Brownian Motion and Stochastic Calculus

Exercise sheet 2

Exercise 2.1 Let (Ω, \mathcal{F}, P) be a probability space, W a Brownian motion on $[0, \infty), Z$ a random variable independent of W and $t^{*} \in(0, \infty)$. We define another stochastic process $W^{\prime}=\left(W_{t}^{\prime}\right)_{t \geq 0}$ by

$$
W_{t}^{\prime}=W_{t} 1_{\left\{t<t^{*}\right\}}+\left(W_{t^{*}}+Z\left(W_{t}-W_{t^{*}}\right)\right) 1_{\left\{t \geq t^{*}\right\}}
$$

Find all possible distributions of Z such that W^{\prime} is a Brownian motion.
Solution 2.1 We claim that W^{\prime} is a Brownian motion if and only if Z takes values in $\{-1,1\}$ P-almost surely. It is clear that $P\left[W_{0}^{\prime}=0\right]=1$ and that W^{\prime} is P-a.s. continuous. It only remains to prove that it has Gaussian independent increments with the correct variance.

To that end, take $0 \leq t_{0}<\cdots<t_{k} \leq t^{*}<t_{k+1}<\cdots<t_{n}$ and note that the characteristic function $\varphi_{V}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ of the random vector $V:=\left(W_{t_{0}}^{\prime}-W_{t_{1}}^{\prime}, \ldots, W_{t_{n}}^{\prime}-W_{t_{n-1}}^{\prime}\right)$ is given by

$$
\begin{aligned}
& E\left[\exp \left(i \sum_{j=1}^{n} \lambda_{j}\left(W_{t_{j}}^{\prime}-W_{t_{j-1}}^{\prime}\right)\right)\right] \\
& =E\left[e^{i \lambda_{k+1}\left(W_{t^{*}}^{\prime}-W_{t_{k}}^{\prime}\right)+\sum_{j=1}^{k} i \lambda_{j}\left(W_{t_{j}}^{\prime}-W_{t_{j-1}}^{\prime}\right)}\right] E\left[e^{i Z\left(\lambda_{k+1}\left(W_{t_{k+1}}-W_{t^{*}}\right)+\sum_{j=k+2}^{n} \lambda_{i}\left(W_{t_{j}}-W_{t_{j-1}}\right)\right)}\right] \\
& =\exp \left(-\frac{1}{2} \lambda_{k+1}^{2}\left(t^{*}-t_{k}\right)-\frac{1}{2} \sum_{j=1}^{k} \lambda_{j}^{2}\left(t_{j}-t_{j-1}\right)\right) E\left[e^{i Z\left(\lambda_{k+1}\left(W_{t_{k+1}}-W_{t^{*}}\right)+\sum_{j=k+2}^{n} \lambda_{j}\left(W_{t_{j}}-W_{t_{j-1}}\right)\right)}\right]
\end{aligned}
$$

where we have used the independence of the increments of Brownian motion and Z, as well as that the characteristic function of a centred normal random variable with variance σ^{2} is $\varphi(\lambda)=\exp \left(-\lambda^{2} \sigma^{2} / 2\right)$. For the second expectation, note that

$$
\begin{aligned}
& E\left[e^{i Z\left(\lambda_{k+1}\left(W_{t_{k+1}}-W_{t^{*}}\right)+\sum_{j=k+2}^{n} \lambda_{j}\left(W_{t_{j}}-W_{t_{j-1}}\right)\right)}\right] \\
& =E\left[E\left[e^{i Z \lambda_{k+1}\left(W_{t_{k+1}}-W_{t^{*}}\right)+i Z \sum_{j=k+2}^{n} \lambda_{j}\left(W_{t_{j}}-W_{t_{j-1}}\right)} \mid Z\right]\right] \\
& =E\left[\exp \left(-\frac{1}{2} Z^{2}\left[\lambda_{k+1}^{2}\left(t_{k+1}-t^{*}\right)+\sum_{j=k+2}^{n} \lambda_{j}^{2}\left(t_{j}-t_{j-1}\right)\right]\right)\right] .
\end{aligned}
$$

We conclude that we can obtain

$$
\forall \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}, \quad \varphi_{V}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\exp \left(-\frac{1}{2} \sum_{j=1}^{n} \lambda_{j}^{2}\left(t_{j}-t_{j-1}\right)\right)
$$

which is the characteristic function of centred independent normal variables with the required variance, if and only if Z takes values in $\{-1,1\} P$-a.s. The sufficiency follows immediately, while the necessity can be shown using the fact that the Laplace transform of Z^{2}, given by the function $\rho \mapsto E\left[e^{-\rho Z^{2}}\right]$ on $[0, \infty)$, is unique and therefore $Z^{2}=1$ almost surely.

Exercise 2.2 Let X be a stochastic process on a probability space (Ω, \mathcal{F}, P) with $X_{0}=0 P$-a.s., and let $\mathbb{F}^{X}=\left(\mathcal{F}_{t}^{X}\right)_{t \geq 0}$ denote the (raw) filtration generated by X, i.e., $\mathcal{F}_{t}^{X}=\sigma\left(X_{s} ; s \leq t\right)$. Show that the following two properties are equivalent:
(i) X has independent increments, i.e., for all $n \in \mathbb{N}$ and $0 \leq t_{0}<t_{1}<\cdots<t_{n}<\infty$, the increments $X_{t_{i}}-X_{t_{i-1}}, i=1, \ldots, n$, are independent.
(ii) X has \mathbb{F}^{X}-independent increments, i.e., $X_{t}-X_{s}$ is independent of \mathcal{F}_{s}^{X} whenever $t \geq s$.

Remark: This also shows the equivalence between the two definitions of Brownian motion with properties (BM2) and (BM2'), respectively, when we choose $\mathbb{F}=\mathbb{F}^{W}$.

Hint: For proving "(i) \Rightarrow (ii)", you can use the monotone class theorem. When choosing \mathcal{H}, recall that a random variable Y is independent of a σ-algebra \mathcal{G} if and only if one has the product formula $E[g(Y) Z]=E[g(Y)] E[Z]$ for all bounded Borel-measurable functions $g: \mathbb{R} \rightarrow \mathbb{R}$ and all bounded \mathcal{G}-measurable random variables Z.

Solution 2.2 First, assume that X has independent increments and fix $0 \leq s \leq t$. The family

$$
\mathcal{M}_{s}=\left\{\prod_{i=1}^{n} h_{i}\left(X_{s_{i}}\right): n \in \mathbb{N}, 0 \leq s_{1}<\cdots<s_{n} \leq s, h_{i}: \mathbb{R} \rightarrow \mathbb{R} \text { Borel and bounded }\right\}
$$

of bounded, real-valued functions on Ω is closed under multiplication. Moreover, note that $\sigma\left(\mathcal{M}_{s}\right)=\mathcal{F}_{s}^{X}$. Let \mathcal{H}_{s} denote the real vector space of all bounded, real-valued, \mathcal{F}_{s}^{X}-measurable functions Z on Ω with the property that:

$$
E\left[g\left(X_{t}-X_{s}\right) Z\right]=E\left[g\left(X_{t}-X_{s}\right)\right] E[Z] \text { for all bounded Borel functions } g: \mathbb{R} \rightarrow \mathbb{R}
$$

Clearly, \mathcal{H}_{s} contains the constant function 1 and is closed under monotone bounded convergence (we even do not need monotonicity).

Next, we show that \mathcal{H}_{s} contains \mathcal{M}_{s}. Fix a typical element $Z=\prod_{i=1}^{n} h_{i}\left(X_{s_{i}}\right)$ in \mathcal{M}_{s}. Define the function $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $h(x)=\prod_{i=1}^{n} h_{i}\left(x_{i}\right)$ where $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$. Note that h is again a Borel function. Then we can write $Z=h\left(X_{s_{1}}, \ldots, X_{s_{n}}\right)$. Since $X_{0}=0 P$-a.s., we also have

$$
\left(X_{s_{1}}, \ldots, X_{s_{n}}\right)=f\left(X_{s_{1}}-X_{0}, X_{s_{2}}-X_{s_{1}}, \ldots, X_{s_{n}}-X_{s_{n-1}}\right) \quad P-\text { a.s. }
$$

for a linear transformation f. Finally,

$$
\begin{aligned}
E\left[g\left(X_{t}-X_{s}\right) Z\right] & =E\left[g\left(X_{t}-X_{s}\right) h\left(X_{s_{1}}, \ldots, X_{s_{n}}\right)\right] \\
& =E\left[g\left(X_{t}-X_{s}\right)(h \circ f)\left(X_{s_{1}}-X_{0}, X_{s_{2}}-X_{s_{1}}, \ldots, X_{s_{n}}-X_{s_{n-1}}\right)\right] \\
& =E\left[g\left(X_{t}-X_{s}\right)\right] E\left[(h \circ f)\left(X_{s_{1}}-X_{0}, X_{s_{2}}-X_{s_{1}}, \ldots, X_{s_{n}}-X_{s_{n-1}}\right)\right] \\
& =E\left[g\left(X_{t}-X_{s}\right)\right] E[Z]
\end{aligned}
$$

where we use the assumption that $X_{t}-X_{s}$ is independent of $\left(X_{s_{1}}-X_{0}, X_{s_{2}}-X_{s_{1}}, \ldots, X_{s_{n}}-X_{s_{n-1}}\right)$ in the third equality. Thus, $Z \in \mathcal{H}_{s}$.

The monotone class theorem yields that \mathcal{H}_{s} contains every bounded \mathcal{F}_{s}^{X}-measurable function on Ω. In particular, $X_{t}-X_{s}$ is independent of \mathcal{F}_{s}^{X}.

For the converse implication, we proceed by induction on n. The case $n=1$ is trivial, so fix $n \geq 2,0 \leq t_{0}<t_{1}<\cdots<t_{n}<\infty$, and $A_{i} \in \mathcal{B}(\mathbb{R}), i=1, \ldots, n$. Conditioning on $\mathcal{F}_{t_{n-1}}^{X}$ and using (ii) for $t=t_{n}$ and $s=t_{n-1}$, we obtain

$$
P\left[\bigcap_{i=1}^{n}\left(X_{t_{i}}-X_{t_{i-1}}\right)^{-1}\left(A_{i}\right)\right]=P\left[\bigcap_{i=1}^{n-1}\left(X_{t_{i}}-X_{t_{i-1}}\right)^{-1}\left(A_{i}\right)\right] P\left[\left(X_{t_{n}}-X_{t_{n-1}}\right)^{-1}\left(A_{n}\right)\right]
$$

Applying the induction hypothesis to the first factor on the right-hand side completes the proof.

Exercise 2.3 A function $f: D \subseteq \mathbb{R} \rightarrow \mathbb{R}$ is called locally Hölder-continuous of order α at $x \in D$ if there exist $\delta>0$ and $C>0$ such that $|f(x)-f(y)| \leq C|x-y|^{\alpha}$ for all $y \in D$ with $|x-y| \leq \delta$. A function $f: D \subseteq \mathbb{R} \rightarrow \mathbb{R}$ is called locally Hölder-continuous of order α if it is locally Hölder-continuous of order α at each $x \in D$.
(a) Let $Z \sim N(0,1)$. Prove that $P[|Z| \leq \varepsilon] \leq \varepsilon$ for any $\varepsilon \geq 0$.
(b) Prove that for any $\alpha>\frac{1}{2}, P$-almost all Brownian paths are nowhere on $[0,1]$ locally Höldercontinuous of order α.
Hint: Take any $M \in \mathbb{N}$ satisfying $M\left(\alpha-\frac{1}{2}\right)>1$ and show that the set $\{W .(\omega)$ is locally α-Hölder at some $s \in[0,1]\}$ is contained in the set $\bigcup_{C \in \mathbb{N}} \bigcup_{m \in \mathbb{N}} \bigcap_{n \geq m} \bigcup_{k=0, \ldots, n-M} \bigcap_{j=1}^{M}\left\{\left|W_{\frac{k+j}{n}}(\omega)-W_{\frac{k+j-1}{n}}(\omega)\right| \leq C \frac{1}{n^{\alpha}}\right\}$.
(c) The Kolmogorov-Čentsov theorem states that an \mathbb{R}-valued process X on $[0, T]$ satisfying

$$
E\left[\left|X_{t}-X_{s}\right|^{\gamma}\right] \leq C|t-s|^{1+\beta}, \quad s, t \in[0, T]
$$

where $\gamma, \beta, C>0$, has a version which is locally Hölder-continuous of order α for all $\alpha<\beta / \gamma$. Use this to deduce that Brownian motion is for every $\alpha<1 / 2$ locally Hölder-continuous of order α.
Remark: One can also show that the Brownian paths are not locally Hölder-continuous of order $1 / 2$. The exact modulus of continuity was found by P. Lévy.

Solution 2.3

(a) The density $f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$ of Z is bounded by $\frac{1}{\sqrt{2 \pi}} \leq \frac{1}{2}$. So

$$
P[|Z| \leq \varepsilon]=P[-\varepsilon \leq Z \leq \varepsilon]=\int_{-\varepsilon}^{\varepsilon} f(x) d x \leq \frac{1}{2} 2 \varepsilon=\varepsilon
$$

(b) Take any $\alpha>\frac{1}{2}$ and let $M \in \mathbb{N}$ satisfying $M\left(\alpha-\frac{1}{2}\right)>1$. If W.(ω) is locally Hölder-continuous of order α at the point $s \in[0,1]$, there exists a constant C so that $\left|W_{t}(\omega)-W_{s}(\omega)\right| \leq C|t-s|^{\alpha}$ for t near s. Then $\left|W_{\frac{k}{n}}(\omega)-W_{\frac{k-1}{n}}(\omega)\right| \leq C n^{-\alpha}$ for all large enough n, for $\frac{k}{n}$ near s and M successive indices k. The set $\stackrel{n}{n}^{n} W .(\omega)$ is locally α-Hölder at some $\left.s \in[0,1]\right\}$ is therefore contained in

$$
B:=\bigcup_{C \in \mathbb{N}} \bigcup_{m \in \mathbb{N}} \bigcap_{n \geq m} \bigcup_{k=0, \ldots, n-M} \bigcap_{j=1}^{M}\left\{\left|W_{\frac{k+j}{n}}(\omega)-W_{\frac{k+j-1}{n}}(\omega)\right| \leq C \frac{1}{n^{\alpha}}\right\}
$$

We show that this is a nullset. As the above Brownian increments are i.i.d $\sim N\left(0, \frac{1}{n}\right)$, and using (a) for $Z \sim \mathcal{N}(0,1)$, we have

$$
\begin{equation*}
P\left[\bigcap_{i=1}^{M}\left\{\left|W_{\frac{k+j}{n}}(\omega)-W_{\frac{k+j-1}{n}}(\omega)\right| \leq C \frac{1}{n^{\alpha}}\right\}\right]=\left(P\left[|Z| \leq \frac{C}{n^{\alpha-1 / 2}}\right]\right)^{M} \leq C^{M} n^{-M\left(\alpha-\frac{1}{2}\right)} \tag{1}
\end{equation*}
$$

Now, we have

$$
\begin{aligned}
& D_{m}: \\
&=\bigcap_{n \geq m} \bigcup_{k=0, \ldots, n-1} \bigcap_{j=1}^{M}\left\{\left|W_{\frac{k+j}{n}}(\omega)-W_{\frac{k+j-1}{n}}(\omega)\right| \leq C \frac{1}{n^{\alpha}}\right\} \\
& \subseteq \bigcup_{k=0, \ldots, n-1} \bigcap_{j=1}^{M}\left\{\left|W_{\frac{k+j}{n}}(\omega)-W_{\frac{k+j-1}{n}}(\omega)\right| \leq C \frac{1}{n^{\alpha}}\right\} \quad \text { for each } n \geq m
\end{aligned}
$$

and therefore, due to (1), as $M\left(\alpha-\frac{1}{2}\right)>1$, we get

$$
\begin{aligned}
P\left[D_{m}\right] & \leq \limsup _{n \rightarrow \infty} P\left[\bigcup_{k=0, \ldots, n-M} \bigcap_{j=1}^{M}\left\{\left|W_{\frac{k+j}{n}}(\omega)-W_{\frac{k+j-1}{n}}(\omega)\right| \leq C \frac{1}{n^{\alpha}}\right\}\right] \\
& \leq \limsup _{n \rightarrow \infty} n C^{M} n^{-M\left(\alpha-\frac{1}{2}\right)} \\
& =0
\end{aligned}
$$

Therefore, since B is a countable union of nullsets, $P[B]=0$.
(c) Let $Y_{\sigma} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ for any $\sigma \geq 0$. We note that $E\left[Y_{\sigma}^{m}\right]=C_{m} \sigma^{m}$, where $C_{m}=E\left[Y_{1}^{m}\right]$. Thus

$$
E\left[\left|W_{t}-W_{s}\right|^{2 n}\right]=C_{2 n}|t-s|^{n} \quad \text { for all } n
$$

Writing $\gamma_{n}:=2 n$ and $\beta_{n}:=n-1$ yields that

$$
E\left[\left|W_{t}-W_{s}\right|^{\gamma_{n}}\right]=C_{2 n}|t-s|^{1+\beta_{n}} \quad \text { for all } n
$$

Now, fix $\alpha<\frac{1}{2}$. As $\frac{\beta_{n}}{\gamma_{n}}<\frac{1}{2}$ for any $n \in \mathbb{N}$ and $\frac{\beta_{n}}{\gamma_{n}}$ converges to $\frac{1}{2}$, we find big enough N such that $\alpha<\frac{\beta_{N}}{\gamma_{N}}$. Thus, we get that W has a locally α-Hölder continuous version by the Kolmogorov-Čentsov theorem.
However, note that both W and this version are continuous, and therefore by exercise 1.2, they are indistinguishable. Therefore, W itself is locally α-Hölder continuous.

Remark: In fact, $E\left[Y_{\sigma}^{n}\right]=(n-1)!!\sigma^{n}$ for n even and 0 otherwise, where $n!$! denotes the double factorial, defined as the product of every odd number between n and 1 .

Exercise 2.4

(a) Let W be a Brownian motion on a probability space (Ω, \mathcal{F}, P) and let $\mathcal{F}_{t}=\sigma\left(W_{s}, 0 \leq s \leq t\right)$ be the natural filtration of W. Let $\mathcal{F}_{0+}:=\cap_{t>0} \mathcal{F}_{t}$. Show Blumenthal's 0-1 law: for $A \in \mathcal{F}_{0+}$, either $P[A]=0$ or $P[A]=1$.
Hint: Show that A and the increments of W are independent.
(b) Show that

$$
P\left[\limsup _{t \searrow 0} \frac{W_{t}}{\sqrt{t}}=\infty\right]=1
$$

Hint: Start by showing that for each $C>0$,

$$
\lim _{t \searrow 0} P\left[\sup _{0 \leq s \leq t}\left(W_{s}-C \sqrt{s}\right)>0\right]>0
$$

and use (a).

Solution 2.4

(a) By construction, we note that $\mathcal{F}_{0+} \subseteq \mathcal{F}_{t}$ for any $t>0$. Letting $\mathcal{G}_{t}:=\sigma\left(W_{u}-W_{t}, u \geq t\right)$, and since \mathcal{F}_{t} and \mathcal{G}_{t} are independent due to the independence of increments, it follows that \mathcal{F}_{0+} is independent of \mathcal{G}_{t} for all $t>0$. By Dynkin's lemma, it follows that \mathcal{F}_{0+} is independent of

$$
\mathcal{G}_{0+}=\sigma\left(\bigcup_{t>0} \mathcal{G}_{t}\right)=\sigma\left(W_{t}-W_{u} ; t \geq u>0\right)
$$

taking $\bigcup_{t>0} \mathcal{G}_{t}$ as a π-system.
We claim that

$$
\mathcal{F}_{\infty}=\sigma\left(W_{t} ; t \geq 0\right) \subseteq \overline{\mathcal{G}_{0+}}
$$

where $\left.\overline{\mathcal{G}_{0+}}=\sigma\left(\mathcal{G}_{0+}, \mathcal{N}\right\}\right)$ denotes the completion by P-nullsets. It suffices to show that for any $t \geq 0$ and Borel $B \subseteq \mathbb{R}$,

$$
\left\{W_{t} \in B\right\} \in \overline{\mathcal{G}_{0+}}
$$

Indeed, denoting by " N_{i} " any nullset, we have that

$$
\begin{aligned}
\left\{W_{t} \in B\right\} & =\left\{W_{t} \in B, W \text { is continuous, } W_{0}=0\right\} \cup N_{1} \\
& =\left\{\lim _{u \searrow 0, u \in \mathbb{Q}}\left(W_{t}-W_{u}\right) \in B, W \text { is continuous, } W_{0}=0\right\} \cup N_{1} \\
& =\left(\left\{\lim _{u \searrow 0, u \in \mathbb{Q}}\left(W_{t}-W_{u}\right) \in B\right\} \cap N_{2}^{c}\right) \cup N_{1} \in \overline{\mathcal{G}_{0+}} .
\end{aligned}
$$

It follows that for any $A \in \mathcal{F}_{0+} \subseteq \mathcal{F}_{\infty}$, we have that $A=\tilde{A} \cup N$ for some $\tilde{A} \in \mathcal{G}_{0+}$ and a nullset N. Therefore, we can use independence to show that

$$
P[A]=P[A \cap \tilde{A}]=P[A] P[\tilde{A}]=P[A]^{2}
$$

and therefore $P[A] \in\{0,1\}$.
(b) Let $C>0$. For any $t>0$, we have that $W_{t} \sim \mathcal{N}(0, t)$ and therefore

$$
P\left[W_{t}>C \sqrt{t}\right]=1-\Phi(C)
$$

where Φ is the cdf of the standard normal distribution. In particular, we have that

$$
\lim _{t \searrow 0} P\left[\sup _{0 \leq s \leq t}\left(W_{s}-C \sqrt{s}\right)>0\right] \geq \lim _{t \searrow 0} P\left[W_{t}-C \sqrt{t}>0\right]=1-\Phi(C)>0
$$

We deduce that
$P\left[\limsup _{t \searrow 0} \frac{W_{t}}{\sqrt{t}} \geq C\right]=P\left[\forall t \in \mathbb{Q}_{++}, \sup _{0 \leq s \leq t} \frac{W_{s}}{\sqrt{s}} \geq C\right]=\inf _{t \in \mathbb{Q}_{++}} P\left[\sup _{0 \leq s \leq t} \frac{W_{s}}{\sqrt{s}} \geq C\right] \geq 1-\Phi(C)>0$,
using the monotone convergence theorem. Noting that $\left\{\limsup _{t \searrow 0} \frac{W_{t}}{\sqrt{t}} \geq C\right\} \in \overline{\mathcal{F}_{0+}}$, it follows by (a) that this probability is equal to 1 . We conclude that

$$
P\left[\limsup _{t \searrow 0} \frac{W_{t}}{\sqrt{t}}=\infty\right]=\inf _{C \in \mathbb{Q}_{++}} P\left[\limsup _{t \rightarrow 0} \frac{W_{t}}{\sqrt{t}} \geq C\right]=1
$$

