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Exercise 2.1 Let (Ω,F , P ) be a probability space, W a Brownian motion on [0,∞), Z a random
variable independent of W and t∗ ∈ (0,∞). We define another stochastic process W ′ = (W ′t )t≥0 by

W ′t = Wt1{t<t∗} +
(
Wt∗ + Z(Wt −Wt∗)

)
1{t≥t∗}.

Find all possible distributions of Z such that W ′ is a Brownian motion.

Solution 2.1 We claim that W ′ is a Brownian motion if and only if Z takes values in {−1, 1}
P -almost surely. It is clear that P [W ′0 = 0] = 1 and that W ′ is P -a.s. continuous. It only remains
to prove that it has Gaussian independent increments with the correct variance.

To that end, take 0 ≤ t0 < · · · < tk ≤ t∗ < tk+1 < · · · < tn and note that the characteristic
function ϕV (λ1, . . . , λn) of the random vector V := (W ′t0 −W

′
t1 , . . . ,W

′
tn −W

′
tn−1

) is given by

E

exp

i n∑
j=1

λj(W ′tj −W
′
tj−1

)


= E

[
e
iλk+1(W ′t∗−W

′
tk

)+
∑k

j=1
iλj(W ′tj−W

′
tj−1

)
]
E

[
e
iZ
(
λk+1(Wtk+1−Wt∗ )+

∑n

j=k+2
λi(Wtj

−Wtj−1 )
)]

= exp

−1
2λ

2
k+1(t∗ − tk)− 1

2

k∑
j=1

λ2
j (tj − tj−1)

E

[
e
iZ
(
λk+1(Wtk+1−Wt∗ )+

∑n

j=k+2
λj(Wtj

−Wtj−1 )
)]
,

where we have used the independence of the increments of Brownian motion and Z, as well
as that the characteristic function of a centred normal random variable with variance σ2 is
ϕ(λ) = exp(−λ2σ2/2). For the second expectation, note that

E

[
e
iZ
(
λk+1(Wtk+1−Wt∗ )+

∑n

j=k+2
λj(Wtj

−Wtj−1 )
)]

= E

[
E

[
e
iZλk+1(Wtk+1−Wt∗ )+iZ

∑n

j=k+2
λj(Wtj

−Wtj−1 )
∣∣∣ Z] ]

= E

[
exp

(
− 1

2Z
2
[
λ2
k+1(tk+1 − t∗) +

n∑
j=k+2

λ2
j (tj − tj−1)

])]
.

We conclude that we can obtain

∀λ1, . . . , λn ∈ R, ϕV (λ1, ..., λn) = exp

−1
2

n∑
j=1

λ2
j (tj − tj−1)


which is the characteristic function of centred independent normal variables with the required
variance, if and only if Z takes values in {−1, 1} P -a.s. The sufficiency follows immediately, while
the necessity can be shown using the fact that the Laplace transform of Z2, given by the function
ρ 7→ E[e−ρZ2 ] on [0,∞), is unique and therefore Z2 = 1 almost surely.
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Exercise 2.2 Let X be a stochastic process on a probability space (Ω,F , P ) with X0 = 0 P -a.s.,
and let FX = (FXt )t≥0 denote the (raw) filtration generated by X, i.e., FXt = σ (Xs; s ≤ t). Show
that the following two properties are equivalent:

(i) X has independent increments, i.e., for all n ∈ N and 0 ≤ t0 < t1 < · · · < tn < ∞, the
increments Xti −Xti−1 , i = 1, . . . , n, are independent.

(ii) X has FX-independent increments, i.e., Xt −Xs is independent of FXs whenever t ≥ s.

Remark: This also shows the equivalence between the two definitions of Brownian motion with
properties (BM2) and (BM2′), respectively, when we choose F = FW .

Hint: For proving “(i) ⇒ (ii)”, you can use the monotone class theorem. When choosing H,
recall that a random variable Y is independent of a σ-algebra G if and only if one has the product
formula E[g(Y )Z] = E[g(Y )]E[Z] for all bounded Borel-measurable functions g : R→ R and all
bounded G-measurable random variables Z.

Solution 2.2 First, assume that X has independent increments and fix 0 ≤ s ≤ t. The family

Ms =
{

n∏
i=1

hi(Xsi) : n ∈ N, 0 ≤ s1 < · · · < sn ≤ s, hi : R→ R Borel and bounded
}

of bounded, real-valued functions on Ω is closed under multiplication. Moreover, note that
σ(Ms) = FXs . Let Hs denote the real vector space of all bounded, real-valued, FXs -measurable
functions Z on Ω with the property that:

E[g(Xt −Xs)Z] = E[g(Xt −Xs)]E[Z] for all bounded Borel functions g : R→ R.

Clearly, Hs contains the constant function 1 and is closed under monotone bounded convergence
(we even do not need monotonicity).

Next, we show that Hs containsMs. Fix a typical element Z =
∏n
i=1 hi(Xsi) inMs. Define

the function h : Rn → R by h(x) =
∏n
i=1 hi(xi) where x = (x1, . . . , xn) ∈ Rn. Note that h is again

a Borel function. Then we can write Z = h(Xs1 , . . . , Xsn). Since X0 = 0 P -a.s., we also have

(Xs1 , . . . , Xsn) = f(Xs1 −X0, Xs2 −Xs1 , . . . , Xsn −Xsn−1) P -a.s.

for a linear transformation f . Finally,

E[g(Xt −Xs)Z] = E[g(Xt −Xs)h(Xs1 , . . . , Xsn)]
= E[g(Xt −Xs)(h ◦ f)(Xs1 −X0, Xs2 −Xs1 , . . . , Xsn −Xsn−1)]
= E[g(Xt −Xs)]E[(h ◦ f)(Xs1 −X0, Xs2 −Xs1 , . . . , Xsn −Xsn−1)]
= E[g(Xt −Xs)]E[Z]

where we use the assumption that Xt−Xs is independent of (Xs1−X0, Xs2−Xs1 , . . . , Xsn−Xsn−1)
in the third equality. Thus, Z ∈ Hs.

The monotone class theorem yields that Hs contains every bounded FXs -measurable function
on Ω. In particular, Xt −Xs is independent of FXs .

For the converse implication, we proceed by induction on n. The case n = 1 is trivial, so fix
n ≥ 2, 0 ≤ t0 < t1 < · · · < tn <∞, and Ai ∈ B(R), i = 1, . . . , n. Conditioning on FXtn−1

and using
(ii) for t = tn and s = tn−1, we obtain

P

[
n⋂
i=1

(Xti −Xti−1)−1(Ai)
]

= P

[
n−1⋂
i=1

(Xti −Xti−1)−1(Ai)
]
P
[
(Xtn −Xtn−1)−1(An)

]
.

Applying the induction hypothesis to the first factor on the right-hand side completes the proof.
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Exercise 2.3 A function f : D ⊆ R → R is called locally Hölder-continuous of order α at
x ∈ D if there exist δ > 0 and C > 0 such that |f(x) − f(y)| ≤ C|x − y|α for all y ∈ D with
|x− y| ≤ δ. A function f : D ⊆ R→ R is called locally Hölder-continuous of order α if it is locally
Hölder-continuous of order α at each x ∈ D.

(a) Let Z ∼ N(0, 1). Prove that P [|Z| ≤ ε] ≤ ε for any ε ≥ 0.

(b) Prove that for any α > 1
2 , P -almost all Brownian paths are nowhere on [0, 1] locally Hölder-

continuous of order α.
Hint: Take any M ∈ N satisfying M(α− 1

2 ) > 1 and show that the set{
W.(ω) is locally α-Hölder at some s ∈ [0, 1]

}
is contained in the set⋃

C∈N
⋃
m∈N

⋂
n≥m

⋃
k=0,...,n−M

⋂M
j=1

{
|W k+j

n
(ω)−W k+j−1

n
(ω)| ≤ C 1

nα

}
.

(c) The Kolmogorov–Čentsov theorem states that an R-valued process X on [0, T ] satisfying

E
[
|Xt −Xs|γ

]
≤ C |t− s|1+β , s, t ∈ [0, T ],

where γ, β, C > 0, has a version which is locally Hölder-continuous of order α for all α < β/γ.
Use this to deduce that Brownian motion is for every α < 1/2 locally Hölder-continuous of
order α.
Remark: One can also show that the Brownian paths are not locally Hölder-continuous of
order 1/2. The exact modulus of continuity was found by P. Lévy.

Solution 2.3

(a) The density f(x) = 1√
2π e

−x2/2 of Z is bounded by 1√
2π ≤

1
2 . So

P [|Z| ≤ ε] = P [−ε ≤ Z ≤ ε] =
∫ ε

−ε
f(x) dx ≤ 1

22ε = ε.

(b) Take any α > 1
2 and letM ∈ N satisfyingM(α− 1

2 ) > 1. IfW.(ω) is locally Hölder-continuous
of order α at the point s ∈ [0, 1], there exists a constant C so that |Wt(ω)−Ws(ω)| ≤ C|t−s|α
for t near s. Then |W k

n
(ω) −W k−1

n
(ω)| ≤ Cn−α for all large enough n, for k

n near s and
M successive indices k. The set {W.(ω) is locally α-Hölder at some s ∈ [0, 1]} is therefore
contained in

B :=
⋃
C∈N

⋃
m∈N

⋂
n≥m

⋃
k=0,...,n−M

M⋂
j=1

{
|W k+j

n
(ω)−W k+j−1

n
(ω)| ≤ C 1

nα

}
.

We show that this is a nullset. As the above Brownian increments are i.i.d ∼ N(0, 1
n ), and

using (a) for Z ∼ N (0, 1), we have

P

[
M⋂
i=1

{
|W k+j

n
(ω)−W k+j−1

n
(ω)| ≤ C 1

nα

}]
=
(
P

[
|Z| ≤ C

nα−1/2

])M
≤ CMn−M(α− 1

2 ).

(1)
Now, we have

Dm : =
⋂
n≥m

⋃
k=0,...,n−1

M⋂
j=1

{
|W k+j

n
(ω)−W k+j−1

n
(ω)| ≤ C 1

nα

}

⊆
⋃

k=0,...,n−1

M⋂
j=1

{
|W k+j

n
(ω)−W k+j−1

n
(ω)| ≤ C 1

nα

}
for each n ≥ m
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and therefore, due to (1), as M(α− 1
2 ) > 1, we get

P
[
Dm

]
≤ lim sup

n→∞
P

[ ⋃
k=0,...,n−M

M⋂
j=1

{
|W k+j

n
(ω)−W k+j−1

n
(ω)| ≤ C 1

nα

}]
≤ lim sup

n→∞
nCM n−M(α− 1

2 )

= 0.

Therefore, since B is a countable union of nullsets, P [B] = 0.

(c) Let Yσ ∼ N (0, σ2) for any σ ≥ 0. We note that E[Y mσ ] = Cmσ
m, where Cm = E[Y m1 ]. Thus

E
[
|Wt −Ws|2n

]
= C2n|t− s|n for all n.

Writing γn := 2n and βn := n− 1 yields that

E
[
|Wt −Ws|γn

]
= C2n|t− s|1+βn for all n.

Now, fix α < 1
2 . As βn

γn
< 1

2 for any n ∈ N and βn
γn

converges to 1
2 , we find big enough N

such that α < βN
γN

. Thus, we get that W has a locally α-Hölder continuous version by the
Kolmogorov–Čentsov theorem.
However, note that both W and this version are continuous, and therefore by exercise 1.2,
they are indistinguishable. Therefore, W itself is locally α-Hölder continuous.

Remark: In fact, E[Y nσ ] = (n − 1)!!σn for n even and 0 otherwise, where n!! denotes
the double factorial, defined as the product of every odd number between n and 1.
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Exercise 2.4

(a) Let W be a Brownian motion on a probability space (Ω,F , P ) and let Ft = σ(Ws, 0 ≤ s ≤ t)
be the natural filtration of W . Let F0+ := ∩t>0Ft. Show Blumenthal’s 0-1 law: for A ∈ F0+,
either P [A] = 0 or P [A] = 1.
Hint: Show that A and the increments of W are independent.

(b) Show that

P

[
lim sup
t↘0

Wt√
t

=∞
]

= 1.

Hint: Start by showing that for each C > 0,

lim
t↘0

P

[
sup

0≤s≤t

(
Ws − C

√
s
)
> 0
]
> 0

and use (a).

Solution 2.4

(a) By construction, we note that F0+ ⊆ Ft for any t > 0. Letting Gt := σ(Wu −Wt, u ≥ t), and
since Ft and Gt are independent due to the independence of increments, it follows that F0+
is independent of Gt for all t > 0. By Dynkin’s lemma, it follows that F0+ is independent of

G0+ = σ

(⋃
t>0
Gt

)
= σ(Wt −Wu; t ≥ u > 0),

taking
⋃
t>0 Gt as a π-system.

We claim that
F∞ = σ(Wt; t ≥ 0) ⊆ G0+,

where G0+ = σ(G0+,N}) denotes the completion by P -nullsets. It suffices to show that for
any t ≥ 0 and Borel B ⊆ R,

{Wt ∈ B} ∈ G0+.

Indeed, denoting by “Ni” any nullset, we have that

{Wt ∈ B} = {Wt ∈ B,W is continuous,W0 = 0} ∪N1

=
{

lim
u↘0,u∈Q

(Wt −Wu) ∈ B,W is continuous,W0 = 0
}
∪N1

=
({

lim
u↘0,u∈Q

(Wt −Wu) ∈ B
}
∩N c

2

)
∪N1 ∈ G0+.

It follows that for any A ∈ F0+ ⊆ F∞, we have that A = Ã ∪ N for some Ã ∈ G0+ and a
nullset N . Therefore, we can use independence to show that

P [A] = P [A ∩ Ã] = P [A]P [Ã] = P [A]2

and therefore P [A] ∈ {0, 1}.

(b) Let C > 0. For any t > 0, we have that Wt ∼ N (0, t) and therefore

P [Wt > C
√
t] = 1− Φ(C),
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where Φ is the cdf of the standard normal distribution. In particular, we have that

lim
t↘0

P

[
sup

0≤s≤t

(
Ws − C

√
s
)
> 0
]
≥ lim
t↘0

P
[
Wt − C

√
t > 0

]
= 1− Φ(C) > 0.

We deduce that

P

[
lim sup
t↘0

Wt√
t
≥ C

]
= P

[
∀t ∈ Q++, sup

0≤s≤t

Ws√
s
≥ C

]
= inf
t∈Q++

P

[
sup

0≤s≤t

Ws√
s
≥ C

]
≥ 1−Φ(C) > 0,

using the monotone convergence theorem. Noting that
{

lim supt↘0
Wt√
t
≥ C

}
∈ F0+, it follows

by (a) that this probability is equal to 1. We conclude that

P

[
lim sup
t↘0

Wt√
t

=∞
]

= inf
C∈Q++

P

[
lim sup
t→0

Wt√
t
≥ C

]
= 1.
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