Brownian Motion and Stochastic Calculus

Exercise sheet 13

Exercise 13.1 Let X be a Lévy process with values in \mathbb{R}^{d} and $f_{t}(u):=E\left[e^{\mathrm{i} u^{\top} X_{t}}\right]$. Recall that X is stochastically continuous, i.e., the map $t \mapsto X_{t}$ is continuous in probability, and that $f_{t+s}(u)=f_{t}(u) f_{s}(u)$ and $f_{0}(u)=1$ for all $s, t \geq 0$ and $u \in \mathbb{R}^{d}$.
(a) Show that $f_{s}(u)^{n}=f_{n s}(u)$ and $f_{t}(u)=f_{t / n}(u)^{n}$ for all $n \in \mathbb{N}$ and $s, t \geq 0$.
(b) Show that $t \mapsto f_{t}(u)$ is right-continuous and $f_{t}(u) \neq 0$ for all $t \geq 0$ and $u \in \mathbb{R}^{d}$.
(c) Fix $u \in \mathbb{R}^{d}$ and let $\tilde{z} \in \mathbb{C}$ be such that $f_{1}(u)=\exp (\tilde{z})$. Show that there exists a unique $\hat{k} \in \mathbb{Z}$ such that

$$
f_{2^{-n}}(u)=\exp \left(\frac{\tilde{z}+2 \hat{k} \pi \mathrm{i}}{2^{n}}\right)
$$

for each $n \in \mathbb{N}$.
(d) In the setup of (e), let $z:=\tilde{z}+2 \hat{k} \pi i$ and define the function $g(t)=\exp (t z)$ (which can be seen as a definition of $\left.t \mapsto f_{1}(u)^{t}\right)$. Show that $f_{t}(u)=g(t)$ for all $t \geq 0$.

Solution 13.1

(a) It follows by induction on n that $f_{s}(u)^{n}=f_{n s}(u)$ for any $s \geq 0$ and $n \in \mathbb{N}$. The second claim follows by setting $s=t / n$.
(b) Right-continuity of $t \mapsto f_{t}(u)$ follows immediately from right-continuity of X and the dominated convergence theorem. Assume that $f_{t}(u)=0$ for some $t>0$ and $u \in \mathbb{R}^{d}$. Then it follows that $f_{t / n}(u)^{n}=f_{t}(u)=0$, so that $f_{t / n}(u)=0$ for all $n \in \mathbb{N}$. Taking $n \rightarrow \infty$, we obtain a contradiction to the right-continuity at 0 because $f_{0}(u)=1$.
(c) Since $f_{1}(u) \neq 0$, there exists such a $\tilde{z} \in \mathbb{C}$. For $n \in \mathbb{N}_{0}$, let

$$
A_{n}=\left\{k \in \mathbb{Z}: f_{2^{-m}}(u)=\exp \left(\frac{\tilde{z}+2 \hat{k} \pi \mathrm{i}}{2^{m}}\right) \text { for each } m=0, \ldots, n\right\}
$$

Since $\exp (2 \pi \mathrm{i})=1$, it is clear that $A_{0}=\mathbb{Z}$. Since $f_{1 / 2}(u)^{2}=f_{1}(z)$, it is easy to check that either $A_{1}=2 \mathbb{Z}$ or $A_{1}=1+2 \mathbb{Z}$. In other words, A_{1} is an element of $\mathbb{Z} / 2 \mathbb{Z}$. Likewise, $A_{2} \in\{m+4 \mathbb{Z}: m=0,1,2,3\}=\mathbb{Z} / 4 \mathbb{Z}$, and so on. Let k_{n} be the element of A_{n} with minimum norm (we take the positive one if there are two such elements). We claim that $\left(k_{n}\right)_{n \in \mathbb{N}}$ converges stationarily, i.e., there exists $N \in \mathbb{N}$ such that $k_{n}=k_{N}$ for all $n \geq N$. This implies that $\hat{k}=k_{N}=\lim _{n \rightarrow \infty} k_{n}$ exists and satisfies the requirement.
Since $A_{0} \supseteq A_{1} \supseteq \cdots$ and each $A_{n} \in \mathbb{Z} / 2^{n} \mathbb{Z}$, we can see that $k_{n} \in\left\{k_{n-1}, k_{n-1}+2^{n-1}\right\}$ if $k_{n} \leq 0$, or $k_{n} \in\left\{k_{n-1}-2^{n-1}, k_{n-1}\right\}$ if $k_{n-1}>0$. This implies that $\left|k_{n}\right| \leq 2^{n-1}$ and also that if $k_{n} \neq k_{n-1}$, then

$$
\left|k_{n}\right| \geq 2^{n-1}-\left|k_{n-1}\right| \geq 2^{n-1}-2^{n-2}=2^{n-2}
$$

We can now show that $\left(k_{n}\right)$ converges stationarily. By (b), $t \mapsto f_{t}(u)$ is right-continuous at $t=0$ with $f_{0}(u)=1$, which implies that $\lim _{n \rightarrow \infty} f_{2^{-n}}(u)=1$. Since $2^{-n} \tilde{z} \rightarrow 0$, it follows that

$$
\lim _{n \rightarrow \infty} \exp \left(\frac{2 k_{n} \pi \mathrm{i}}{2^{n}}\right)=\lim _{n \rightarrow \infty} f_{2^{-n}}(u) \exp \left(-2^{-n} \tilde{z}\right)=1
$$

Since $\left|k_{n}\right| \leq 2^{n-1}$, we have that $\left|\frac{2 k_{n} \pi}{2^{n}}\right| \leq \pi$. This is smaller than 2π, which implies that the exponent must converge to 0 , i.e., $2^{-n} k_{n} \rightarrow 0$. However, for any $n \in \mathbb{N}$ such that $k_{n} \neq k_{n-1}$, we have that $\left|2^{-n} k_{n}\right| \geq 2^{-n} 2^{n-2}=1 / 4$. Therefore, there exist only finitely many n such that $k_{n} \neq k_{n-1}$, thus $\left(k_{n}\right)$ converges stationarily to a limit \hat{k}. Since $k_{n}=\hat{k}$ for all large enough n, we have that \hat{k} satisfies the required property.
It is clear that \hat{k} is unique, since for any other \tilde{k} we have that $\left|2(\hat{k}-\tilde{k}) \pi i / 2^{n}\right|<2 \pi$ for large enough n. This implies that

$$
\exp \left(\frac{\tilde{z}+2 \hat{k} \pi \mathrm{i}}{2^{n}}\right) \neq \exp \left(\frac{\tilde{z}+2 \tilde{k} \pi \mathrm{i}}{2^{n}}\right)
$$

so that the equation for $f_{2^{-n}}(u)$ cannot hold for both \hat{k} and \tilde{k}.
(d) By (c), we have that $g\left(2^{-n}\right)=f_{2^{-n}}(u)$ for each $n \in \mathbb{N}$, and we also have that $g(0)=f_{0}(u)=1$. We get by (a) that

$$
f_{m 2^{-n}}(u)=f_{2^{-n}}(u)^{m}=\exp \left(2^{-n} z\right)^{m}=\exp \left(m 2^{-n} z\right)=g\left(m 2^{-n}\right)
$$

for all $m, n \in \mathbb{N}$. Note that the set $\left\{m 2^{-n}: m, n \in \mathbb{Z}\right\}$ is dense in \mathbb{R}_{+}. Since g is continuous and $t \mapsto f_{t}(u)$ is right-continuous by (b), we can take right limits to show that $f_{t}(u)=g(t)$ for all $t \geq 0$, as we wanted.

Exercise 13.2

(a) Let N be a one-dimensional Poisson process and $\left(Y_{i}\right)_{i \geq 1}$ a sequence of i.i.d. \mathbb{R}^{d}-valued random variables independent of N. We define the compound Poisson process by $X_{t}:=\sum_{j=1}^{N_{t}} Y_{j}$. Show that X is a Lévy process and calculate its Lévy triplet.
(b) Does there exist a Lévy process X such that X_{1} is uniformly distributed on $[0,1]$?
(c) Let $\left(X_{t}\right)_{t \geq 0}$ and $\left(Y_{t}\right)_{t \geq 0}$ be \mathbb{R}^{d}-valued processes such that the joint process (X, Y) is Lévy with respect to a filtration $\mathbb{F}=\left(\mathcal{F}_{t}\right)$. Show that if $E\left[e^{\mathrm{i} u^{\top} X_{t}} e^{\mathrm{i} v^{\top} Y_{t}}\right]=E\left[e^{\mathrm{i} u^{\top} X_{t}}\right] E\left[e^{\mathrm{i} v^{\top} Y_{t}}\right]$ for all $u, v \in \mathbb{R}^{d}$ and $t \geq 0$, then X and Y are independent.

Solution 13.2

(a) Define the discrete-time process $\left(\tilde{X}_{n}\right)_{n \in \mathbb{N}_{0}}$ by $\tilde{X}_{n}=\sum_{j=1}^{n} Y_{j}$, with natural filtration given by $\tilde{\mathcal{F}}_{n}=\sigma\left(Y_{1}, \ldots, Y_{n}\right)$. It is clear that $\tilde{X}_{0}=0$ and \tilde{X} has stationary and independent increments. We also know that the Poisson process N is a Lévy process independent from \tilde{X}. In particular, $\mathcal{F}_{\infty}^{N}=\sigma\left(N_{t}: t \geq 0\right)$ and $\tilde{\mathcal{F}}_{\infty}=\sigma\left(Y_{1}, Y_{2}, \ldots\right)$ are independent σ-algebras. We need to show that the process $\left(X_{t}\right)_{t \geq 0}$ defined by

$$
X_{t}=\sum_{j=1}^{N_{t}} Y_{j}=\tilde{X}_{N_{t}}
$$

is Lévy. For $0 \leq t_{1}<\cdots<t_{m}$ and bounded measurable functions f_{j}, define the function $g_{j}(n):=E\left[f_{j}\left(\tilde{X}_{n}\right)\right]$. Using the properties of \tilde{X} and N, we have that

$$
\begin{aligned}
E\left[\prod_{j=1}^{m} f_{j}\left(X_{t_{j}}-X_{t_{j-1}}\right)\right] & =E\left[\prod_{j=1}^{m} f_{j}\left(\tilde{X}_{N_{t_{j}}}-\tilde{X}_{N_{t_{j-1}}}\right)\right] \\
& =E\left[E\left[\prod_{j=1}^{m} f_{j}\left(\tilde{X}_{N_{t_{j}}}-\tilde{X}_{N_{t_{j-1}}}\right) \mid \mathcal{F}_{\infty}^{N}\right]\right] \\
& =E\left[\left.E\left[\prod_{j=1}^{m} f_{j}\left(\tilde{X}_{n_{j}}-\tilde{X}_{n_{j-1}}\right)\right]\right|_{n_{j}=N_{t_{j}}}\right] \\
& =E\left[\left.\prod_{j=1}^{m} E\left[f_{j}\left(\tilde{X}_{n_{j}}-\tilde{X}_{n_{j-1}}\right)\right]\right|_{n_{j}=N_{t_{j}}}\right] \\
& =E\left[\left.\prod_{j=1}^{m} E\left[f_{j}\left(\tilde{X}_{n_{j}-n_{j-1}}\right)\right]\right|_{n_{j}=N_{t_{j}}}\right] \\
& =E\left[\prod_{j=1}^{m} g_{j}\left(N_{t_{j}}-N_{t_{j-1}}\right)\right]=\prod_{j=1}^{m} E\left[g_{j}\left(N_{t_{j}}-N_{t_{j-1}}\right)\right] \\
& =\prod_{j=1}^{m} E\left[g_{j}\left(N_{t_{j}-t_{j-1}}\right)\right]=\prod_{j=1}^{m} E\left[\left.E\left[f_{j}\left(\tilde{X}_{n_{j}}\right)\right]\right|_{\left.n_{j}=N_{t_{j}-t_{j-1}}\right]}\right] \\
& =\prod_{j=1}^{m} E\left[E\left[f_{j}\left(\tilde{X}_{N_{t_{j}-t_{j-1}}}\right) \mid \mathcal{F}_{\infty}^{N}\right]\right]=\prod_{j=1}^{m} E\left[f_{j}\left(X_{t_{j}-t_{j-1}}\right)\right] .
\end{aligned}
$$

As in the solution to Exercise 6.2, this shows that X is Lévy (also noting that $X_{0}=0$).

Next, we calculate the Lévy triplet. For $u \in \mathbb{R}^{d}$,

$$
\begin{aligned}
E\left[e^{\mathrm{i} u^{\top} X_{t}}\right] & =E\left[\sum_{n \geq 0} \mathbb{1}_{\left\{N_{t}=n\right\}} \prod_{j=1}^{n} e^{\mathrm{i} u^{\top} Y_{j}}\right]=\sum_{n \geq 0} P\left[N_{t}=n\right]\left(E\left[e^{\mathrm{i} u^{\top} Y_{1}}\right]\right)^{n} \\
& =\sum_{n \geq 0} \frac{e^{-\lambda t}(\lambda t)^{n}}{n!}\left(E\left[e^{\mathrm{i} u^{\top} Y_{1}}\right]\right)^{n}=e^{-\lambda t} \exp \left(\lambda t E\left[e^{\mathrm{i} u^{\top} Y_{1}}\right]\right) \\
& =\exp \left(\lambda t\left(E\left[e^{\mathrm{i} u^{\top} Y_{1}}\right]-1\right)\right)
\end{aligned}
$$

Let ν^{Y} be the distribution of Y_{1} and $\nu:=\lambda \nu^{Y}$. Then

$$
\lambda\left(E\left[e^{\mathrm{i} u^{\top} Y_{1}}\right]-1\right)=\lambda \int\left(e^{\mathrm{i} u^{\top} x}-1\right) d \nu^{Y}=\int\left(e^{\mathrm{i} u^{\top} x}-1\right) d \nu
$$

Truncating as in the lecture notes, we can decompose
$E\left[e^{\mathrm{i} u^{\top} X_{t}}\right]=\exp \left(t \int\left(e^{\mathrm{i} u^{\top} x}-1\right) d \nu\right)=\exp \left(t\left(\int x \mathbb{1}_{|x| \leq 1} d \nu+\int\left(e^{\mathrm{i} u^{\top} x}-1-x \mathbb{1}_{|x| \leq 1}\right) d \nu\right)\right)$.
Therefore, we obtain the triplet $(b, 0, \nu)$, where $b=\int_{\{x:|x| \leq 1\}} x d \nu$.
(b) The characteristic function of X_{1} is

$$
f_{1}(u)=\varphi_{X_{1}}(u)=\int_{0}^{1} e^{\mathrm{i} u x} d x=\left[\frac{e^{\mathrm{i} u x}}{\mathrm{i} u}\right]_{x=0}^{x=1}=\frac{e^{\mathrm{i} u}-1}{\mathrm{i} u}
$$

which has a zero at $u=2 \pi$. This would contradict Exercise 13.1 (d), hence there is no such Lévy process.
Alternative proof: We can generalise the result to any random variable X_{1} with compact support $\operatorname{supp}\left(X_{1}\right) \subseteq[a, b]$, for some $a<b$. We claim that if X_{1} is infinitely divisible, then X_{1} is constant. Hence there is no Lévy process X such that X_{1} is uniformly distributed on $[0,1]$.
By infinite divisibility, for each n we have $X_{1}=\sum_{j=1}^{n} Y_{j}^{n}$, where the random variables $\left(Y_{j}^{n}\right)_{j=1}^{n}$ are i.i.d. This implies that $\operatorname{supp}\left(Y_{j}^{n}\right) \subseteq[a / n, b / n]$. Indeed, suppose by contradiction that $P\left[Y_{j}^{n}>b / n\right]>0$. As the Y_{j}^{n} are i.i.d., we would have that

$$
P\left[X_{1}>b\right] \geq P\left[\bigcap_{j=1}^{n}\left\{Y_{j}^{n}>\frac{b}{n}\right\}\right]=P\left[Y_{j}^{n}>\frac{b}{n}\right]^{n}>0
$$

which contradicts the fact that $\operatorname{supp}\left(X_{1}\right) \subseteq[a, b]$. The case $P\left[Y_{j}^{n}<a / n\right]>0$ is analogous. Since $\operatorname{supp}\left(Y_{j}^{n}\right) \subseteq[a / n, b / n]$, we have that $\operatorname{Var}\left(Y_{j}^{n}\right) \leq(b-a)^{2} / n^{2}$. Therefore, we can bound $\operatorname{Var}\left(X_{1}\right) \leq(b-a)^{2} / n \rightarrow 0$ as $n \rightarrow \infty$, so X_{1} is constant.
(c) We need to show that $\left(X_{t_{1}}, \ldots, X_{t_{n}}\right)$ is independent of $\left(Y_{t_{1}}, \ldots, Y_{t_{n}}\right)$ for any $n \in \mathbb{N}$ and $0=t_{0}<t_{1}<\cdots<t_{n}$. This follows if we can show that the random variables

$$
X_{t_{1}}-X_{t_{0}}, \ldots, X_{t_{n}}-X_{t_{n-1}}, Y_{t_{1}}-Y_{t_{0}}, \ldots, Y_{t_{n}}-Y_{t_{n-1}}
$$

are independent. For $j=1, \ldots, n$ and $u_{j}, v_{j} \in \mathbb{R}^{d}$, we have that

$$
\begin{aligned}
& E\left[\prod_{j=1}^{n} e^{\mathrm{i} u_{j}^{\top}\left(X_{t_{j}}-X_{t_{j-1}}\right)+\mathrm{i} v_{j}^{\top}\left(Y_{t_{j}}-Y_{t_{j-1}}\right)}\right]=E\left[E \left[\prod_{j=1}^{n} e^{\left.\left.\mathrm{i} u_{j}^{\top}\left(X_{t_{j}}-X_{t_{j-1}}\right)+\mathrm{i} v_{j}^{\top}\left(Y_{t_{j}}-Y_{t_{j-1}}\right) \mid \mathcal{F}_{t_{n-1}}\right]\right]} \begin{array}{l}
\quad=E\left[E\left[e^{\mathrm{i} u_{j}^{\top}\left(X_{t_{n}}-X_{t_{n-1}}\right)+\mathrm{i} v_{j}^{\top}\left(Y_{t_{n}}-Y_{t_{n-1}}\right)} \mid \mathcal{F}_{t_{n-1}}\right] \prod_{j=1}^{n-1} e^{\mathrm{i} u_{j}^{\top}\left(X_{t_{j}}-X_{t_{j-1}}\right)+\mathrm{i} v_{j}^{\top}\left(Y_{t_{j}}-Y_{t_{j-1}}\right)}\right] .
\end{array} . . .\right.\right.
\end{aligned}
$$

Since (X, Y) is a Lévy process with respect to \mathbb{F}, in particular so is $u_{j}^{\top} X+v_{j}^{\top} Y$, so that $u_{j}^{\top}\left(X_{t_{n}}-X_{t_{n-1}}\right)+v_{j}^{\top}\left(Y_{t_{n}}-Y_{t_{n-1}}\right)$ is independent of $\mathcal{F}_{t_{n-1}}$ and has the same distribution as $u_{j}^{\top} X_{t_{n}-t_{n-1}}+v_{j}^{\top} Y_{t_{n}-t_{n-1}}$. Therefore, the expression above is equal to

$$
E\left[e^{\mathrm{i} u_{j}^{\top} X_{t_{n}-t_{n-1}}+\mathrm{i} v_{j}^{\top} Y_{t_{n}-t_{n-1}}}\right] E\left[\prod_{j=1}^{n-1} e^{\mathrm{i} u_{j}^{\top}\left(X_{t_{j}}-X_{t_{j-1}}\right)+\mathrm{i} v_{j}^{\top}\left(Y_{t_{j}}-Y_{t_{j-1}}\right)}\right] .
$$

We can apply an inductive argument to the remaining product to obtain that

$$
E\left[\prod_{j=1}^{n} e^{\mathrm{i} u_{j}^{\top}\left(X_{t_{j}}-X_{t_{j-1}}\right)+\mathrm{i} v_{j}^{\top}\left(Y_{t_{j}}-Y_{t_{j-1}}\right)}\right]=\prod_{j=1}^{n} E\left[e^{\mathrm{i} u_{j}^{\top} X_{t_{j}-t_{j-1}}+\mathrm{i} v_{j}^{\top} Y_{t_{j}-t_{j-1}}}\right] .
$$

Finally, by the assumption on X and Y we have that

$$
\begin{aligned}
\prod_{j=1}^{n} E\left[e^{\mathrm{i} u_{j}^{\top} X_{t_{j}-t_{j-1}}+\mathrm{i} v_{j}^{\top} Y_{t_{j}-t_{j-1}}}\right] & =\prod_{j=1}^{n} E\left[e^{\mathrm{i} u_{j}^{\top} X_{t_{j}-t_{j-1}}}\right] E\left[e^{\mathrm{i} v_{j}^{\top} Y_{t_{j}-t_{j-1}}}\right] \\
& =\prod_{j=1}^{n} E\left[e^{\mathrm{i} u_{j}^{\top}\left(X_{t_{j}}-X_{t_{j-1}}\right)}\right] E\left[e^{\mathrm{i} v_{j}^{\top}\left(Y_{t_{j}}-Y_{t_{j-1}}\right)}\right] .
\end{aligned}
$$

This shows our claim that the random variables

$$
X_{t_{1}}-X_{t_{0}}, \ldots, X_{t_{n}}-X_{t_{n-1}}, Y_{t_{1}}-Y_{t_{0}}, \ldots, Y_{t_{n}}-Y_{t_{n-1}}
$$

are independent. In particular, the vectors

$$
\left(X_{t_{1}}-X_{t_{0}}, \ldots, X_{t_{n}}-X_{t_{n-1}}\right),\left(Y_{t_{1}}-Y_{t_{0}}, \ldots, Y_{t_{n}}-Y_{t_{n-1}}\right)
$$

are independent, and so are $\left(X_{t_{1}}, \ldots, X_{t_{n}}\right)$ and $\left(Y_{t_{1}}, \ldots, Y_{t_{n}}\right)$. Since $0=t_{0}<t_{1}<\cdots<t_{n}$ are arbitrary, this shows that X and Y are independent.

Exercise 13.3

(a) Let $\tilde{\nu}$ be a finite measure supported on $[\varepsilon, \infty)$ for some $\varepsilon>0$, and $\tilde{\lambda}:=\tilde{\nu}([\varepsilon, \infty))>0$. Suppose that $\left(N_{t}\right)$ is a Poisson process with rate $\tilde{\lambda}$ and $\left(\tilde{Y}_{n}\right)$ are i.i.d. random variables with distribution $\tilde{\lambda}^{-1} \tilde{\nu}$. Check using Exercise $13.2(\mathbf{a})$ that the process $J_{t}^{\tilde{\nu}}:=\sum_{j=1}^{N_{t}} \tilde{Y}_{j}$ is a Lévy process with Lévy triplet $(\tilde{b}, 0, \tilde{\nu})$, where $\tilde{b}=\int \mathbb{1}_{\{|x| \leq 1\}} x d \tilde{\nu}$.
(b) Suppose that $\tilde{\nu}$ has compact support, i.e., $\tilde{\nu}((K, \infty))=0$ for some $K \in(0, \infty)$, so that $\tilde{\nu}([\varepsilon, K])=\tilde{\lambda}$. Find a constant $\mu>0$ such that the process $M^{\tilde{\nu}}$ defined by

$$
M_{t}^{\tilde{\nu}}:=J_{t}^{\tilde{\nu}}-\mu t
$$

is a martingale. If $\tilde{\nu}$ is not compactly supported, under what assumption can we find such a constant μ ?
(c) For some $K>0$, let ν be a measure supported on $[0, K]$ such that $\nu(\{0\})=0$ and $\nu((\varepsilon, K])<$ ∞ for each $\varepsilon>0$. Choose a sequence $\left(a_{m}\right)_{m \in \mathbb{N}_{0}}$ such that $a_{0}=K$ and $a_{m} \searrow 0$, and let $\left(\nu_{m}\right)_{m \in \mathbb{N}}$ be a sequence of measures that are absolutely continuous with respect to ν with respective densities $\frac{d \nu_{m}}{d \nu}=\mathbb{1}_{\left(a_{m}, a_{m-1}\right]}$. As in (a), for each $m \in \mathbb{N}$, let $\left(N_{t}^{m}\right)_{t \geq 0}$ be a Poisson process with rate $C_{m}:=\nu\left(\left(a_{m}, a_{m-1}\right]\right)$ and $\left(Y_{n}^{m}\right)$ be i.i.d. random variables with distribution $C_{m}^{-1} \nu_{m}$. We suppose that the $\left(N^{m}\right)$ and $\left(Y_{n}^{m}\right)$ are all independent, and define $J^{\nu_{m}}$ and $M^{\nu_{m}}$ as in (a) and (b).
Show that for each $k \geq 1$, the process $J^{k}:=\sum_{m=1}^{k} J^{\nu_{m}}$ is Lévy and find its Lévy triplet. Find a constant μ_{k} such that $M_{t}^{k}:=J_{t}^{k}-\mu_{k} t$ is a martingale.
(d) Suppose that $\int_{0}^{K} x^{2} \nu(d x)<\infty$. For any $T>0$, show that the sequence of stopped martingales $\left(\left(M^{k}\right)^{T}\right)_{k \in \mathbb{N}}$ converges in \mathcal{H}_{0}^{2}.
(e) Under the assumption in (d), does $\left(J^{k}\right)_{k \in \mathbb{N}}$ converge?

Solution 13.3

(a) This is an immediate check from Exercise 13.2(a). Note that $J^{\tilde{\nu}}$ is a compound Poisson process, where the jumps \tilde{Y}_{n} have distribution $F=\tilde{\lambda}^{-1} \tilde{\nu}$. Therefore, $J^{\tilde{\nu}}$ is a Lévy process with triplet $\left(\tilde{b}, 0, \tilde{\lambda} \tilde{\lambda}^{-1} \tilde{\nu}\right)=(\tilde{b}, 0, \tilde{\nu})$, as we wanted.
(b) Note that $J_{t}^{\tilde{\nu}}-\mu t$ is a Lévy process for any $\mu>0$. Moreover, $J_{1}^{\tilde{\nu}} \in L^{1}$ because $J^{\tilde{\nu}}$ is a compound Poisson process and $\tilde{Y}_{1} \in L^{1}$, since it has compact support. Therefore, it is enough to check that $E\left[J_{1}^{\tilde{\nu}}-\mu\right]=0$. Indeed, we have by independence that

$$
E\left[J_{1}^{\tilde{\nu}}\right]=E\left[\sum_{n=1}^{N_{1}} Y_{n}\right]=E\left[E\left[\sum_{n=1}^{\hat{n}} Y_{n}\right]_{\hat{n}=N_{1}}\right]=E\left[N_{1} \tilde{\lambda}^{-1} \int_{\varepsilon}^{K} x \tilde{\nu}(d x)\right]=\int_{\varepsilon}^{K} x \tilde{\nu}(d x)
$$

For $\mu=\int_{\varepsilon}^{K} x \tilde{\nu}(d x)$, we thus have that $J_{1}^{\tilde{\nu}}-\mu$ is integrable with $E\left[J_{1}^{\tilde{\nu}}-\mu\right]=0$. Therefore, $M^{\tilde{\nu}}$ is a martingale by Proposition 5.2 .2 of the notes. If $\tilde{\nu}$ is not compactly supported, we can still find $\mu=\int_{\varepsilon}^{\infty} x d \tilde{\nu}(x)$ by the same argument, as long as the integral is finite.
(c) It follows immediately from (a) that each $J^{\nu_{m}}$ is a Lévy process with triplet $\left(b_{m}, 0, \nu_{m}\right)$. Moreover, the $\left(J^{\nu_{m}}\right)_{m \in \mathbb{N}}$ are independent, by construction. One can easily that the sum of independent Lévy processes $J^{k}:=\sum_{m=1}^{k} J^{\nu_{m}}$ is also Lévy. Moreover, J^{k} has the Lévy triplet $\left(\hat{b}_{k}, 0, \sum_{m=1}^{k} \nu_{m}\right)=\left(\hat{b}_{k}, 0, \hat{\nu}_{k}\right)$, where $\hat{\nu}_{k}$ has density $\frac{d \hat{\nu}_{k}}{d \nu}=\mathbb{1}_{\left(a_{k}, K\right]}$ and $\hat{b}_{k}=\int \mathbb{1}_{\{|x| \leq 1\}} x d \hat{\nu}_{k}$. As in (b), we have that μ_{k} is given by

$$
\mu_{k}=\int x \hat{\nu}_{k}(d x)=\int \mathbb{1}_{\left\{x \in\left(a_{m}, K\right]\right\}} x \nu(d x)
$$

(d) We show that $\left(M^{k}\right)_{k \in \mathbb{N}}$ is a Cauchy sequence in \mathcal{H}_{0}^{2}. Note that $\left\|M^{T}\right\|_{\mathcal{H}_{0}^{2}}=E\left[[M]_{T}\right]$ and each M^{k} has finite variation. Also, by independence, the probability of two of the processes $J^{\nu_{m}}, J^{\nu_{m^{\prime}}}$ jumping simultaneously is 0 . Therefore, for $k^{\prime} \geq k$, we can compute

$$
\begin{aligned}
E\left[\left[M^{k^{\prime}}-M^{k}\right]_{T}\right] & =E\left[\sum_{0<s \leq T} \Delta\left(M^{k^{\prime}}-M^{k}\right)_{s}^{2}\right]=E\left[\sum_{0<s \leq T} \sum_{m=k+1}^{k^{\prime}} \Delta\left(J^{\nu_{m}}\right)_{s}^{2}\right] \\
& =E\left[\sum_{m=k+1}^{k^{\prime}} \sum_{n=1}^{N_{T}^{m}}\left(Y_{n}^{m}\right)^{2}\right]=\sum_{m=k+1}^{k^{\prime}} E\left[E\left[\sum_{n=1}^{\hat{n}}\left(Y_{n}^{m}\right)^{2}\right]_{\hat{n}=N_{T}^{m}}\right] \\
& =\sum_{m=k+1}^{k^{\prime}} E\left[N_{T}^{m}\left(\lambda_{m}\right)^{-1} \int \mathbb{1}_{\left\{x \in\left(a_{m}, a_{m-1}\right]\right\}} x^{2} \nu(d x)\right] \\
& =\sum_{m=k+1}^{k^{\prime}} \int \mathbb{1}_{\left\{x \in\left(a_{m}, a_{m-1}\right]\right\}} x^{2} \nu(d x) \\
& =\int \mathbb{1}_{\left\{x \in \left(a_{\left.\left.k^{\prime}, a_{k}\right]\right\}} x^{2} d \nu(x) \leq \int \mathbb{1}_{\left\{x \in\left[0, a_{k}\right]\right\}} x^{2} d \nu(x) .\right.\right.}
\end{aligned}
$$

Since we assume that $\int_{0}^{K} x^{2} \nu(d x)<\infty$, it follows that $\lim _{k \rightarrow \infty} \sup _{k^{\prime} \geq k} E\left[\left[M^{k^{\prime}}-M^{k}\right]_{T}\right]=0$ by the dominated convergence theorem. Therefore, $\left(\left(M^{k}\right)^{T}\right)$ is a Cauchy sequence in \mathcal{H}_{0}^{2} and thus it converges.
(e) In general, it is not the case that $\left(J^{k}\right)_{k \in \mathbb{N}}$ converges. For example, let ν have density with respect to Lebesgue measure $\frac{d \nu(x)}{d x}=\mathbb{1}_{\{x \in(0,1]\}} x^{-2}$. If $a_{m}=e^{-m}$, we have that

$$
\mu_{k}=\int_{e^{-k}}^{1} x^{-1} d x=[\log x]_{x=e^{-k}}^{x=1}=k \rightarrow \infty
$$

Since $\left(\left(M^{k}\right)^{1}\right)$ converges in \mathcal{H}_{0}^{2}, in particular $\left(M_{1}^{k}\right)$ converges in probability. Since $\left(\mu_{k}\right)$ diverges, it follows that $\left(J^{k}\right)$ cannot converge.

