Brownian Motion and Stochastic Calculus

Exercise sheet 3

Exercise 3.1 Given a measurable space (Ω, \mathcal{F}) with a filtration $\mathbb{F}=\left(\mathcal{F}_{t}\right)_{t \geq 0}$, we set $\mathcal{F}_{\infty}=$ $\sigma\left(\bigcup_{t \geq 0} \mathcal{F}_{t}\right)$ and define for any \mathbb{F}-stopping time τ the σ-field

$$
\mathcal{F}_{\tau}:=\left\{A \in \mathcal{F}_{\infty}: A \cap\{\tau \leq t\} \in \mathcal{F}_{t} \text { for all } t \geq 0\right\}
$$

Let S, T be two \mathbb{F}-stopping times. Show that:
(a) if $S \leq T$, then $\mathcal{F}_{S} \subseteq \mathcal{F}_{T}$, and in general, $\mathcal{F}_{S \wedge T}=\mathcal{F}_{S} \cap \mathcal{F}_{T}$.
(b) $\{S<T\},\{S \leq T\}$ belong to $\mathcal{F}_{S} \cap \mathcal{F}_{T}$. Moreover, for any $A \in \mathcal{F}_{S}, A \cap\{S<T\}$ and $A \cap\{S \leq T\}$ belong to $\mathcal{F}_{S \wedge T}$.
(c) For any stopping time τ,

$$
\mathcal{F}_{\tau}=\sigma\left(X_{\tau}: X \text { an optional process }\right)
$$

Solution 3.1

(a) Suppose that $S \leq T$ and let $A \in \mathcal{F}_{S}$. For $t \geq 0$, we have $\{T \leq t\} \subseteq\{S \leq t\}$ so that

$$
A \cap\{T \leq t\}=(A \cap\{S \leq t\}) \cap\{T \leq t\}
$$

But $A \cap\{S \leq t\} \in \mathcal{F}_{t}$ as $A \in \mathcal{F}_{S}$, while $\{T \leq t\} \in \mathcal{F}_{t}$ as T is a stopping time. Thus, $A \cap\{T \leq t\} \in \mathcal{F}_{t}$ and so $A \in \mathcal{F}_{T}$. This shows the first part.
For the second part, note that $S \wedge T \leq S$ and $S \wedge T \leq T$, so we immediately have that $\mathcal{F}_{S \wedge T} \subseteq \mathcal{F}_{S} \cap \mathcal{F}_{T}$. To show the reverse inclusion, let $A \in \mathcal{F}_{S} \cap \mathcal{F}_{T}$. We have that

$$
A \cap\{S \wedge T \leq t\}=(A \cap\{S \leq t\}) \cup(A \cap\{T \leq t\}) \in \mathcal{F}_{t}
$$

since $A \cap\{S \leq t\}, A \cap\{T \leq t\} \in \mathcal{F}_{t}$, which shows the result.
(b) We have that, for $t \geq 0$,

$$
\{S<T\} \cap\{T \leq t\}=\bigcup_{q \in \mathbb{Q} \cap[0, t]}(\{S \leq q\} \cap\{q<T\} \cap\{T \leq t\}) \in \mathcal{F}_{t}
$$

since each of these events is in \mathcal{F}_{t}. Likewise,

$$
\{S<T\} \cap\{S \leq t\}=(\{S \leq t\} \cap\{t<T\}) \cup(\{S<T\} \cap\{T \leq t\}) \in \mathcal{F}_{t}
$$

This holds for each $t \geq 0$, so $\{S<T\} \in \mathcal{F}_{S} \cap \mathcal{F}_{T}=\mathcal{F}_{S \wedge T}$. We also have that $\{S \leq T\}=$ $\{T<S\}^{c} \in \mathcal{F}_{S} \cap \mathcal{F}_{T}$, by symmetry.

Given $A \in \mathcal{F}_{S}$, for any $t \geq 0$,

$$
A \cap\{S<T\} \cap\{S \wedge T \leq t\}=(A \cap\{S \leq t\}) \cap(\{S<T\} \cap\{S \leq t\}) \in \mathcal{F}_{t}
$$

since $A,\{S<T\} \in \mathcal{F}_{S}$. Similarly,

$$
A \cap\{S \leq T\} \cap\{S \wedge T \leq t\}=(A \cap\{S \leq t\}) \cap(\{S \leq T\} \cap\{S \leq t\}) \in \mathcal{F}_{t}
$$

(c) Let $A \in \mathcal{F}_{\tau}$. We can define the process $X=\mathbb{1}_{A \cap\{t \geq \tau\}}$, which we claim is optional. Indeed, it is RCLL with a single jump at time τ, and it is adapted, since for each $t \geq 0$, we have that $X_{t}^{-1}\{1\}=A \cap\{\tau \leq t\} \in \mathcal{F}_{t}$. This shows the inclusion ' \subseteq ".
Conversely, let X be an optional process. We first assume that X is right-continuous and adapted. Let $t \geq 0$ and $B \subseteq \mathbb{R}$ be an open set. By right-continuity, on $\{\tau<t\}$ we have that $X_{\tau} \in B$ if and only if there exists some $\varepsilon>0$ such that $\inf _{s \in(\tau, \tau+\varepsilon) \cap[0, t]} \operatorname{dist}\left(X_{s}, B^{c}\right) \geq \varepsilon$ (in particular, $X_{s} \in B$ for any such s). Taking the complement, we can then write

$$
\begin{aligned}
& \left\{X_{\tau} \in B\right\} \cap\{\tau \leq t\}= \\
& \quad\left(\left\{X_{t} \in B\right\} \cap\{\tau=t\}\right) \cup\left(\bigcap_{\varepsilon \in \mathbb{Q}_{++}} \bigcup_{s \in \mathbb{Q} \cap[0, t]}\left(\{\tau<s\} \cap\{s<\tau+\varepsilon\} \cap\left\{\operatorname{dist}\left(X_{s}, B^{c}\right)<\varepsilon\right\}\right)\right) \in \mathcal{F}_{t} .
\end{aligned}
$$

Therefore, X_{τ} is \mathcal{F}_{τ}-measurable, as we wanted.
In general, let \mathcal{M} be the set of adapted, bounded and right-continuous processes, and let \mathcal{H} be the set of bounded processes such that X_{τ} is \mathcal{F}_{τ}-measurable. It is clear that \mathcal{M} is closed under multiplication and $\sigma(\mathcal{M})=\mathcal{O}$. Moreover, \mathcal{H} is a vector space such that $1 \in \mathcal{M} \subseteq \mathcal{H}$ (by the previous argument) and it is closed under bounded monotone convergence, since if $X^{n} \nearrow X$ with X bounded and each $X^{n} \in \mathcal{H}$, then each X_{τ}^{n} is \mathcal{F}_{τ}-measurable and $X_{\tau}^{n} \nearrow X_{\tau}$ which must also be \mathcal{F}_{τ}-measurable.
Therefore, by the monotone class theorem we have that \mathcal{H} contains all bounded optional processes, and by a truncation argument (taking $X^{n}=X \mathbb{1}_{\{|X| \leq n\}}$), we find that X_{τ} is \mathcal{F}_{τ}-measurable for any optional process X.

Exercise 3.2 Let $\left(B_{t}\right)_{t \geq 0}$ be a Brownian motion and consider the process X defined by

$$
X_{t}:=e^{-t} B_{e^{2 t}}, \quad t \in \mathbb{R}
$$

(a) Show that $X_{t} \sim \mathcal{N}(0,1), \quad \forall t \in \mathbb{R}$.
(b) Show that the process $\left(X_{t}\right)_{t \in \mathbb{R}}$ is time reversible, i.e. $\left(X_{t}\right)_{t \geq 0} \stackrel{(\mathrm{~d})}{=}\left(X_{-t}\right)_{t \geq 0}$.

Hint: Use the time inversion property of Brownian motion, i.e., if W is a Brownian motion, then

$$
X_{t}:= \begin{cases}0, & \text { if } t=0 \\ t W_{1 / t}, & \text { if } t>0\end{cases}
$$

is also a Brownian motion.
Remark: The process X is called an Ornstein-Uhlenbeck process.

Solution 3.2

(a) Fix any $t \in \mathbb{R}$. Since Brownian motion B is a Gaussian process, we get that X_{t} is normally distributed. It remains to check its mean and variance: for any $t \in \mathbb{R}$,

$$
\begin{aligned}
\mathrm{E}\left[X_{t}\right] & =0 \\
\operatorname{Var}\left(X_{t}\right) & =e^{-2 t} e^{2 t}=1
\end{aligned}
$$

(b) Fix any $n \in \mathbb{N}$ and any $t_{1}, t_{2}, \ldots, t_{n} \geq 0$. It is enough to check that

$$
\left(X_{-t_{1}}, X_{-t_{2}}, \ldots, X_{-t_{n}}\right) \stackrel{(\mathrm{d})}{=}\left(X_{t_{1}}, X_{t_{2}}, \ldots, X_{t_{n}}\right)
$$

From the invariance by time inversion property of Brownian motion (cf. Proposition 1.1 in Section 2.1)), we get that for any $\tilde{t}_{1}, \ldots, \tilde{t}_{n} \geq 0$,

$$
\left(B_{1 / \tilde{t}_{1}}, B_{1 / \tilde{t}_{2}}, \ldots, B_{1 / \tilde{t}_{n}}\right) \stackrel{(\mathrm{d})}{=}\left(B_{\tilde{t}_{1}} / \tilde{t}_{1}, B_{\tilde{t}_{2}} / \tilde{t}_{2}, \ldots, B_{\tilde{t}_{n}} / \tilde{t}_{n}\right)
$$

Therefore, for $\tilde{t}_{i}:=e^{2 t_{i}}, i:=1, \ldots, n$, we get that

$$
\begin{aligned}
\left(X_{-t_{1}}, X_{-t_{2}}, \ldots, X_{-t_{n}}\right) & =\left(e^{t_{1}} B_{e^{-2 t_{1}}}, e^{t_{2}} B_{e^{-2 t_{2}}}, \ldots, e^{t_{n}} B_{e^{-2 t_{n}}}\right) \\
& \stackrel{(\mathrm{d})}{=}\left(e^{-t_{1}} B_{e^{2 t_{1}}}, e^{-t_{2}} B_{e^{2 t_{2}}}, \ldots, e^{-t_{n}} B_{e^{2 t_{n}}}\right) \\
& =\left(X_{t_{1}}, X_{t_{2}}, \ldots, X_{t_{n}}\right)
\end{aligned}
$$

Exercise 3.3 Let W be a Brownian motion with respect to its natural filtration. Show that

$$
M_{t}^{(1)}=e^{t / 2} \cos W_{t}, \quad M_{t}^{(2)}=t W_{t}-\int_{0}^{t} W_{u} d u, \quad M_{t}^{(3)}=W_{t}^{3}-3 t W_{t}
$$

are martingales.
Hint: You may want to use the formula for the characteristic function of a Gaussian random variable. A trigonometric identity for $\cos (a+b)$ may also be useful; alternatively, you may use that for independent random variables X and Y and if the density f_{X} exists, we have

$$
E[g(X, Y) \mid Y]=\int_{\mathbb{R}} g(x, Y) f_{X}(x) d x
$$

for any bounded measurable function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$.
Solution 3.3 It is clear that $M^{(1)}$ is adapted and each $M_{t}^{(1)}$ is bounded, hence integrable. To show that $M^{(1)}$ is a martingale, first note that for a normal random variable $Z \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, we have that

$$
\int_{\mathbb{R}} \frac{\cos y}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}} d y=E[\cos Z]=\operatorname{Re}\left(E\left[e^{i Z}\right]\right)=\operatorname{Re}\left(e^{i \mu-\frac{\sigma^{2}}{2}}\right)=e^{-\frac{\sigma^{2}}{2}} \cos \mu
$$

Therefore,

$$
\begin{aligned}
E\left[M_{t}^{(1)} \mid \mathcal{F}_{2}\right] & =e^{t / 2} E\left[\cos \left(W_{s}+W_{t}-W_{s}\right) \mid \mathcal{F}_{s}\right] \\
& =e^{t / 2} \int_{\mathbb{R}} \frac{\cos \left(W_{s}+y\right)}{\sqrt{2 \pi(t-s)}} e^{-\frac{y^{2}}{2(t-s)}} d y \\
& =e^{t / 2} \int_{\mathbb{R}} \frac{\cos y}{\sqrt{2 \pi(t-s)}} e^{-\frac{\left(y-W_{s}\right)^{2}}{2(t-s)}} d y \\
& =e^{t / 2} e^{-\frac{t-s}{2}} \cos W_{s} \\
& =e^{s / 2} \cos W_{s}
\end{aligned}
$$

as we wanted.
For $M^{(2)}$, we have that it is adapted and for each t,

$$
E\left[\left|M_{t}^{(2)}\right|\right] \leq t E\left[\left|W_{t}\right|\right]+\int_{0}^{t} E\left[\left|W_{u}\right|\right] d u<\infty
$$

We also have that

$$
\begin{aligned}
E\left[M_{t}^{(2)} \mid \mathcal{F}_{s}\right] & =t W_{s}-\int_{0}^{s} W_{u} d u-(t-s) W_{s}-E\left[\int_{s}^{t}\left(W_{u}-W_{s}\right) d u \mid \mathcal{F}_{s}\right] \\
& =s W_{s}-\int_{0}^{s} W_{u} d u \\
& =M_{s}^{(2)}
\end{aligned}
$$

using the conditional Fubini theorem.
Finally, we have that $M^{(3)}$ is adapted and each $M_{t}^{(3)}$ is integrable since W_{t} has finite moments (in particular the third moment). We calculate

$$
\begin{aligned}
E\left[M_{t}^{(3)} \mid \mathcal{F}_{s}\right] & =E\left[\left(W_{s}+W_{t}-W_{s}\right)^{3} \mid \mathcal{F}_{s}\right]-3 t W_{s} \\
& =E\left[W_{s}^{3}+3 W_{s}^{2}\left(W_{t}-W_{s}\right)+3 W_{s}\left(W_{t}-W_{s}\right)^{2}+\left(W_{t}-W_{s}\right)^{3} \mid \mathcal{F}_{s}\right]-3 t W_{s} \\
& =W_{s}^{3}+3 W_{s}(t-s)-3 t W_{s} \\
& =W_{s}^{3}-3 s W_{s}
\end{aligned}
$$

so $M^{(3)}$ is a martingale, as we wanted.

Exercise 3.4 Let $\rho \in(0,1)$. For a bounded measurable function $f:[0,1] \rightarrow \mathbb{R}$, define the moving average function MA $_{\rho} f$ by

$$
\left(\mathrm{MA}_{\rho} f\right)(t)=\frac{1}{\rho} \int_{t-\rho}^{t} f(u) d u
$$

where we set $f(t)=f(0)$ for $t<0$. Define $\tau(f)=\inf \left\{t \geq 0: f(t) \geq\left(M A_{\rho} f\right)(t)+1\right\} \wedge 1$. Show that if X^{n} is an approximation to a Brownian motion W as in Donsker's theorem, then $\tau\left(X^{n}\right) \rightarrow \tau(W)$ in distribution.

Solution 3.4 We need to show that τ is bounded and continuous outside of a nullset under the Wiener measure. Boundedness is clear, since $\tau \leq 1$.

To show continuity, define the set

$$
S=\left\{f \in C([0,1]): \forall t \in[0,1), \limsup _{\delta \searrow 0} \frac{f(t+\delta)-f(t)}{\delta}=+\infty\right\}
$$

By the law of the iterated logarithm, we know that S has Wiener measure 1. We just need to show that τ is continuous on S.

Indeed, let $f \in S$ and $\varepsilon>0$. Define

$$
\delta=\inf _{s \in[0, \tau(f)-\varepsilon]}\left(\operatorname{MA}_{\rho} f(s)+1-f(s)\right)>0
$$

since f is continuous and by definition of $\tau(f)$. For any $g \in C([0,1])$ such that $\|g\|_{\infty}<\delta / 2$, note that $\left\|M A_{\rho} g\right\|_{\infty}<\delta / 2$ as well, and so it follows that $\tau(f+g) \geq \tau(f)-\varepsilon$.

This already shows that τ is continuous at f if $\tau(f)=1$, so from now on we assume that $t^{*}:=\tau(f) \in(0,1)$. We want to show that $\tau(f+g) \leq t^{*}+\varepsilon$ if $\|g\|_{\infty}$ is small enough. Note that, for $v \in\left[t^{*}, t^{*}+\varepsilon\right]$,

$$
\begin{aligned}
\left|\left(\operatorname{MA}_{\rho} f\right)(v)-\left(\operatorname{MA}_{\rho} f\right)\left(t^{*}\right)\right| & =\left|\frac{1}{\rho} \int_{v-\rho}^{v} f(u) d u-\frac{1}{\rho} \int_{t^{*}-\rho}^{t^{*}} f(u) d u\right| \\
& \leq \frac{1}{\rho}\left(\left|\int_{t^{*}}^{v} f(u) d u\right|+\left|\int_{t^{*}-\rho}^{v-\rho} f(u) d u\right|\right) \\
& \leq M\left|v-t^{*}\right|
\end{aligned}
$$

where $M=\frac{2}{\rho}\|f\|_{\infty}$. By definition of S, we can find $v \in\left(t^{*}, t^{*}+\varepsilon\right]$ such that $f(v) \geq f\left(t^{*}\right)+2 M\left|v-t^{*}\right|$. Therefore, we have that

$$
f(v)-\left(\operatorname{MA}_{\rho} f\right)(v)-1 \geq f\left(t^{*}\right)+2 M\left|v-t^{*}\right|-\left(\mathrm{MA}_{\rho} f\right)\left(t^{*}\right)-M\left|v-t^{*}\right|-1=M\left|v-t^{*}\right|>0
$$

It follows that for any $g \in C([0,1])$ such that $\|g\|_{\infty}<M\left|v-t^{*}\right| / 2$, we have that $f(v)+g(v)-$ $\left(\mathrm{MA}_{\rho} f\right)(v)-\left(\mathrm{MA}_{\rho} g\right)(v)-1>0$ and thus $\tau(f+g) \leq \tau(f)+\varepsilon$.

This shows that τ is continuous on S, and the result follows by Donsker's theorem.

