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Exercise 2.1 Let (92, F, P) be a probability space, W a Brownian motion on [0, c0), Z a random
variable independent of W and t* € (0, 00). We define another stochastic process W’ = (W})¢>0 by

W/ =Wilgepy + (VLQ* + Z(Wy —-E@Q*)> Lit>gey-
Find all possible distributions of Z such that W’ is a Brownian motion.

Solution 2.1 We claim that W' is a Brownian motion if and only if Z takes values in {—1,1}
P-almost surely. It is clear that P[W) = 0] = 1 and that W’ is P-a.s. continuous. It only remains
to prove that it has Gaussian independent increments with the correct variance.

To that end, take 0 <ty < --- <t <t < tgy1 < --- < t, and note that the characteristic
function @y (A1, ..., An) of the random vector V' := (W[ — W/ ..., W[ —W/ ) is given by

E |exp (i N(W =W/ )
j=1

n

. 7 ’ k . ’ ’ . v
- E |:61Ak+1(Wt* —Wtk)‘i'Zj:le(sz—Wtj1)} E |:e7‘Z()‘k+1(Wtk+1_Wt*)+zj=k+2 i (W _Wtjl)):|

k
1 1 iZ (An tpn —Wis " (W, — W,
= exp _5)\%-5—1@* —tg) — §§ /\?(tj —tj-1) | E [@ Z(A"“(W*H We )22 2 (Wey Wt]l))]
i=1

9

where we have used the independence of the increments of Brownian motion and Z, as well
as that the characteristic function of a centred normal random variable with variance o? is
©(A\) = exp(—A202/2). For the second expectation, note that

1

B {eiz(,\kﬂ(wtk+1 W)+ N (W Wtjl))]

=F

5 [eizml(wtm SWe)HiZ S A (W =W ) ‘ Z]

=F

exp(—;ZQ[)\i+1(tk+1—t*)+ i /\i(tj—tjl)Dl.

j=k+2

We conclude that we can obtain
1 n
VA1,...,A\n €ER, @V(/\l,...,)\n):exp —52)\?(tj—tj_1)
j=1

which is the characteristic function of centred independent normal variables with the required
variance, if and only if Z takes values in {—1,1} P-a.s. The sufficiency follows immediately, while
the necessity can be shown using the fact that the Laplace transform of Z2, given by the function
p i+ Ele=*%"] on [0, 00), is unique and therefore Z2 = 1 almost surely.
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Exercise 2.2 Let X be a stochastic process on a probability space (Q, F, P) with Xg =0 P-a.s.,
and let FX = (FX);>0 denote the (raw) filtration generated by X, i.e., FX = o (X5; s <t). Show
that the following two properties are equivalent:

(i) X has independent increments, i.e., for allmn € Nand 0 < tp < t; < -+ < t, < 00, the
increments X;, — X; i=1,...,n, are independent.

i—17
(ii) X has FX-independent increments, i.e., X; — X, is independent of FX whenever ¢ > s.

Remark: This also shows the equivalence between the two definitions of Brownian motion with
properties (BM2) and (BM2’), respectively, when we choose F = FW.

Hint: For proving “(i) = (ii)”, you can use the monotone class theorem. When choosing #,
recall that a random variable Y is independent of a o-algebra G if and only if one has the product
formula E[g(Y)Z] = E[g(Y)]E[Z] for all bounded Borel-measurable functions g : R — R and all
bounded G-measurable random variables Z.

Solution 2.2 First, assume that X has independent increments and fix 0 < s < ¢. The family
M, = {th(Xs) neN0<s < -+ <5, <s,h; : R = R Borel and bounded}
i=1

of bounded, real-valued functions on € is closed under multiplication. Moreover, note that
o(M,) = FX. Let H, denote the real vector space of all bounded, real-valued, F:X-measurable
functions Z on €2 with the property that:

Elg(X: — X,)Z] = Elg(X: — X;)]|E[Z] for all bounded Borel functions g : R — R.

Clearly, H, contains the constant function 1 and is closed under monotone bounded convergence
(we even do not need monotonicity).

Next, we show that H, contains M,. Fix a typical element Z =[]\, h;(X,,) in M. Define
the function h : R — R by h(z) = [[\-, hi(x;) where z = (z1,...,2,) € R". Note that h is again
a Borel function. Then we can write Z = h(Xs,,...,Xs, ). Since Xo = 0 P-a.s., we also have

(Xoyso o Xo)) = f(X,, — X0, Xy, — X,y Xy, — X, ) P-as.

for a linear transformation f. Finally,

Elg(X; — X,)2] = Elg(X; — Xo)h(Xsy, .., Xs,)]
= Elg(Xt — Xs)(ho f)(Xs, — X0y Xy — Xsyy o os Ko, — X )]
= Elg(X: — X,)|E[(ho f)(Xs, — Xo, Xsy — Xy, X, — Xs, )]
= Elg(X: — X,)|E[Z]

where we use the assumption that X; — X is independent of (X, — Xo, Xs, — X5y, -+ Xs, — Xs,_1)
in the third equality. Thus, Z € H;.

The monotone class theorem yields that Hs contains every bounded F:X-measurable function
on . In particular, X; — X, is independent of FX.

For the converse implication, we proceed by induction on n. The case n = 1 is trivial, so fix
n>20<t<t;<---<t, <oo,and A; € B(R), i =1,...,n. Conditioning on .7-‘557 and using
(ii) for t = t,, and s = t,,_1, we obtain

1

n—1

ﬂ (Xti - th'fl)il(A’i) P [(th - th71)71(14n)] :

=1

n

P m(th _Xt1171)71(‘4i)

i=1

=P

Applying the induction hypothesis to the first factor on the right-hand side completes the proof.
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Exercise 2.3 A function f : D C R — R is called locally Hélder-continuous of order « at
x € D if there exist 6 > 0 and C' > 0 such that |f(z) — f(y)| < Clz — y|* for all y € D with
|z —y| < 0. A function f: D CR — R is called locally Holder-continuous of order « if it is locally
Holder-continuous of order « at each z € D.

(a)
(b)

Let Z ~ N(0,1). Prove that P[|Z]| <e] < e for any € > 0.

Prove that for any a > %, P-almost all Brownian paths are nowhere on [0, 1] locally Holder-
continuous of order «.

Hint: Take any M € N satisfying M (o — %) > 1 and show that the set

{W.(w) is locally a-Hélder at some s € [0,1]} is contained in the set

M
UCEN UmeN nnzm Uk:O,..A,n—M njzl {|W% (w) - W% (w)| < Cn%} .
The Kolmogorov-Centsov theorem states that an R-valued process X on [0, T] satisfying
E[|X:— X, <Clt—s|"", stel0,T],

where 7, 3,C > 0, has a version which is locally Hélder-continuous of order « for all a < 8/7.
Use this to deduce that Brownian motion is for every a < 1/2 locally Holder-continuous of
order «.

Remark: One can also show that the Brownian paths are not locally Hélder-continuous of
order 1/2. The exact modulus of continuity was found by P. Lévy.

Solution 2.3

(a)

(b)

The density f(z) = \/% e=2°/2 of Z is bounded by \/% < % So
1
Pl|Z|<e]=Pl-e<Z <¢| = f( )d;z:<§2s:s.

—&

Take any a > % and let M € N satisfying M (a— 1) > 1. If W (w) is locally Hélder-continuous
of order « at the point s € [0, 1], there exists a constant C so that |W;(w) — Ws(w)| < C|t—s|*
for t near s. Then |[Wi (w) — Wi-1 (w)| < Cn~® for all large enough n, for £ near s and

M successive indices k. The set {W. (w) is locally a-Holder at some s € [0,1]} is therefore
contained in

YU N U Ao wepwiok)

CceNmeNn>m k=0,....,n—M j=1

We show that this is a nullset. As the above Brownian increments are i.i.d ~ N(0, %)7 and

using (a) for Z ~ N(0,1), we have
c " M, —M(a—1}
_ —M(a—1
- (P [|Z| < na1/2D <cMp ).

(1)

M

A {|W"¢”'(“) = Wasgo ()] < cnla}

i=1

P

Now, we have

=N U ﬂ{wkﬂ ~ Wi (w )|<Cn1a}

n>m k=0,...,n—1 j=1

Q U ﬂ {Wk+] Ww; k=1 (W)] SCnla} for each n > m
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and therefore, due to (1), as M(a — 1) > 1, we get

J N {IWe) - Wam il < cnl”

k=0,....n—M j=1

P [Dm} < limsup P

n—roo

< lim supnCM n~M(a=3)
n—oo
=0.
Therefore, since B is a countable union of nullsets, P[B] = 0.
Let Y, ~ N(0,0?) for any o > 0. We note that E[Y,"] = C,,,0™, where C,,, = E[Y{"]. Thus
E[|W, — W,|*"] = Cap|t — 5| for all n.
Writing ~,, := 2n and £, :=n — 1 yields that

E[|W, — W,

] = Coplt — s|1+P for all n.

Now, fix a < % As f—: < % for any n € N and f—: converges to %, we find big enough N
such that o < % Thus, we get that W has a locally a-Holder continuous version by the
Kolmogorov—Centsov theorem.

However, note that both W and this version are continuous, and therefore by exercise 1.2,

they are indistinguishable. Therefore, W itself is locally a-Hdolder continuous.

Remark: In fact, E[Y"] = (n — 1)/l¢™ for n even and 0 otherwise, where n!! denotes
the double factorial, defined as the product of every odd number between n and 1.
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Exercise 2.4

(a) Let W be a Brownian motion on a probability space (Q, F, P) and let F; = o(W,,0 < s <)
be the natural filtration of W. Let Fo4 := N¢soF:. Show Blumenthal’s 0-1 law: for A € Foq,
either P[A] =0 or P[A] = 1.

Hint: Show that A and the increments of W are independent.
(b) Show that

P

W,
lim sup =t = oo] =1.

~o Vit

Hint: Start by showing that for each C' > 0,

lim P | sup (Wg—Cy/s) >0| >0
™0 |:O§sl:§)t( ° \/>) :|

and use (a).

Solution 2.4

(a) By construction, we note that Foy C F; for any ¢ > 0. Letting Gy := o(W,, — W, u > t), and
since F; and G; are independent due to the independence of increments, it follows that Fy.
is independent of G; for all ¢ > 0. By Dynkin’s lemma, it follows that Fy is independent of

Gor =0 (U Qt> =o(W; = Wyt > u>0),
t>0

taking (J,, G as a m-system.

We claim that -
Foo =Wyt > 0) C Gogs

where Gy = (Gos, N'}) denotes the completion by P-nullsets. It suffices to show that for
any ¢t > 0 and Borel B C R, L
{W, € B} € Go4.

Indeed, denoting by “N;” any nullset, we have that
{W, € B} = {W; € B,W is continuous, Wy = 0} U N;

= { lim (W, —W,) € B,W is continuous, Wy = 0} U Ny
uN\0,ueQ

= li -W,)eB N3 N, € Gy
<{u\(l){2€Q(Wt W) € }ﬂ 2) U N € Got

It follows that for any A € Foy C Fu, we have that A = AU N for some A € Go+ and a
nullset N. Therefore, we can use independence to show that

P[A] = P[An A] = P[A]P[A] = P[A]®
and therefore P[A] € {0, 1}.
(b) Let C' > 0. For any ¢ > 0, we have that W; ~ N (0,t) and therefore

P[W; > CVt] =1-®(0),
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where @ is the cdf of the standard normal distribution. In particular, we have that

: _ > 13 —_ = — .
%P{@gt (W = CVs) >0} _}{%P[Wt c\/£>o} 1-®(C)>0

We deduce that

lim sup W >C

P
~NOo VE

—P|:Vt€@++, sup VVSZC}— inf P[sup VVSZC’} >1-9(C) >0,

0<s<t VS teQ4+ 0<s<t VS

using the monotone convergence theorem. Noting that {hm SUpPp 0 % >C } € Foy, it follows
by (a) that this probability is equal to 1. We conclude that

Wi _

P |lim sup = oo] = inf P [hmsupVVt > C] =1

t\0 \/z CeQ4+ t—0 \/i
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