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Exercise 3.1 Given a measurable space (Ω,F) with a filtration F = (Ft)t≥0, we set F∞ =
σ
(⋃

t≥0 Ft
)
and define for any F-stopping time τ the σ-field

Fτ :=
{
A ∈ F∞ : A ∩ {τ ≤ t} ∈ Ft for all t ≥ 0

}
.

Let S, T be two F-stopping times. Show that:

(a) if S ≤ T , then FS ⊆ FT , and in general, FS∧T = FS ∩ FT .

(b) {S < T}, {S ≤ T} belong to FS ∩ FT . Moreover, for any A ∈ FS , A ∩ {S < T} and
A ∩ {S ≤ T} belong to FS∧T .

(c) For any stopping time τ ,

Fτ = σ(Xτ : X an optional process).

Solution 3.1

(a) Suppose that S ≤ T and let A ∈ FS . For t ≥ 0, we have {T ≤ t} ⊆ {S ≤ t} so that

A ∩ {T ≤ t} = (A ∩ {S ≤ t}) ∩ {T ≤ t}.

But A ∩ {S ≤ t} ∈ Ft as A ∈ FS , while {T ≤ t} ∈ Ft as T is a stopping time. Thus,
A ∩ {T ≤ t} ∈ Ft and so A ∈ FT . This shows the first part.
For the second part, note that S ∧ T ≤ S and S ∧ T ≤ T , so we immediately have that
FS∧T ⊆ FS ∩ FT . To show the reverse inclusion, let A ∈ FS ∩ FT . We have that

A ∩ {S ∧ T ≤ t} = (A ∩ {S ≤ t}) ∪ (A ∩ {T ≤ t}) ∈ Ft,

since A ∩ {S ≤ t}, A ∩ {T ≤ t} ∈ Ft, which shows the result.

(b) We have that, for t ≥ 0,

{S < T} ∩ {T ≤ t} =
⋃

q∈Q∩[0,t]

(
{S ≤ q} ∩ {q < T} ∩ {T ≤ t}

)
∈ Ft

since each of these events is in Ft. Likewise,

{S < T} ∩ {S ≤ t} =
(
{S ≤ t} ∩ {t < T}

)
∪
(
{S < T} ∩ {T ≤ t}

)
∈ Ft.

This holds for each t ≥ 0, so {S < T} ∈ FS ∩ FT = FS∧T . We also have that {S ≤ T} =
{T < S}c ∈ FS ∩ FT , by symmetry.
Given A ∈ FS , for any t ≥ 0,

A ∩ {S < T} ∩ {S ∧ T ≤ t} = (A ∩ {S ≤ t}) ∩ ({S < T} ∩ {S ≤ t}) ∈ Ft

since A, {S < T} ∈ FS . Similarly,

A ∩ {S ≤ T} ∩ {S ∧ T ≤ t} = (A ∩ {S ≤ t}) ∩ ({S ≤ T} ∩ {S ≤ t}) ∈ Ft.
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(c) Let A ∈ Fτ . We can define the process X = 1A∩{t≥τ}, which we claim is optional. Indeed, it
is RCLL with a single jump at time τ , and it is adapted, since for each t ≥ 0, we have that
X−1
t {1} = A ∩ {τ ≤ t} ∈ Ft. This shows the inclusion ‘ ⊆ ”.

Conversely, let X be an optional process. We first assume that X is right-continuous and
adapted. Let t ≥ 0 and B ⊆ R be an open set. By right-continuity, on {τ < t} we have that
Xτ ∈ B if and only if there exists some ε > 0 such that infs∈(τ,τ+ε)∩[0,t] dist(Xs, B

c) ≥ ε (in
particular, Xs ∈ B for any such s). Taking the complement, we can then write

{Xτ ∈ B} ∩ {τ ≤ t} =

(
{Xt ∈ B} ∩ {τ = t}

)
∪

 ⋂
ε∈Q++

⋃
s∈Q∩[0,t]

(
{τ < s} ∩ {s < τ + ε} ∩ {dist(Xs, B

c) < ε}
) ∈ Ft.

Therefore, Xτ is Fτ -measurable, as we wanted.
In general, letM be the set of adapted, bounded and right-continuous processes, and let H
be the set of bounded processes such that Xτ is Fτ -measurable. It is clear thatM is closed
under multiplication and σ(M) = O. Moreover, H is a vector space such that 1 ∈ M ⊆ H
(by the previous argument) and it is closed under bounded monotone convergence, since if
Xn ↗ X with X bounded and each Xn ∈ H, then each Xn

τ is Fτ -measurable and Xn
τ ↗ Xτ

which must also be Fτ -measurable.
Therefore, by the monotone class theorem we have that H contains all bounded optional
processes, and by a truncation argument (taking Xn = X1{|X|≤n}), we find that Xτ is
Fτ -measurable for any optional process X.
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Exercise 3.2 Let (Bt)t≥0 be a Brownian motion and consider the process X defined by

Xt := e−tBe2t , t ∈ R.

(a) Show that Xt ∼ N (0, 1), ∀t ∈ R.

(b) Show that the process (Xt)t∈R is time reversible, i.e. (Xt)t≥0
(d)= (X−t)t≥0.

Hint: Use the time inversion property of Brownian motion, i.e., if W is a Brownian motion,
then

Xt :=
{

0, if t = 0,
tW1/t, if t > 0,

is also a Brownian motion.
Remark: The process X is called an Ornstein–Uhlenbeck process.

Solution 3.2

(a) Fix any t ∈ R. Since Brownian motion B is a Gaussian process, we get that Xt is normally
distributed. It remains to check its mean and variance: for any t ∈ R,

E[Xt] = 0,
Var(Xt) = e−2te2t = 1.

(b) Fix any n ∈ N and any t1, t2, . . . , tn ≥ 0. It is enough to check that(
X−t1 , X−t2 , . . . , X−tn

) (d)=
(
Xt1 , Xt2 , . . . , Xtn

)
.

From the invariance by time inversion property of Brownian motion (cf. Proposition 1.1 in
Section 2.1)), we get that for any t̃1, . . . , t̃n ≥ 0,(

B1/t̃1 , B1/t̃2 , . . . , B1/t̃n
) (d)=

(
Bt̃1/t̃1, Bt̃2/t̃2, . . . , Bt̃n/t̃n

)
.

Therefore, for t̃i := e2ti , i := 1, . . . , n, we get that(
X−t1 , X−t2 , . . . , X−tn

)
=
(
et1Be−2t1 , e

t2Be−2t2 , . . . , e
tnBe−2tn

)
(d)=
(
e−t1Be2t1 , e

−t2Be2t2 , . . . , e
−tnBe2tn

)
=
(
Xt1 , Xt2 , . . . , Xtn

)
.

3 / 5



Brownian Motion and Stochastic Calculus, Spring 2022
D-MATH Exercise sheet 3

Exercise 3.3 Let W be a Brownian motion with respect to its natural filtration. Show that

M
(1)
t = et/2 cosWt, M

(2)
t = tWt −

∫ t

0
Wudu, M

(3)
t = W 3

t − 3tWt

are martingales.
Hint: You may want to use the formula for the characteristic function of a Gaussian random

variable. A trigonometric identity for cos(a+ b) may also be useful; alternatively, you may use that
for independent random variables X and Y and if the density fX exists, we have

E
[
g(X,Y ) | Y

]
=
∫
R
g(x, Y )fX(x)dx

for any bounded measurable function g : R2 → R.

Solution 3.3 It is clear that M (1) is adapted and each M (1)
t is bounded, hence integrable. To

show that M (1) is a martingale, first note that for a normal random variable Z ∼ N (µ, σ2), we
have that ∫

R

cos y√
2πσ2

e−
(y−µ)2

2σ2 dy = E[cosZ] = Re
(
E[eiZ ]

)
= Re

(
eiµ−

σ2
2

)
= e−

σ2
2 cosµ.

Therefore,

E[M (1)
t | F2] = et/2E[cos(Ws +Wt −Ws) | Fs]

= et/2
∫
R

cos(Ws + y)√
2π(t− s)

e−
y2

2(t−s) dy

= et/2
∫
R

cos y√
2π(t− s)

e−
(y−Ws)2

2(t−s) dy

= et/2e−
t−s

2 cosWs

= es/2 cosWs,

as we wanted.
For M (2), we have that it is adapted and for each t,

E[|M (2)
t |] ≤ tE[|Wt|] +

∫ t

0
E[|Wu|]du <∞.

We also have that

E[M (2)
t | Fs] = tWs −

∫ s

0
Wudu− (t− s)Ws − E

[∫ t

s

(Wu −Ws)du
∣∣∣ Fs]

= sWs −
∫ s

0
Wudu

= M (2)
s ,

using the conditional Fubini theorem.
Finally, we have that M (3) is adapted and each M (3)

t is integrable since Wt has finite moments
(in particular the third moment). We calculate

E[M (3)
t | Fs] = E

[
(Ws +Wt −Ws)3 | Fs

]
− 3tWs

= E
[
W 3
s + 3W 2

s (Wt −Ws) + 3Ws(Wt −Ws)2 + (Wt −Ws)3 | Fs
]
− 3tWs

= W 3
s + 3Ws(t− s)− 3tWs

= W 3
s − 3sWs,

so M (3) is a martingale, as we wanted.
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Exercise 3.4 Let ρ ∈ (0, 1). For a bounded measurable function f : [0, 1]→ R, define the moving
average function MAρf by

(MAρf)(t) = 1
ρ

∫ t

t−ρ
f(u)du,

where we set f(t) = f(0) for t < 0. Define τ(f) = inf{t ≥ 0 : f(t) ≥ (MAρf)(t) + 1} ∧ 1. Show that
if Xn is an approximation to a Brownian motion W as in Donsker’s theorem, then τ(Xn)→ τ(W )
in distribution.

Solution 3.4 We need to show that τ is bounded and continuous outside of a nullset under the
Wiener measure. Boundedness is clear, since τ ≤ 1.

To show continuity, define the set

S =
{
f ∈ C([0, 1]) : ∀t ∈ [0, 1), lim sup

δ↘0

f(t+ δ)− f(t)
δ

= +∞
}
.

By the law of the iterated logarithm, we know that S has Wiener measure 1. We just need to show
that τ is continuous on S.

Indeed, let f ∈ S and ε > 0. Define

δ = inf
s∈[0,τ(f)−ε]

(
MAρf(s) + 1− f(s)

)
> 0,

since f is continuous and by definition of τ(f). For any g ∈ C([0, 1]) such that ‖g‖∞ < δ/2, note
that ‖MAρg‖∞ < δ/2 as well, and so it follows that τ(f + g) ≥ τ(f)− ε.

This already shows that τ is continuous at f if τ(f) = 1, so from now on we assume that
t∗ := τ(f) ∈ (0, 1). We want to show that τ(f + g) ≤ t∗ + ε if ‖g‖∞ is small enough. Note that, for
v ∈ [t∗, t∗ + ε],

∣∣(MAρf)(v)− (MAρf)(t∗)
∣∣ =

∣∣∣∣∣1ρ
∫ v

v−ρ
f(u)du− 1

ρ

∫ t∗

t∗−ρ
f(u)du

∣∣∣∣∣
≤ 1
ρ

(∣∣∣∣∫ v

t∗
f(u)du

∣∣∣∣+
∣∣∣∣∫ v−ρ

t∗−ρ
f(u)du

∣∣∣∣)
≤M |v − t∗|,

whereM = 2
ρ‖f‖∞. By definition of S, we can find v ∈ (t∗, t∗+ε] such that f(v) ≥ f(t∗)+2M |v−t∗|.

Therefore, we have that

f(v)− (MAρf)(v)− 1 ≥ f(t∗) + 2M |v − t∗| − (MAρf)(t∗)−M |v − t∗| − 1 = M |v − t∗| > 0.

It follows that for any g ∈ C([0, 1]) such that ‖g‖∞ < M |v − t∗|/2, we have that f(v) + g(v)−
(MAρf)(v)− (MAρg)(v)− 1 > 0 and thus τ(f + g) ≤ τ(f) + ε.

This shows that τ is continuous on S, and the result follows by Donsker’s theorem.
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