Brownian Motion and Stochastic Calculus

Exercise sheet 13

Exercise 13.1 Let X be a Lévy process with values in \mathbb{R}^d and $f_t(u) := E[e^{iu^\top X_t}]$. Recall that X is stochastically continuous, i.e., the map $t \mapsto X_t$ is continuous in probability, and that $f_{t+s}(u) = f_t(u)f_s(u)$ and $f_0(u) = 1$ for all $s, t \ge 0$ and $u \in \mathbb{R}^d$.

- (a) Show that $f_s(u)^n = f_{ns}(u)$ and $f_t(u) = f_{t/n}(u)^n$ for all $n \in \mathbb{N}$ and $s, t \ge 0$.
- (b) Show that $t \mapsto f_t(u)$ is right-continuous and $f_t(u) \neq 0$ for all $t \geq 0$ and $u \in \mathbb{R}^d$.
- (c) Fix $u \in \mathbb{R}^d$ and let $\tilde{z} \in \mathbb{C}$ be such that $f_1(u) = \exp(\tilde{z})$. Show that there exists a unique $\hat{k} \in \mathbb{Z}$ such that

$$f_{2^{-n}}(u) = \exp\left(\frac{\tilde{z} + 2\hat{k}\pi \mathrm{i}}{2^n}\right)$$

for each $n \in \mathbb{N}$.

(d) In the setup of (e), let $z := \tilde{z} + 2\hat{k}\pi i$ and define the function $g(t) = \exp(tz)$ (which can be seen as a definition of $t \mapsto f_1(u)^t$). Show that $f_t(u) = g(t)$ for all $t \ge 0$.

Solution 13.1

- (a) It follows by induction on n that $f_s(u)^n = f_{ns}(u)$ for any $s \ge 0$ and $n \in \mathbb{N}$. The second claim follows by setting s = t/n.
- (b) Right-continuity of $t \mapsto f_t(u)$ follows immediately from right-continuity of X and the dominated convergence theorem. Assume that $f_t(u) = 0$ for some t > 0 and $u \in \mathbb{R}^d$. Then it follows that $f_{t/n}(u)^n = f_t(u) = 0$, so that $f_{t/n}(u) = 0$ for all $n \in \mathbb{N}$. Taking $n \to \infty$, we obtain a contradiction to the right-continuity at 0 because $f_0(u) = 1$.
- (c) Since $f_1(u) \neq 0$, there exists such a $\tilde{z} \in \mathbb{C}$. For $n \in \mathbb{N}_0$, let

$$A_n = \left\{ k \in \mathbb{Z} : f_{2^{-m}}(u) = \exp\left(\frac{\tilde{z} + 2\hat{k}\pi i}{2^m}\right) \text{ for each } m = 0, \dots, n \right\}.$$

Since $\exp(2\pi i) = 1$, it is clear that $A_0 = \mathbb{Z}$. Since $f_{1/2}(u)^2 = f_1(z)$, it is easy to check that either $A_1 = 2\mathbb{Z}$ or $A_1 = 1 + 2\mathbb{Z}$. In other words, A_1 is an element of $\mathbb{Z}/2\mathbb{Z}$. Likewise, $A_2 \in \{m+4\mathbb{Z} : m = 0, 1, 2, 3\} = \mathbb{Z}/4\mathbb{Z}$, and so on. Let k_n be the element of A_n with minimum norm (we take the positive one if there are two such elements). We claim that $(k_n)_{n \in \mathbb{N}}$ converges stationarily, i.e., there exists $N \in \mathbb{N}$ such that $k_n = k_N$ for all $n \ge N$. This implies that $\hat{k} = k_N = \lim_{n \to \infty} k_n$ exists and satisfies the requirement.

Since $A_0 \supseteq A_1 \supseteq \cdots$ and each $A_n \in \mathbb{Z}/2^n\mathbb{Z}$, we can see that $k_n \in \{k_{n-1}, k_{n-1} + 2^{n-1}\}$ if $k_n \leq 0$, or $k_n \in \{k_{n-1} - 2^{n-1}, k_{n-1}\}$ if $k_{n-1} > 0$. This implies that $|k_n| \leq 2^{n-1}$ and also that if $k_n \neq k_{n-1}$, then

$$|k_n| \ge 2^{n-1} - |k_{n-1}| \ge 2^{n-1} - 2^{n-2} = 2^{n-2}.$$

We can now show that (k_n) converges stationarily. By (b), $t \mapsto f_t(u)$ is right-continuous at t = 0 with $f_0(u) = 1$, which implies that $\lim_{n \to \infty} f_{2^{-n}}(u) = 1$. Since $2^{-n}\tilde{z} \to 0$, it follows that

$$\lim_{n \to \infty} \exp\left(\frac{2k_n \pi i}{2^n}\right) = \lim_{n \to \infty} f_{2^{-n}}(u) \exp(-2^{-n}\tilde{z}) = 1.$$

1 / 7

Since $|k_n| \leq 2^{n-1}$, we have that $\left|\frac{2k_n\pi}{2^n}\right| \leq \pi$. This is smaller than 2π , which implies that the exponent must converge to 0, i.e., $2^{-n}k_n \to 0$. However, for any $n \in \mathbb{N}$ such that $k_n \neq k_{n-1}$, we have that $|2^{-n}k_n| \geq 2^{-n}2^{n-2} = 1/4$. Therefore, there exist only finitely many n such that $k_n \neq k_{n-1}$, thus (k_n) converges stationarily to a limit \hat{k} . Since $k_n = \hat{k}$ for all large enough n, we have that \hat{k} satisfies the required property.

It is clear that \hat{k} is unique, since for any other \tilde{k} we have that $|2(\hat{k} - \tilde{k})\pi i/2^n| < 2\pi$ for large enough n. This implies that

$$\exp\left(\frac{\tilde{z}+2\hat{k}\pi i}{2^n}\right)\neq \exp\left(\frac{\tilde{z}+2\tilde{k}\pi i}{2^n}\right),$$

so that the equation for $f_{2^{-n}}(u)$ cannot hold for both \hat{k} and \tilde{k} .

(d) By (c), we have that $g(2^{-n}) = f_{2^{-n}}(u)$ for each $n \in \mathbb{N}$, and we also have that $g(0) = f_0(u) = 1$. We get by (a) that

$$f_{m2^{-n}}(u) = f_{2^{-n}}(u)^m = \exp(2^{-n}z)^m = \exp(m2^{-n}z) = g(m2^{-n})$$

for all $m, n \in \mathbb{N}$. Note that the set $\{m2^{-n} : m, n \in \mathbb{Z}\}$ is dense in \mathbb{R}_+ . Since g is continuous and $t \mapsto f_t(u)$ is right-continuous by (b), we can take right limits to show that $f_t(u) = g(t)$ for all $t \geq 0$, as we wanted.

Exercise 13.2

- (a) Let N be a one-dimensional Poisson process and $(Y_i)_{i\geq 1}$ a sequence of i.i.d. \mathbb{R}^d -valued random variables independent of N. We define the *compound Poisson process* by $X_t := \sum_{j=1}^{N_t} Y_j$. Show that X is a Lévy process and calculate its Lévy triplet.
- (b) Does there exist a Lévy process X such that X_1 is uniformly distributed on [0, 1]?
- (c) Let $(X_t)_{t\geq 0}$ and $(Y_t)_{t\geq 0}$ be \mathbb{R}^d -valued processes such that the joint process (X, Y) is Lévy with respect to a filtration $\mathbb{F} = (\mathcal{F}_t)$. Show that if $E[e^{iu^\top X_t}e^{iv^\top Y_t}] = E[e^{iu^\top X_t}]E[e^{iv^\top Y_t}]$ for all $u, v \in \mathbb{R}^d$ and $t \geq 0$, then X and Y are independent.

Solution 13.2

(a) Define the discrete-time process $(\tilde{X}_n)_{n\in\mathbb{N}_0}$ by $\tilde{X}_n = \sum_{j=1}^n Y_j$, with natural filtration given by $\tilde{\mathcal{F}}_n = \sigma(Y_1, \ldots, Y_n)$. It is clear that $\tilde{X}_0 = 0$ and \tilde{X} has stationary and independent increments. We also know that the Poisson process N is a Lévy process independent from \tilde{X} . In particular, $\mathcal{F}_{\infty}^N = \sigma(N_t : t \ge 0)$ and $\tilde{\mathcal{F}}_{\infty} = \sigma(Y_1, Y_2, \ldots)$ are independent σ -algebras. We need to show that the process $(X_t)_{t\ge 0}$ defined by

$$X_t = \sum_{j=1}^{N_t} Y_j = \tilde{X}_{N_t}$$

is Lévy. For $0 \leq t_1 < \cdots < t_m$ and bounded measurable functions f_j , define the function $g_j(n) := E[f_j(\tilde{X}_n)]$. Using the properties of \tilde{X} and N, we have that

$$\begin{split} E\left[\prod_{j=1}^{m} f_{j}(X_{t_{j}} - X_{t_{j-1}})\right] &= E\left[\prod_{j=1}^{m} f_{j}(\tilde{X}_{N_{t_{j}}} - \tilde{X}_{N_{t_{j-1}}})\right] \\ &= E\left[E\left[\prod_{j=1}^{m} f_{j}(\tilde{X}_{N_{t_{j}}} - \tilde{X}_{N_{t_{j-1}}})\right] \middle|_{n_{j} = N_{t_{j}}}\right] \\ &= E\left[E\left[\prod_{j=1}^{m} f_{j}(\tilde{X}_{n_{j}} - \tilde{X}_{n_{j-1}})\right] \middle|_{n_{j} = N_{t_{j}}}\right] \\ &= E\left[\prod_{j=1}^{m} E\left[f_{j}(\tilde{X}_{n_{j}} - \tilde{X}_{n_{j-1}})\right] \middle|_{n_{j} = N_{t_{j}}}\right] \\ &= E\left[\prod_{j=1}^{m} E\left[f_{j}(\tilde{X}_{n_{j} - n_{j-1}})\right] \right] = \prod_{j=1}^{m} E\left[g_{j}(N_{t_{j}} - N_{t_{j-1}})\right] \\ &= \prod_{j=1}^{m} E\left[g_{j}(N_{t_{j} - t_{j-1}})\right] = \prod_{j=1}^{m} E\left[E[f_{j}(\tilde{X}_{n_{j}})]|_{n_{j} = N_{t_{j-1}}}\right] \\ &= \prod_{j=1}^{m} E\left[E\left[f_{j}(\tilde{X}_{N_{t_{j} - t_{j-1}}})\right] + \sum_{j=1}^{m} E\left[f_{j}(X_{t_{j} - t_{j-1}})\right] \right] \end{split}$$

As in the solution to Exercise 6.2, this shows that X is Lévy (also noting that $X_0 = 0$).

Next, we calculate the Lévy triplet. For $u \in \mathbb{R}^d$,

$$E[e^{iu^{\top}X_{t}}] = E\left[\sum_{n\geq 0} \mathbb{1}_{\{N_{t}=n\}} \prod_{j=1}^{n} e^{iu^{\top}Y_{j}}\right] = \sum_{n\geq 0} P[N_{t}=n] \left(E[e^{iu^{\top}Y_{1}}]\right)^{n}$$
$$= \sum_{n\geq 0} \frac{e^{-\lambda t} (\lambda t)^{n}}{n!} \left(E[e^{iu^{\top}Y_{1}}]\right)^{n} = e^{-\lambda t} \exp\left(\lambda t E[e^{iu^{\top}Y_{1}}]\right)$$
$$= \exp\left(\lambda t \left(E[e^{iu^{\top}Y_{1}}]-1\right)\right).$$

Let ν^{Y} be the distribution of Y_1 and $\nu := \lambda \nu^{Y}$. Then

$$\lambda \Big(E[e^{iu^{\top}Y_1}] - 1 \Big) = \lambda \int (e^{iu^{\top}x} - 1) d\nu^Y = \int (e^{iu^{\top}x} - 1) d\nu.$$

Truncating as in the lecture notes, we can decompose

$$E[e^{\mathbf{i}u^{\top}X_{t}}] = \exp\left(t\int(e^{\mathbf{i}u^{\top}x}-1)d\nu\right) = \exp\left(t\left(\int x\mathbb{1}_{|x|\leq 1}d\nu + \int(e^{\mathbf{i}u^{\top}x}-1-x\mathbb{1}_{|x|\leq 1})d\nu\right)\right)$$

Therefore, we obtain the triplet $(b, 0, \nu)$, where $b = \int_{\{x: |x| \le 1\}} x \, d\nu$.

(b) The characteristic function of X_1 is

$$f_1(u) = \varphi_{X_1}(u) = \int_0^1 e^{iux} dx = \left[\frac{e^{iux}}{iu}\right]_{x=0}^{x=1} = \frac{e^{iu} - 1}{iu},$$

which has a zero at $u = 2\pi$. This would contradict Exercise 13.1 (d), hence there is no such Lévy process.

Alternative proof: We can generalise the result to any random variable X_1 with compact support supp $(X_1) \subseteq [a, b]$, for some a < b. We claim that if X_1 is infinitely divisible, then X_1 is constant. Hence there is no Lévy process X such that X_1 is uniformly distributed on [0, 1]. By infinite divisibility, for each n we have $X_1 = \sum_{j=1}^n Y_j^n$, where the random variables $(Y_j^n)_{j=1}^n$ are i.i.d. This implies that $\sup(Y_j^n) \subseteq [a/n, b/n]$. Indeed, suppose by contradiction that $P[Y_j^n > b/n] > 0$. As the Y_j^n are i.i.d., we would have that

$$P[X_1 > b] \ge P\left[\bigcap_{j=1}^n \left\{Y_j^n > \frac{b}{n}\right\}\right] = P\left[Y_j^n > \frac{b}{n}\right]^n > 0,$$

which contradicts the fact that $\operatorname{supp}(X_1) \subseteq [a, b]$. The case $P[Y_j^n < a/n] > 0$ is analogous. Since $\operatorname{supp}(Y_j^n) \subseteq [a/n, b/n]$, we have that $\operatorname{Var}(Y_j^n) \leq (b-a)^2/n^2$. Therefore, we can bound $\operatorname{Var}(X_1) \leq (b-a)^2/n \to 0$ as $n \to \infty$, so X_1 is constant.

(c) We need to show that $(X_{t_1}, \ldots, X_{t_n})$ is independent of $(Y_{t_1}, \ldots, Y_{t_n})$ for any $n \in \mathbb{N}$ and $0 = t_0 < t_1 < \cdots < t_n$. This follows if we can show that the random variables

$$X_{t_1} - X_{t_0}, \ldots, X_{t_n} - X_{t_{n-1}}, Y_{t_1} - Y_{t_0}, \ldots, Y_{t_n} - Y_{t_{n-1}}$$

are independent. For j = 1, ..., n and $u_j, v_j \in \mathbb{R}^d$, we have that

$$E\left[\prod_{j=1}^{n} e^{\mathrm{i}u_{j}^{\top}(X_{t_{j}}-X_{t_{j-1}})+\mathrm{i}v_{j}^{\top}(Y_{t_{j}}-Y_{t_{j-1}})}\right] = E\left[E\left[\prod_{j=1}^{n} e^{\mathrm{i}u_{j}^{\top}(X_{t_{j}}-X_{t_{j-1}})+\mathrm{i}v_{j}^{\top}(Y_{t_{j}}-Y_{t_{j-1}})} \middle| \mathcal{F}_{t_{n-1}}\right]\right]$$
$$= E\left[E\left[e^{\mathrm{i}u_{j}^{\top}(X_{t_{n}}-X_{t_{n-1}})+\mathrm{i}v_{j}^{\top}(Y_{t_{n}}-Y_{t_{n-1}})} \middle| \mathcal{F}_{t_{n-1}}\right]\prod_{j=1}^{n-1} e^{\mathrm{i}u_{j}^{\top}(X_{t_{j}}-X_{t_{j-1}})+\mathrm{i}v_{j}^{\top}(Y_{t_{j}}-Y_{t_{j-1}})}\right]\right]$$

Since (X, Y) is a Lévy process with respect to \mathbb{F} , in particular so is $u_j^\top X + v_j^\top Y$, so that $u_j^\top (X_{t_n} - X_{t_{n-1}}) + v_j^\top (Y_{t_n} - Y_{t_{n-1}})$ is independent of $\mathcal{F}_{t_{n-1}}$ and has the same distribution as $u_j^\top X_{t_n-t_{n-1}} + v_j^\top Y_{t_n-t_{n-1}}$. Therefore, the expression above is equal to

$$E\left[e^{\mathrm{i}u_{j}^{\top}X_{t_{n-t_{n-1}}}+\mathrm{i}v_{j}^{\top}Y_{t_{n-t_{n-1}}}}\right]E\left[\prod_{j=1}^{n-1}e^{\mathrm{i}u_{j}^{\top}(X_{t_{j}}-X_{t_{j-1}})+\mathrm{i}v_{j}^{\top}(Y_{t_{j}}-Y_{t_{j-1}})}\right].$$

We can apply an inductive argument to the remaining product to obtain that

$$E\left[\prod_{j=1}^{n} e^{\mathrm{i}u_{j}^{\top}(X_{t_{j}}-X_{t_{j-1}})+\mathrm{i}v_{j}^{\top}(Y_{t_{j}}-Y_{t_{j-1}})}\right] = \prod_{j=1}^{n} E\left[e^{\mathrm{i}u_{j}^{\top}X_{t_{j}-t_{j-1}}+\mathrm{i}v_{j}^{\top}Y_{t_{j}-t_{j-1}}}\right].$$

Finally, by the assumption on X and Y we have that

$$\begin{split} \prod_{j=1}^{n} E\left[e^{\mathrm{i}u_{j}^{\top}X_{t_{j}-t_{j-1}}+\mathrm{i}v_{j}^{\top}Y_{t_{j}-t_{j-1}}}\right] &= \prod_{j=1}^{n} E\left[e^{\mathrm{i}u_{j}^{\top}X_{t_{j}-t_{j-1}}}\right] E\left[e^{\mathrm{i}v_{j}^{\top}Y_{t_{j}-t_{j-1}}}\right] \\ &= \prod_{j=1}^{n} E\left[e^{\mathrm{i}u_{j}^{\top}(X_{t_{j}}-X_{t_{j-1}})}\right] E\left[e^{\mathrm{i}v_{j}^{\top}(Y_{t_{j}}-Y_{t_{j-1}})}\right]. \end{split}$$

This shows our claim that the random variables

$$X_{t_1} - X_{t_0}, \ldots, X_{t_n} - X_{t_{n-1}}, Y_{t_1} - Y_{t_0}, \ldots, Y_{t_n} - Y_{t_{n-1}}$$

are independent. In particular, the vectors

$$(X_{t_1} - X_{t_0}, \ldots, X_{t_n} - X_{t_{n-1}}), (Y_{t_1} - Y_{t_0}, \ldots, Y_{t_n} - Y_{t_{n-1}})$$

are independent, and so are $(X_{t_1}, \ldots, X_{t_n})$ and $(Y_{t_1}, \ldots, Y_{t_n})$. Since $0 = t_0 < t_1 < \cdots < t_n$ are arbitrary, this shows that X and Y are independent.

Exercise 13.3

- (a) Let $\tilde{\nu}$ be a finite measure supported on $[\varepsilon, \infty)$ for some $\varepsilon > 0$, and $\tilde{\lambda} := \tilde{\nu}([\varepsilon, \infty)) > 0$. Suppose that (N_t) is a Poisson process with rate $\tilde{\lambda}$ and (\tilde{Y}_n) are i.i.d. random variables with distribution $\tilde{\lambda}^{-1}\tilde{\nu}$. Check using Exercise **13.2(a)** that the process $J_t^{\tilde{\nu}} := \sum_{j=1}^{N_t} \tilde{Y}_j$ is a Lévy process with Lévy triplet $(\tilde{b}, 0, \tilde{\nu})$, where $\tilde{b} = \int \mathbb{1}_{\{|x| < 1\}} x \, d\tilde{\nu}$.
- (b) Suppose that $\tilde{\nu}$ has compact support, i.e., $\tilde{\nu}((K, \infty)) = 0$ for some $K \in (0, \infty)$, so that $\tilde{\nu}([\varepsilon, K]) = \tilde{\lambda}$. Find a constant $\mu > 0$ such that the process $M^{\tilde{\nu}}$ defined by

$$M_t^\nu := J_t^\nu - \mu t$$

is a martingale. If $\tilde{\nu}$ is not compactly supported, under what assumption can we find such a constant μ ?

(c) For some K > 0, let ν be a measure supported on [0, K] such that $\nu(\{0\}) = 0$ and $\nu((\varepsilon, K]) < \infty$ for each $\varepsilon > 0$. Choose a sequence $(a_m)_{m \in \mathbb{N}_0}$ such that $a_0 = K$ and $a_m \searrow 0$, and let $(\nu_m)_{m \in \mathbb{N}}$ be a sequence of measures that are absolutely continuous with respect to ν with respective densities $\frac{d\nu_m}{d\nu} = \mathbb{1}_{(a_m, a_{m-1}]}$. As in (a), for each $m \in \mathbb{N}$, let $(N_t^m)_{t \ge 0}$ be a Poisson process with rate $C_m := \nu((a_m, a_{m-1}])$ and (Y_n^m) be i.i.d. random variables with distribution $C_m^{-1}\nu_m$. We suppose that the (N^m) and (Y_n^m) are all independent, and define J^{ν_m} and M^{ν_m} as in (a) and (b).

Show that for each $k \ge 1$, the process $J^k := \sum_{m=1}^k J^{\nu_m}$ is Lévy and find its Lévy triplet. Find a constant μ_k such that $M_t^k := J_t^k - \mu_k t$ is a martingale.

- (d) Suppose that $\int_0^K x^2 \nu(dx) < \infty$. For any T > 0, show that the sequence of stopped martingales $((M^k)^T)_{k \in \mathbb{N}}$ converges in \mathcal{H}_0^2 .
- (e) Under the assumption in (d), does $(J^k)_{k \in \mathbb{N}}$ converge?

Solution 13.3

- (a) This is an immediate check from Exercise **13.2(a)**. Note that $J^{\tilde{\nu}}$ is a compound Poisson process, where the jumps \tilde{Y}_n have distribution $F = \tilde{\lambda}^{-1}\tilde{\nu}$. Therefore, $J^{\tilde{\nu}}$ is a Lévy process with triplet $(\tilde{b}, 0, \tilde{\lambda} \tilde{\lambda}^{-1} \tilde{\nu}) = (\tilde{b}, 0, \tilde{\nu})$, as we wanted.
- (b) Note that $J_t^{\tilde{\nu}} \mu t$ is a Lévy process for any $\mu > 0$. Moreover, $J_1^{\tilde{\nu}} \in L^1$ because $J^{\tilde{\nu}}$ is a compound Poisson process and $\tilde{Y}_1 \in L^1$, since it has compact support. Therefore, it is enough to check that $E[J_1^{\tilde{\nu}} \mu] = 0$. Indeed, we have by independence that

$$E[J_1^{\tilde{\nu}}] = E\left[\sum_{n=1}^{N_1} Y_n\right] = E\left[E\left[\sum_{n=1}^{\hat{n}} Y_n\right]_{\hat{n}=N_1}\right] = E\left[N_1\tilde{\lambda}^{-1}\int_{\varepsilon}^{K} x\tilde{\nu}(dx)\right] = \int_{\varepsilon}^{K} x\tilde{\nu}(dx).$$

For $\mu = \int_{\varepsilon}^{K} x \tilde{\nu}(dx)$, we thus have that $J_{1}^{\tilde{\nu}} - \mu$ is integrable with $E[J_{1}^{\tilde{\nu}} - \mu] = 0$. Therefore, $M^{\tilde{\nu}}$ is a martingale by Proposition 5.2.2 of the notes. If $\tilde{\nu}$ is not compactly supported, we can still find $\mu = \int_{\varepsilon}^{\infty} x d\tilde{\nu}(x)$ by the same argument, as long as the integral is finite.

(c) It follows immediately from (a) that each J^{ν_m} is a Lévy process with triplet $(b_m, 0, \nu_m)$. Moreover, the $(J^{\nu_m})_{m \in \mathbb{N}}$ are independent, by construction. One can easily that the sum of independent Lévy processes $J^k := \sum_{m=1}^k J^{\nu_m}$ is also Lévy. Moreover, J^k has the Lévy triplet $(\hat{b}_k, 0, \sum_{m=1}^k \nu_m) = (\hat{b}_k, 0, \hat{\nu}_k)$, where $\hat{\nu}_k$ has density $\frac{d\hat{\nu}_k}{d\nu} = \mathbb{1}_{\{a_k, K\}}$ and $\hat{b}_k = \int \mathbb{1}_{\{|x| \leq 1\}} x \, d\hat{\nu}_k$. As in (b), we have that μ_k is given by

$$\mu_k = \int x \hat{\nu}_k(dx) = \int \mathbb{1}_{\{x \in (a_m, K]\}} x \nu(dx).$$

6 / 7

(d) We show that $(M^k)_{k\in\mathbb{N}}$ is a Cauchy sequence in \mathcal{H}_0^2 . Note that $\|M^T\|_{\mathcal{H}_0^2} = E[[M]_T]$ and each M^k has finite variation. Also, by independence, the probability of two of the processes $J^{\nu_m}, J^{\nu_{m'}}$ jumping simultaneously is 0. Therefore, for $k' \geq k$, we can compute

$$E\left[[M^{k'} - M^{k}]_{T}\right] = E\left[\sum_{0 < s \le T} \Delta(M^{k'} - M^{k})_{s}^{2}\right] = E\left[\sum_{0 < s \le T} \sum_{m=k+1}^{k'} \Delta(J^{\nu_{m}})_{s}^{2}\right]$$
$$= E\left[\sum_{m=k+1}^{k'} \sum_{n=1}^{N_{T}^{m}} (Y_{n}^{m})^{2}\right] = \sum_{m=k+1}^{k'} E\left[E\left[\sum_{n=1}^{\hat{n}} (Y_{n}^{m})^{2}\right]_{\hat{n}=N_{T}^{m}}\right]$$
$$= \sum_{m=k+1}^{k'} E\left[N_{T}^{m}(\lambda_{m})^{-1} \int \mathbb{1}_{\{x \in (a_{m}, a_{m-1}]\}} x^{2}\nu(dx)\right]$$
$$= \int \mathbb{1}_{\{x \in (a_{k'}, a_{k}]\}} x^{2}d\nu(x) \le \int \mathbb{1}_{\{x \in [0, a_{k}]\}} x^{2}d\nu(x).$$

Since we assume that $\int_0^K x^2 \nu(dx) < \infty$, it follows that $\lim_{k \to \infty} \sup_{k' \ge k} E\left[[M^{k'} - M^k]_T \right] = 0$ by the dominated convergence theorem. Therefore, $((M^k)^T)$ is a Cauchy sequence in \mathcal{H}_0^2 and thus it converges.

(e) In general, it is not the case that $(J^k)_{k\in\mathbb{N}}$ converges. For example, let ν have density with respect to Lebesgue measure $\frac{d\nu(x)}{dx} = \mathbb{1}_{\{x\in(0,1]\}}x^{-2}$. If $a_m = e^{-m}$, we have that

$$\mu_k = \int_{e^{-k}}^1 x^{-1} dx = [\log x]_{x=e^{-k}}^{x=1} = k \to \infty.$$

Since $((M^k)^1)$ converges in \mathcal{H}_0^2 , in particular (M_1^k) converges in probability. Since (μ_k) diverges, it follows that (J^k) cannot converge.