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Exercise 12.1 Consider the SDE

dXx
t = a(Xx

t ) dt+ b(Xx
t ) dWt, (1)

Xx
0 = x,

where W is an Rm-valued Brownian motion and the functions a : Rd → Rd and b : Rd → Rd×m are
measurable and locally bounded (i.e., bounded on compact sets). Let U ⊆ Rd be a bounded open
set such that the stopping time T xU := inf{s ≥ 0 : Xx

s /∈ U} is P -integrable for all x ∈ U . Consider
the boundary problem

Lu(x) + c(x)u(x) = −f(x) for x ∈ U, (2)
u(x) = g(x) for x ∈ ∂U,

where c, f ∈ Cb(U) and g ∈ Cb(∂U) are given functions such that c ≤ 0 on U , and the linear
operator L is defined by

Lf(x) :=
d∑
i=1

ai(x) ∂f
∂xi

(x) + 1
2

d∑
i,j=1

(
b b>

)
ij

(x) ∂2f

∂xi ∂xj
(x).

Suppose that (Xx
t )t≥0 solves the SDE (1) for some x ∈ U and u ∈ C2(U) ∩ C(Ū) is a solution to

the boundary problem (2). Show that

u(x) = E

[
g(Xx

Tx
U

) exp
(∫ Tx

U

0
c(Xx

s ) ds
)]

+ E

[ ∫ Tx
U

0
f(Xx

s ) exp
(∫ s

0
c(Xx

r ) dr
)
ds

]
.

Solution 12.1 For each n ∈ N such that dist(x, U c) > 1/n, define the stopping time

Tn := inf
{
s ≥ 0 : dist(Xx

s , U
c) ≤ 1

n

}
.

There exist functions un ∈ C2(Rd;R) such that u = un on the set {z ∈ U : dist(z, U c) ≥ 1
n}. (see

the remark at the end). Let

Y nt := un(Xx
t ) exp

(∫ t

0
c(Xx

s ) ds
)
.

By Itô’s formula, we have that

Y nt = un(x) +
∫ t

0
exp

(∫ s

0
c(Xx

r )dr
)((

Lun(Xx
s ) + c(Xx

s )un(Xx
s )
)
ds+∇un(Xx

s )b(Xx
s )dWs

)
.

As b and c are bounded on U ⊆ R and un ∈ C2
c , we can easily check that the process

Mn
t =

∫ t∧Tn

0
exp

(∫ s

0
c(Xx

r )dr
)
∇un(Xx

s )b(Xx
s )dWs

is in H2,c
0 (since (Xx)Tn does not leave U), so that Mn is a true martingale. Taking expectations,

we obtain

E
[
Y nt∧Tn

]
− un(x) = E

[ ∫ t∧Tn

0

(
Lun(Xx

s ) + c(Xx
s )un(Xx

s )
)

exp
(∫ s

0
c(Xx

r ) dr
)
ds

]
.
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By the definition of T xn , we have un(Xx
t∧Tn

) = u(Xx
t∧Tn

) for t ≥ 0, as dist(Xx
t∧Tn

, U c) ≥ 1
n . Moreover,

un(x) = u(x) as dist(x, U c) > 1/n. Since u solves (2), we get

u(x) = E

[
u(Xx

t∧Tn
) exp

(∫ t∧Tn

0
c(Xx

s ) ds
)]

+ E

[ ∫ t∧Tn

0
f(Xx

s ) exp
(∫ s

0
c(Xx

r ) dr
)
ds

]
. (3)

By continuity of the process (dist(Xx
t , U

c)), we have that Tn ↗ T xU < ∞, which is integrable by
assumption. Since c ≤ 0, for any n ∈ N and t ≥ 0, we have that∣∣∣∣u(Xx

t∧Tn
) exp

(∫ t∧Tn

0
c(Xx

s ) ds
)∣∣∣∣ ≤ sup

y∈Ū
|u(y)| <∞,∣∣∣∣ ∫ t∧Tn

0
f(Xx

s ) exp
(∫ s

0
c(Xx

r )dr
)∣∣∣∣ ≤ T xU sup

y∈Ū
|f(y)|.

Note that Xx
Tx

U
∈ ∂U by the definition of T xU , so that u(Xx

Tx
U

) = g(Xx
Tx

U
) by (2). By the dominated

convergence theorem, we can let t→∞ and n→∞ in (3) to conclude

u(x) = E

[
g(Xx

Tx
U

) exp
(∫ Tx

U

0
c(Xx

s ) ds
)]

+ E

[ ∫ Tx
U

0
f(Xx

s ) exp
(∫ s

0
c(Xx

r ) dr
)
ds

]
.

Remark: In order to find the smooth extensions un, we can use the following lemma.

Lemma 1. Let K ⊆ Rn be compact and C ⊆ Rn be closed such that C ∩K = ∅. Then, there exists
a smooth function ψ : Rn → R such that ψ(x) = 1 for all x ∈ K and ψ(x) = 0 for all x ∈ C.

Proof. The set K is covered by the union of open balls⋃
{Bε(x) : x ∈ K and ε ∈ (0,dist(x,C)},

so that each ball satisfies Bε(x)∩C = ∅. Since K is compact, there exists a finite subcover by open
balls Bj := Bεj (xj), where j = 1, . . . , J . We can find “bump functions” on each Bj , i.e., smooth
functions ρj : Rn → R such that ρj(x) > 0 for all x ∈ Bj and ρj(x) = 0 for all x ∈ Rn \Bj .

Let ψ̃ :=
∑J
j=1 ρj . By construction, we have that ψ̃ is nonnegative, with ψ̃(x) > 0 for all x ∈ K

while ψ̃(x) = 0 for all x ∈ C. Since K is compact, we have that infx∈K ψ(x) = c0 > 0. We can
construct a smooth function φ : R→ R such that φ(x) = 0 for all x ≤ 0 and φ(x) = 1 for all x ≥ c0.
Setting ψ(x) = φ(ψ̃(x)), it is easy to check that ψ satisfies the required properties.

In the setting of the exercise, let

K := {x ∈ U : dist(x, U c) ≥ 1/n},
C := {x ∈ U : dist(x, U c) ≤ 1/(n+ 1)} ⊇ U c,

with corresponding ψn given by the lemma. We can find an extension un : Rn → R as

un(x) = u(x)ψn(x),

where un(x) = 0 for x ∈ U c ⊆ C. It is easy to check that un satisfies the required properties.
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Exercise 12.2

(a) Show that the spaces R2 and A2 defined in page 174 are Banach spaces.

(b) Let β, γ be bounded predictable processes and define

Y = E
(
−
∫
βsds−

∫
γsdWs

)
.

Show that, for any T > 0, the random variable

Y ∗T := sup
0≤s≤T

|Ys|

is in Lp for every p <∞ (see page 180).

Solution 12.2

(a) It is clear that R2 is a normed space (up to equivalence classes) with norms ‖ · ‖R2 . This
follows from the corresponding norm properties of the sup- and L2-norms. For example, to
show subadditivity, we have for X,Y ∈ R2 that

‖X+Y ‖R2 = ‖(X+Y )∗T ‖L2(P ) ≤ ‖X∗T+Y ∗T ‖L2(P ) ≤ ‖X∗T ‖L2(P )+‖Y ∗T ‖L2(P ) = ‖X‖R2+‖Y ‖R2 .

To prove that R2 is complete, let (Xn) be a Cauchy sequence in R2. Let (Xnm) be an
arbitrary subsequence. Note that, for k ≥ 0, we have by the Markov inequality that

‖(X − Y )∗T ‖L2(P ) ≤ 2−2k ⇒ P [(X − Y )∗T > 2−k] ≤ 2−2k.

Therefore, since (Xnm) is Cauchy in R2, we can find a further subsequence (Xnmk ) such that

P
[
(Xnmk+1 −Xnmk )∗T > 2−k

]
≤ 2−2k

for each k ∈ N. By Borel–Cantelli, we have that P [A] = 1, where

A =
⋃
K∈N

⋂
k≥K

{
(Xnmk+1 −Xnmk )∗T ≤ 2−k

}
.

This implies that, for P -almost all ω ∈ Ω, (Xnmk
· (ω)) is a Cauchy sequence of RCLL functions

with respect to the uniform norm. Since the space of RCLL functions is a Banach space, for
P -almost all ω there exists an RCLL function X(ω) such that Xnmk (ω)→ X(ω) uniformly
as k → ∞. Define X arbitrarily on the remaining nullset. We claim that X ∈ R2 and
Xnmk → X in R2.
For each t ∈ [0, T ] and almost all ω ∈ Ω, we have that Xt(ω) = limk→∞X

nmk
t (ω). Since

each Xnmk is adapted and the filtration satisfies the usual conditions (in particular, it is
P -complete), we get that X is adapted. We also know that X is RCLL by construction. By
uniform convergence, we have that X∗T (ω) = limk→∞(Xnmk )∗T (ω) for almost all ω. Therefore,
by Fatou’s lemma and the Cauchy property,

E
[
(X∗T )2] = E

[
lim
k→∞

((Xnmk )∗T )2
]
≤ lim inf

k→∞
E
[
((Xnmk )∗T )2] <∞.

This shows that X ∈ R2.
To prove that Xnmk → X in R2, it suffices to show that |Xnmk −X|∗T → 0 in L2(P ). Indeed,
each |Xnmk −X|∗T ∈ L2(P ) since Xnmk , X ∈ R2. Moreover, the sequence (|Xnmk −X|∗T ) is
Cauchy in L2. Indeed, for k, k′ ≥ K we have by the reverse triangle inequality

‖((Xnmk −X)∗T − (Xnm
k′ −X)∗T )‖L2 ≤ ‖(Xnmk −Xnm

k′ )∗T ‖L2 = ‖Xnmk −Xnm
k′ ‖R2 → 0
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uniformly over k, k′ as K →∞, since (Xnmk ) is Cauchy in R2. By completeness of L2, the
sequence (|Xnmk −X|∗T ) has a limit in L2. Since it also converges to 0 almost surely, we have
that |Xnmk −X|∗T → 0 in L2(P ), so we conclude that Xnmk → X in R2, as we wanted. We
showed that any subsequence (Xnm) has a further subsequence (Xnmk ) that converges in R2,
therefore the original Cauchy sequence (Xn) converges in R2.
To show that A2 is a Banach space, we just need to identify

A2 = L2(Ω× [0, T ],P, P ⊗ dt),

where P is the predictable σ-algebra. Since this is an L2 space, we know that it is complete.

(b) Let β and γ be bounded by constants B,C > 0 respectively. For any p ≥ 1 we have that

E

[
exp

(
〈−pγ •W 〉T

2

)]
= E

[
exp

(
p2

2

∫ T

0
|γs|2ds

)]
≤ exp

(
TC2p2

2

)
<∞,

so by Novikov’s criterion, E(−pγ •W ) is a true martingale. Therefore, we have that

E [E(−γ •W )pT ] = E

[
exp

(
−
∫ T

0
pγsdWs −

∫ T

0

pγ2
s

2 ds

)]

≤ exp
(
T (p2 − p)C2

2

)
E[E(−pγ •W )T ]

= exp
(
T (p2 − p)C2

2

)
.

By Doob’s Lp-inequality, we obtain that

E

[
sup

0≤t≤T
E(−γ •W )pt

]
≤
(

p

p− 1

)p
exp

(
T (p2 − p)C2

2

)
.

Therefore, bounding the finite variation term we conclude

E[(Y ∗T )p] = E

[
sup
t∈[0,T ]

E
(
−
∫
βsds−

∫
γsdWs

)p
t

]

≤
(

p

p− 1

)p
exp

(
TpB + T (p2 − p)C2

2

)
<∞.
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Exercise 12.3 Consider a probability space (Ω,F , P ) supporting a Brownian motionW = (Wt)t≥0.
Denote by F = (Ft)t≥0 the P -augmentation of the (raw) filtration generated by W . Let T > 0,
α > 0 and let F be a bounded, FT -measurable random variable.

(a) Show that the process X = (Xt)0≤t≤T given by

Xt = −α logE[exp(−F/α) | Ft]

solves the BSDE

dXt = 1
2αZ

2
t dt+ ZtdWt,

XT = F.

Hint: We have that Xt = −α log Yt, where Yt := E[exp(−F/α)|Ft]. Apply Itô’s representation
theorem to YT and Itô’s formula to X to derive a solution pair (X,Z) ∈ R2 × L2(W ) for the
BSDE.
Remark: Note that the generator of this BSDE is not Lipschitz, but quadratic in Z.

(b) Let b ∈ R. Show that the process X = (Xt)0≤t≤T given by

Xt = −α
(

1
2b

2(t− T )− bWt + logE[exp(bWT − F/α) | Ft]
)

solves the BSDE

dXt =
(

1
2α Z

2
t − b Zt

)
dt+ ZtdWt,

XT = F.

Solution 12.3

(a) Itô’s representation theorem applied to the bounded random variable exp(−F/α) gives a
unique representation

exp(−F/α) = E[exp(−F/α)] +
∫ T

0
HsdWs

for some H ∈ L2
loc(W ) such that H •W is a true martingale. Since F is bounded, so is

exp(−F/α). Therefore, the continuous martingale (Yt)t∈[0,T ] defined by

Yt =
∫ t

0
HsdWs + E[exp(−F/α)] = E[exp(−F/α) | Ft]

is bounded as well. In particular, we have that (H •W )T ∈ H2,c
0 , so H ∈ L2(WT ). Next,

applying Itô’s formula to Xt = −α log Yt and setting Zt := −αHt

Yt
yields

dXt = −αdYt
Yt

+ αd〈Y 〉t
2Y 2

t

= −αHt

Yt
dWt + αH2

t

2Y 2
t

dt = Zt dWt + 1
2αZ

2
t dt,

and it only remains to show that (X,Z) ∈ R2 × L2(WT ). Since F is bounded, we have that
c ≤ Y ≤ C for some constants 0 < c < C <∞. Hence, X is also bounded and thus X ∈ R2.
Since Y is bounded away from 0, we have that Z ∈ L2(WT ) as H ∈ L2(WT ).
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(b) Consider the measure Q ≈ P with density process

dQ

dP

∣∣∣
Ft

= ebWt− 1
2 b

2t, 0 ≤ t ≤ T.

By Girsanov’s theorem, we obtain that WQ
t = Wt − bt is a Q-Brownian motion. Moreover,

on [0, T ], W and WQ generate the same filtration. We can rewrite the BSDE as

dXt = 1
2αZ

2
t dt+ ZtdW

Q
t ,

XT = F.

Under Q, the BSDE is as in (a). Thus, we deduce that

Xt = −α logEQ[exp(−F/α) | Ft]

is a solution. Using the definition of Q and Bayes’ formula (see Proposition 4.4.4 in the
script), we obtain that

Xt = −α logEQ[exp(−F/α) | Ft]

= −α log
(
e−bWt+ 1

2 b
2tE[ebWT− 1

2 b
2T exp(−F/α) | Ft]

)
= −α

(
b2(t− T )

2 − bWt + logE[exp(bWT − F/α) | Ft]
)
.
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