\right]\right)
$$

solves the BSDE

$$
\begin{aligned}
d X_{t} & =\left(\frac{1}{2 \alpha} Z_{t}^{2}-b Z_{t}\right) d t+Z_{t} d W_{t} \\
X_{T} & =F
\end{aligned}
$$

Solution 12.3

(a) Itô's representation theorem applied to the bounded random variable $\exp (-F / \alpha)$ gives a unique representation

$$
\exp (-F / \alpha)=E[\exp (-F / \alpha)]+\int_{0}^{T} H_{s} d W_{s}
$$

for some $H \in L_{\mathrm{loc}}^{2}(W)$ such that $H \bullet W$ is a true martingale. Since F is bounded, so is $\exp (-F / \alpha)$. Therefore, the continuous martingale $\left(Y_{t}\right)_{t \in[0, T]}$ defined by

$$
Y_{t}=\int_{0}^{t} H_{s} d W_{s}+E[\exp (-F / \alpha)]=E\left[\exp (-F / \alpha) \mid \mathcal{F}_{t}\right]
$$

is bounded as well. In particular, we have that $(H \bullet W)^{T} \in \mathcal{H}_{0}^{2, c}$, so $H \in L^{2}\left(W^{T}\right)$. Next, applying Itô's formula to $X_{t}=-\alpha \log Y_{t}$ and setting $Z_{t}:=-\frac{\alpha H_{t}}{Y_{t}}$ yields

$$
d X_{t}=-\frac{\alpha d Y_{t}}{Y_{t}}+\frac{\alpha d\langle Y\rangle_{t}}{2 Y_{t}^{2}}=-\frac{\alpha H_{t}}{Y_{t}} d W_{t}+\frac{\alpha H_{t}^{2}}{2 Y_{t}^{2}} d t=Z_{t} d W_{t}+\frac{1}{2 \alpha} Z_{t}^{2} d t
$$

and it only remains to show that $(X, Z) \in \mathcal{R}^{2} \times L^{2}\left(W^{T}\right)$. Since F is bounded, we have that $c \leq Y \leq C$ for some constants $0<c<C<\infty$. Hence, X is also bounded and thus $X \in \mathcal{R}^{2}$. Since Y is bounded away from 0 , we have that $Z \in L^{2}\left(W^{T}\right)$ as $H \in L^{2}\left(W^{T}\right)$.
(b) Consider the measure $Q \approx P$ with density process

$$
\left.\frac{d Q}{d P}\right|_{\mathcal{F}_{t}}=e^{b W_{t}-\frac{1}{2} b^{2} t}, \quad 0 \leq t \leq T
$$

By Girsanov's theorem, we obtain that $W_{t}^{Q}=W_{t}-b t$ is a Q-Brownian motion. Moreover, on $[0, T], W$ and W^{Q} generate the same filtration. We can rewrite the BSDE as

$$
\begin{aligned}
d X_{t} & =\frac{1}{2 \alpha} Z_{t}^{2} d t+Z_{t} d W_{t}^{Q} \\
X_{T} & =F
\end{aligned}
$$

Under Q, the BSDE is as in (a). Thus, we deduce that

$$
X_{t}=-\alpha \log E_{Q}\left[\exp (-F / \alpha) \mid \mathcal{F}_{t}\right]
$$

is a solution. Using the definition of Q and Bayes' formula (see Proposition 4.4.4 in the script), we obtain that

$$
\begin{aligned}
X_{t} & =-\alpha \log E_{Q}\left[\exp (-F / \alpha) \mid \mathcal{F}_{t}\right] \\
& =-\alpha \log \left(e^{-b W_{t}+\frac{1}{2} b^{2} t} E\left[\left.e^{b W_{T}-\frac{1}{2} b^{2} T} \exp (-F / \alpha) \right\rvert\, \mathcal{F}_{t}\right]\right) \\
& =-\alpha\left(\frac{b^{2}(t-T)}{2}-b W_{t}+\log E\left[\exp \left(b W_{T}-F / \alpha\right) \mid \mathcal{F}_{t}\right]\right)
\end{aligned}
$$

