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Exercise 3.1 Given a measurable space (2, F) with a filtration F = (F;)i>0, we set Foo =
o (Utzo .7-}) and define for any F-stopping time 7 the o-field

Fr = {AE.FOOIAQ{TSt}Gft foralltEO}.
Let S, T be two F-stopping times. Show that:
(a) if S < T, then Fs C Fr, and in general, Fsar = Fs N Fr.

(b) {S < T}, {S < T} belong to Fs N Fr. Moreover, for any A € Fg, AN{S < T} and
AN{S < T} belong to Fsar-

(¢) For any stopping time 7,
F; =o(X; : X an optional process).
Solution 3.1
(a) Suppose that S < T and let A € Fg. For ¢t > 0, we have {T <t} C {S < ¢} so that
AN{T <t} =(An{S <t})n{T <t}

But An{S <t} € F; as A € Fg, while {T < t} € F; as T is a stopping time. Thus,
AN{T <t} € F; and so A € Fr. This shows the first part.

For the second part, note that SAT < S and SAT < T, so we immediately have that
Fsar € Fs N Fr. To show the reverse inclusion, let A € Fg N Fr. We have that

AN{SAT <t} =(AN{S<tHUAN{T <t}) e F,
since AN{S <t}, AN{T <t} € F;, which shows the result.

(b) We have that, for ¢t > 0,

{(S<min{r<t}= J ({S<gn{g<TIn{T<t})er

q€QN|0,t]

since each of these events is in F;. Likewise,
{(S<Tin{S<t}=({S<tIn{t<THU{S <T}N{T <t}) € F.

This holds for each t > 0, so {S < T} € Fs N Fr = Fgar. We also have that {S < T} =
{T < S}° € Fs N Fr, by symmetry.

Given A € Fg, for any t > 0,
AN{S <TIN{SAT <t} =An{S<thNn{S<TIn{S<t}) e FH
since A,{S < T} € Fg. Similarly,

AN{S<TYN{SAT <t} = (AN{S<tHN{S<T}N{S<t}) e F.
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(c) Let A € F-. We can define the process X = 1 4nf4>-}, which we claim is optional. Indeed, it
is RCLL with a single jump at time 7, and it is adapted, since for each ¢ > 0, we have that
X, Y1} = An{r <t} € F;. This shows the inclusion ¢ C .

Conversely, let X be an optional process. We first assume that X is right-continuous and
adapted. Let ¢ > 0 and B C R be an open set. By right-continuity, on {7 < ¢t} we have that
X, € B if and only if there exists some ¢ > 0 such that inf,c(r r4o)nj0,¢ dist(Xs, B¢) > ¢ (in
particular, X € B for any such s). Taking the complement, we can then write

(X, eBIn{r<t}=

((xceByn{r=thu| N U ({T < st {s <7 +e}n{dist(X,, B°) < g})

e€Qy4+ s€Qn0,¢]

Therefore, X, is F.-measurable, as we wanted.

In general, let M be the set of adapted, bounded and right-continuous processes, and let H
be the set of bounded processes such that X, is F,-measurable. It is clear that M is closed
under multiplication and (M) = O. Moreover, H is a vector space such that 1 € M CH
(by the previous argument) and it is closed under bounded monotone convergence, since if
X" /X with X bounded and each X" € H, then each X is F,-measurable and X ~ X,
which must also be F,-measurable.

Therefore, by the monotone class theorem we have that H contains all bounded optional
processes, and by a truncation argument (taking X" = X1y x|<n}), we find that X is
Fr-measurable for any optional process X.
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Exercise 3.2 Let (B;);>0 be a Brownian motion and consider the process X defined by
X, :=e ‘B, teR.

(a) Show that X; ~AN(0,1), VteR.

—
=

(b) Show that the process (X;)ier is time reversible, i.e. (Xi)i>0 = (X_¢)i>0-

Hint: Use the time inversion property of Brownian motion, i.e., if W is a Brownian motion,
then

0 ift=0

Xt — ’ . ’

tWyy, it >0,
is also a Brownian motion.
Remark: The process X is called an Ornstein—Uhlenbeck process.

Solution 3.2

(a) Fix any t € R. Since Brownian motion B is a Gaussian process, we get that X; is normally
distributed. It remains to check its mean and variance: for any t € R,

E[Xt] == 0,
Var(X;) = e 2e* =1.
(b) Fix any n € N and any t1,ts,...,t, > 0. It is enough to check that

(X Xy X)) D (X, Xy X)),

From the invariance by time inversion property of Brownian motion (cf. Proposition 1.1 in
Section 2.1)), we get that for any ¢1,...,t, > 0,

() 8 - N
(Bl/flaBl/fza e 'vBl/f,L) = (Bfl/tlang/t27 o ',Bfn/tn)'

Therefore, for ¢; := €%, i :=1,...,n, we get that
(X,tl N, GEF T X,tn) = (etlBe—Qtl , €t2Be—2t2 e ,et"Be—mn)

@, _ _ _
= (e Y B2, e 2Boaty, ... e n Be2tn)

= (th,Xt27...,th).
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Exercise 3.3 Let W be a Brownian motion with respect to its natural filtration. Show that
t
MY =P eosW,,  MP =tw, - / Wadu, M = WP —3tW,
0

are martingales.

Hint: You may want to use the formula for the characteristic function of a Gaussian random
variable. A trigonometric identity for cos(a 4+ b) may also be useful; alternatively, you may use that
for independent random variables X and Y and if the density fx exists, we have

EX.Y) Y] = [ gl ¥)x(e)ds
R
for any bounded measurable function g : R? — R.

Solution 3.3 It is clear that M) is adapted and each Mt(l) is bounded, hence integrable. To
show that M () is a martingale, first note that for a normal random variable Z ~ N (y,0?), we
have that

cosy _(w=w? iz L2 _ o2
e 222 dy = EfcosZ] = Re (E[e* :Re(e“‘ 2 ) =€ 2 Cos .
[ Sl ay = Bleos 2] = Re (B 1

Therefore,
E[Mt(l) | Fo] = /2 Elcos(Wy + Wy — W,) | Fe]
2 [ cos(Ws+y) _

y2
s Y emmi d
R \/27(t — ) Y

_ 2
e [ _Cosy e
R \/27(t — $)

_t—s
e 2 cosW;

=e
_ /2
= ¢e*/2 cos W,

as we wanted.
For M) we have that it is adapted and for each t,

t
EIMP|| < tE[W,]) + / E[[Wa[Jdu < oo.
0
We also have that

E[M® | F,] = tW, /O Wodu — (t— $)W, — E Ust(Wu — W,)du ’ }‘S}

= sW, —/ Wdu
0
=M,

using the conditional Fubini theorem.
Finally, we have that M ®) is adapted and each Mt(s) is integrable since W; has finite moments
(in particular the third moment). We calculate

EM® | F] = E[(Ws + W, - Wo)* | ] - 3tW,
- E[WS F3WE(W, — W) + 3W,(Wy — Wo)2 + (Wy — W,)? | ]—"5} — 3tW,
= W7 +3W(t — ) — 3tW,
= W3 — 3sW,,

so M®) is a martingale, as we wanted.

4/5



Brownian Motion and Stochastic Calculus, Spring 2022
D-MATH Exercise sheet 3

Exercise 3.4 Let p € (0,1). For a bounded measurable function f : [0,1] — R, define the moving
average function MA, f by

1 t

(MA,f)(t) =~ [ fu)du,

P t—p
where we set f(t) = f(0) for t < 0. Define 7(f) = inf{t > 0: f(¢t) > (MA,f)(t)+ 1} A1l. Show that
if X™ is an approximation to a Brownian motion W as in Donsker’s theorem, then 7(X") — 7(W)
in distribution.

Solution 3.4 We need to show that 7 is bounded and continuous outside of a nullset under the
Wiener measure. Boundedness is clear, since 7 < 1.
To show continuity, define the set

S— {f € C([0,1]) : vt € [0, 1),limsupw _ +oo} .
N0

By the law of the iterated logarithm, we know that S has Wiener measure 1. We just need to show
that 7 is continuous on S.
Indeed, let f € S and € > 0. Define

§= inf (MA s) 41— s>>0,
e pf(s) f(s)
since f is continuous and by definition of 7(f). For any g € C([0,1]) such that ||g||ec < /2, note
that |MA,gll < /2 as well, and so it follows that 7(f + g) > 7(f) —e.

This already shows that 7 is continuous at f if 7(f) = 1, so from now on we assume that
t* :=7(f) € (0,1). We want to show that 7(f + ¢g) < t* + ¢ if ||g]|c is small enough. Note that, for
v E [t5, t* + ¢,

S ’ U u—l ; u)du
01,00 = i@ = |5 [ =2 [ s
" fluydu| +

<G ([ o] | st

< Mlv —t*|,
where M = %HfHoo By definition of S, we can find v € (¢*,t* +¢] such that f(v) > f(t*)+2M|v—t*|.
Therefore, we have that

F0) = (MALF)(0) = 12 F(t) +2MJo — ] — (MAL)(E) — Mlw— 7] = 1 = Mo — 7] > 0.
It follows that for any g € C([0, 1]) such that ||g||cc < M|v — ¢*|/2, we have that f(v) + g(v) —

(MA,f)(v) = (MA,g)(v) —1 > 0 and thus 7(f +g) < 7(f) +e.
This shows that 7 is continuous on S, and the result follows by Donsker’s theorem.
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