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Exercise 12.1 Consider the SDE

dX7 = a(X7)dt + b(X7) dWy, (1)
X5 ==,

where W is an R™-valued Brownian motion and the functions a : R* — R? and b : R¢ — R4*™ are
measurable and locally bounded (i.e., bounded on compact sets). Let U C R? be a bounded open
set such that the stopping time T} := inf{s > 0: X7 ¢ U} is P-integrable for all € U. Consider

the boundary problem
Lu(z) + c(x)u(z) = — f(x) for z € U, (2)

u(z) = g(x) for x € OU,

where ¢, f € C,(U) and g € Cy(0U) are given functions such that ¢ < 0 on U, and the linear
operator L is defined by

d L 92 f
.
;al 8331 izjzzl (bb ) (@ )833’8331( z)-

Suppose that (XF);>o solves the SDE (1) for some x € U and u € C%(U) N C(U) is a solution to
the boundary problem (2). Show that

u(z) = E {g(x;g) exp ( /O i o(X?) dsﬂ + E{ OT{} F(XT) exp ( /O T (x) dr> ds}

Solution 12.1 For each n € N such that dist(z, U¢) > 1/n, define the stopping time
, 1

T, = inf{s >0:dist(XZ,U°) < } .
n

There exist functions u, € C*(R%R) such that u = u, on the set {z € U : dist(z,U®) > 1}. (see

the remark at the end). Let
t
Y, = un(XY) exp (/ c(XY) ds) .
0

By It0’s formula, we have that
t s
Y = up(x) —|—/ exp (/ c(Xf.”)dr) ((Lun(Xf) + o(XE)un(X?)) ds + Vun(Xm)b(Xf)dWS).
0 0
As b and ¢ are bounded on U C R and u,, € C?, we can easily check that the process
tAT), s
M :/ exp (/ c(Xff)dr) Vo, (X3)b(XZE)dW,
0 0

is in Hp'® (since (X*)T* does not leave U), so that M™ is a true martingale. Taking expectations,
we obtain

B[V ] - un() = E[ /0 O (Lun(X2) + (X7 )un(X7) e ( /O (X dr) ds}
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By the definition of T}¥, we have u, (X7, 1, ) = u(X{, 5, ) for t > 0, as dist(X[, . ,U¢) > +. Moreover,
un(x) = u(z) as dist(z,U¢) > 1/n. Since u solves (2), we get

u(z) = E[u(xgm) exp < /O n c(X?) dsﬂ VE { /O n FIXT) exp ( /O T (x7) dr> ds} 3)

By continuity of the process (dist(X7,U¢)), we have that T,, /T < oo, which is integrable by
assumption. Since ¢ < 0, for any n € N and t > 0, we have that

tAT,
w(XEer,) exp( / c(Xf)ds)\ < sup [u(y)]| < oo,
0 yeU

/oan X" exp </OS C(X;”)dr)‘ < T sup |f(y)].

yelU

Note that X7. < OU by the definition of T3}, so that u(X%E) = g(X%g) by (2). By the dominated
convergence theorem, we can let ¢ — co and n — oo in (3) to conclude

i F(X7) exp ( /O ) o(X7) dr> ds}

Remark: In order to find the smooth extensions u,, we can use the following lemma.

u(z) = E {g(xge;) exp ( /0 i o(X7) dsﬂ + E{

0

Lemma 1. Let K C R" be compact and C C R"™ be closed such that CN K = (). Then, there exists
a smooth function ¢ : R™ — R such that ¥(xz) =1 for all x € K and ¢(x) =0 for all x € C.

Proof. The set K is covered by the union of open balls
U {B:(z): 2 € K and ¢ € (0,dist(z, C)},

so that each ball satisfies B.(z) N C' = ). Since K is compact, there exists a finite subcover by open
balls B; := B.,(x;), where j = 1,...,J. We can find “bump functions” on each Bj, i.e., smooth
functions p; : R™ — R such that p;(z) > 0 for all z € B; and p;(z) =0 for all z € R \ B;.

Let ¢ = Z;]:l p;. By construction, we have that v is nonnegative, with ¢(z) > 0 for all z € K

while ¢(z) = 0 for all z € C. Since K is compact, we have that inf,cx ¢(z) = co > 0. We can
construct a smooth function ¢ : R — R such that ¢(x) = 0 for all x < 0 and ¢(z) =1 for all z > c.

Setting ¥ (x) = ¢(w(x)), it is easy to check that v satisfies the required properties. O

In the setting of the exercise, let

K :={z e U :dist(z,U° > 1/n},
C:={reU:dist(z,U°) < 1/(n+1)} DU,

with corresponding v, given by the lemma. We can find an extension u, : R™ — R as
up () = u(z), (z),

where u,(z) =0 for x € U¢ C C. Tt is easy to check that w,, satisfies the required properties.
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Exercise 12.2
(a) Show that the spaces R? and .A? defined in page 174 are Banach spaces.

(b) Let 8,~ be bounded predictable processes and define

Y:(S(—/b’sds—/%dws).

Show that, for any 7" > 0, the random variable

Y7 = sup [Y

0<s<T
is in LP for every p < co (see page 180).
Solution 12.2
(a) It is clear that R? is a normed space (up to equivalence classes) with norms || - |gr2. This

follows from the corresponding norm properties of the sup- and L?-norms. For example, to
show subadditivity, we have for X,Y € R? that

[X+Y Rz = [[(X+Y)7 | L2(p) < IX7+Y7lL2(p) < IX7ll2m) HIY7 2Py = [ X I R2+[Y ([ R2-

To prove that R? is complete, let (X™) be a Cauchy sequence in R2. Let (X™) be an
arbitrary subsequence. Note that, for £ > 0, we have by the Markov inequality that

I(X =Y)7lleep) <272 = PI(X —Y)p > 27" <2725
Therefore, since (X™) is Cauchy in R?, we can find a further subsequence (X™m) such that
P (X1 — Xy > 2F] < 272

for each k € N. By Borel-Cantelli, we have that P[A] = 1, where

A= N (G - xmmgp <2k

KeNk>K

Moy,

This implies that, for P-almost all w € ©, (X."™* (w)) is a Cauchy sequence of RCLL functions
with respect to the uniform norm. Since the space of RCLL functions is a Banach space, for
P-almost all w there exists an RCLL function X (w) such that X"« (w) — X (w) uniformly
as k — oo. Define X arbitrarily on the remaining nullset. We claim that X € R? and
X"me — X in R2

For each t € [0,T] and almost all w € Q, we have that X;(w) = limy_,00 X; ™* (w). Since
each X" is adapted and the filtration satisfies the usual conditions (in particular, it is
P-complete), we get that X is adapted. We also know that X is RCLL by construction. By
uniform convergence, we have that X (w) = limg_,o0 (X" )1 (w) for almost all w. Therefore,
by Fatou’s lemma and the Cauchy property,

B[(X7)] = B| Jim (X" )5)? | < liminf B [((X")5)?] < oo.

k—o0

This shows that X € R2.

To prove that X™mx — X in R?, it suffices to show that |X"=x — X | — 0 in L?(P). Indeed,
each | X" — X | € L?(P) since X", X € R%. Moreover, the sequence (| X" — X|%.) is
Cauchy in L?. Indeed, for k, k' > K we have by the reverse triangle inequality

(X e = X) g — (X = X)p) [z < (X7 = X )|z = [ X7 — X7 |2 — 0
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uniformly over k, k' as K — oo, since (X") is Cauchy in R?. By completeness of L?, the
sequence (| X" — X|%) has a limit in L?. Since it also converges to 0 almost surely, we have
that | X" — X|% — 0 in L?(P), so we conclude that X" — X in R? as we wanted. We
showed that any subsequence (X" ) has a further subsequence (X™mx) that converges in R?,
therefore the original Cauchy sequence (X™) converges in R?.

To show that A2 is a Banach space, we just need to identify
A% =L*Q x [0,T),P, P ®dt),
where P is the predictable o-algebra. Since this is an L? space, we know that it is complete.

(b) Let 8 and « be bounded by constants B, C' > 0 respectively. For any p > 1 we have that

e 2 T TO2p2
E [exp ((VYWF)] =F |exp (1)2/ |’Ys|2ds> < exp ( C2p ) < 00,
0

2
so by Novikov’s criterion, £(—py*W) is a true martingale. Therefore, we have that

T T 2
exp (—/ pysdWs — / s ds)]
0 o 2

< exp (W) E[E(=py*W)1]

- e (TE22E),

E[E(=yW)p]=E

By Doob’s LP-inequality, we obtain that

]« (1) on (7).

0<t<T 2

Therefore, bounding the finite variation term we conclude

P
sup 6( / Byds — / vsdws>
t€[0,T) t

p 2 2
< (P) exp (TpBH(pp)C) <>
p—1 2

El(Yr)']=E
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Exercise 12.3 Consider a probability space (€2, F, P) supporting a Brownian motion W = (W});>o.
Denote by F = (F;)i>0 the P-augmentation of the (raw) filtration generated by W. Let T > 0,
a > 0 and let F' be a bounded, Fr-measurable random variable.

(a) Show that the process X = (X;)o<t<T given by
X = —alog Elexp(—F/a) | Fi]
solves the BSDE

1
dX; = —Z%dt + Z;dWy,
2a
X =F.
Hint: We have that X; = —alogY;, where Y; := Elexp(—F/a)|F:]. Apply 1td’s representation

theorem to Y7 and It6’s formula to X to derive a solution pair (X, Z) € R? x L?(W) for the
BSDE.

Remark: Note that the generator of this BSDE is not Lipschitz, but quadratic in Z.
(b) Let b € R. Show that the process X = (X;)o<i<r given by
1
X, =—a <2b2(t —T) — bW, + log Elexp(bWr — F/a) | m)
solves the BSDE

1
dX; = (2 7z — bZt) dt + Z,dW,,
(07

Xr=F

Solution 12.3

(a) Ttd’s representation theorem applied to the bounded random variable exp(—F/«a) gives a
unique representation

T
exp(—F/a) = Elexp(—F/a)] —|—/0 HydW,

for some H € L% (W) such that H W is a true martingale. Since F' is bounded, so is

loc

exp(—F/a). Therefore, the continuous martingale (Y3)c[o,7] defined by
t
Y: = / H,dWs + Elexp(—F/a)] = Elexp(—F/a) | Fi]
0

is bounded as well. In particular, we have that (H+W)T € H2¢, so H € L2(WT). Next,

applying It6’s formula to X; = —alogY; and setting Z; := —O‘gt yields
adY;  ad{Y); aH; aH? 1.,
dX, = — =— AWy + —-dt = Zy dWy + — Z7 dt
t Y, + 2y Y, t+2Yt2 t t+2a ¢ at,

and it only remains to show that (X, Z) € R? x L2(WT). Since F is bounded, we have that
¢ <Y < C for some constants 0 < ¢ < C < co. Hence, X is also bounded and thus X € R2.
Since Y is bounded away from 0, we have that Z € L>(WT) as H € L*(WT).
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(b) Consider the measure @ =~ P with density process

dQ bW, —1b%t
—_— = t 0<t<T.
apls, =¢ 7 UStS

By Girsanov’s theorem, we obtain that WtQ = W; — bt is a -Brownian motion. Moreover,
on [0,T], W and W& generate the same filtration. We can rewrite the BSDE as

1
dX, = — Z2dt + ZdWE,
2ce
Xr=PF.
Under @, the BSDE is as in (a). Thus, we deduce that
X = —alog Eglexp(—F/a) | Fi

is a solution. Using the definition of @ and Bayes’ formula (see Proposition 4.4.4 in the
script), we obtain that

X = —alog Eglexp(—F/a) | Fi
= —alog (e*bwﬁéb% E[ebWT*%bQT exp(—F/a) | ]:t])

= —a <l)2(t2_T) — bW, + log Elexp(bWr — F/a) | ]:t]) .
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