Brownian Motion and Stochastic Calculus

Exercise sheet 4

Exercise 4.1 Let W be a Brownian motion on $[0, \infty)$ and $S_0 > 0, \sigma > 0, \mu \in \mathbb{R}$ constants. The stochastic process $S = (S_t)_{t>0}$ given by

$$S_t = S_0 \exp\left(\sigma W_t + (\mu - \sigma^2/2)t\right)$$

is called geometric Brownian motion.

(a) Prove that for $\mu \neq \sigma^2/2$, we have

$$\lim_{t \to \infty} S_t = \infty \quad P\text{-a.s.} \qquad \text{or} \qquad \lim_{t \to \infty} S_t = 0 \quad P\text{-a.s.}$$

When do the respective cases arise?

- (b) Discuss the behaviour of (S_t) as $t \to \infty$ in the case $\mu = \sigma^2/2$.
- (c) Henceforth, suppose that $\mu = 0$. Show that S is a martingale, but not uniformly integrable.
- (d) Let τ be a finite stopping time independent of W. Show that $E[S_{\tau}] = S_0$.
- (e) Fix $S_0 = 1$, let $a \in (0, 1)$ and let $\tau_a = \inf\{t : S_t \leq a\}$ be its hitting time. Show that $\tau_a < \infty$ almost surely and that $S_{\tau_a} = a < 1$. In particular, $E[S_{\tau_a}] = a < 1 = S_0$.

Solution 4.1

(a) Noting that a.s. $W_t/t \to 0$, we have

• If
$$(\mu - \sigma^2/2) > 0$$
, then $\sigma W_t + (\mu - \sigma^2/2)t \to \infty$ a.s., thus $\lim_{t \to \infty} S_t = \infty$.

- If $(\mu \sigma^2/2) > 0$, then $\sigma W_t + (\mu \sigma^2/2)t \to \infty$ a.s., thus $\lim_{t\to\infty} S_t = \infty$. If $(\mu \sigma^2/2) < 0$, then $\sigma W_t + (\mu \sigma^2/2)t \to -\infty$ a.s., thus $\lim_{t\to\infty} S_t = 0$.
- (b) The fact that a.s. $\liminf_{t\to\infty} B_t = -\infty$ and $\limsup_{t\to\infty} B_t = \infty$ implies that when $\mu = \sigma^2/2$, $\liminf_{t\to\infty} S_t = 0$ and $\limsup_{t\to\infty} S_t = \infty$. In particular, (S_t) almost surely does not converge as $t \to \infty$.
- (c) Note that if $s \leq t$, we have that $W_t W_s$ is independent of \mathcal{F}_s and follows the law of a centred normal with variance t - s, so that

$$E[S_t \mid \mathcal{F}_s] = S_0 E\left[\exp(\sigma(W_t - W_s) + \sigma W_s - \sigma^2 t/2) \mid \mathcal{F}_s\right]$$

= $S_0 \exp(\sigma W_s - \sigma^2 s/2) E\left[\exp(\sigma(W_t - W_s) - \sigma^2 (t-s)/2)\right] = S_s.$

Since $S \ge 0$, the same calculation with s = 0 shows that S_t is integrable for all $t \in [0, \infty)$. Thus, (S_t) is a martingale that converges to 0 a.s. due to (a). By contradiction, suppose that it is uniformly integrable. We should have then $S_0 = E[S_\infty] = 0$, which does not hold.

(d) Since τ is independent of W and hence also of S, we can condition on τ to find that

$$E[S_{\tau}] = E[E[S_{\tau} \mid \tau]] = E[E[S_t]|_{t=\tau}] = S_0$$

because S is a martingale.

(e) Since $\lim_{t\to\infty} S_t = 0$ a.s., it follows that $P[\exists t \ge 0 : S_t \le a] = 1$, and therefore $P[\tau_a < \infty] = 1$. As $S_0 = 1$, we have that $P[\tau_a > 0] = 1$. Note S is P-a.s. continuous; thus for some $\Omega \subseteq \Omega$ with $P[\Omega] = 1$, we have for all $\omega \in \Omega$ that $S_{\tau_a(\omega)}(\omega) = \lim_{t \nearrow \tau_a(\omega)} S_t(\omega) \ge a$, since $S_t(\omega) > a$ for $0 \leq t < \tau_a(\omega)$, and $S_{\tau_a(\omega)}(\omega) = \lim_{t \searrow \tau_a(\omega)} S_t(\omega) \leq a$, since for any $\varepsilon > 0$, there exists $t \in [\tau_a(\omega), \tau_a(\omega) + \varepsilon]$ such that $S_t(\omega) \leq a$. Therefore we must have that $S_{\tau_a(\omega)}(\omega) = a$ for $\omega \in \Omega$, i.e. $S_{\tau_a} = a P$ -a.s.

Exercise 4.2 Consider two stopping times σ, τ on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t), P)$. The goal of this exercise, together with exercise **3.1**, is to show that

$$E[E[\cdot |\mathcal{F}_{\sigma}] | \mathcal{F}_{\tau}] = E[\cdot |\mathcal{F}_{\sigma \wedge \tau}] = E[E[\cdot |\mathcal{F}_{\tau}] | \mathcal{F}_{\sigma}] \quad P\text{-a.s.}, \tag{(\star)}$$

i.e., the operators $E[\cdot |\mathcal{F}_{\tau}]$ and $E[\cdot |\mathcal{F}_{\sigma}]$ commute and their composition equals $E[\cdot |\mathcal{F}_{\sigma \wedge \tau}]$. *Remark:* For arbitrary sub- σ -algebras $\mathcal{G}, \mathcal{G}' \subseteq \mathcal{F}$, the conditional expectations $E[E[\cdot |\mathcal{G}]|\mathcal{G}']$, $E[E[\cdot |\mathcal{G}']|\mathcal{G}]$ and $E[\cdot |\mathcal{G} \cap \mathcal{G}']$ do **not** coincide in general.

- (a) Show that if Y is \mathcal{F}_{σ} -measurable, then $Y \mathbb{1}_{\{\sigma < \tau\}}$ and $Y \mathbb{1}_{\{\sigma < \tau\}}$ are $\mathcal{F}_{\sigma \wedge \tau}$ -measurable.
- (b) Show that $E[Y|\mathcal{F}_{\tau}]$ is $\mathcal{F}_{\sigma\wedge\tau}$ -measurable if Y is an integrable \mathcal{F}_{σ} -measurable random variable. Conclude (\star).
- (c) Let $M = (M_t)_{t\geq 0}$ be a martingale with all trajectories right-continuous. Show that the stopped process $M^{\tau} = (M_{\tau \wedge t})_{t\geq 0}$ is again a martingale. *Hint:* Use (\star) and the stopping theorem.

Solution 4.2

(a) Since $\{\sigma \leq \tau\}, \{\sigma < \tau\} \in \mathcal{F}_{\sigma}$ by exercise **3.1(a)**, we have that $Y \mathbb{1}_{\{\sigma \leq \tau\}}, Y \mathbb{1}_{\{\sigma < \tau\}}$ are both \mathcal{F}_{σ} -measurable. Now let us prove that they are \mathcal{F}_{τ} -measurable. This holds if Y takes finitely many values. Indeed, let $Y^n = \sum_{i=1}^n \lambda_i \mathbb{1}_{A_i}$ for some $A_1, \ldots, A_n \in \mathcal{F}_{\sigma}$ and $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$. Then $Y^n \mathbb{1}_{\{\sigma \leq \tau\}}$ is \mathcal{F}_{τ} -measurable if $A_i \cap \mathbb{1}_{\{\sigma \leq \tau\}}$ is \mathcal{F}_{τ} -measurable for each *i*, which holds by exercise **3.1(b)**. The argument for $Y^n \mathbb{1}_{\{\sigma < \tau\}}$ is analogous.

For general Y, we can construct simple random variables Y^n of the above form such that $Y^n(\omega) \to Y(\omega)$ for all $\omega \in \Omega$, and thus $Y^n \mathbb{1}_{\sigma \leq \tau} \to Y \mathbb{1}_{\{\sigma \leq \tau\}}$, which is therefore \mathcal{F}_{τ} -measurable, and likewise for $Y \mathbb{1}_{\{\sigma < \tau\}}$. By exercise **3.1(a)**, we conclude that $Y \mathbb{1}_{\{\sigma \leq \tau\}}$ and $Y \mathbb{1}_{\{\sigma < \tau\}}$ are $\mathcal{F}_{\sigma \wedge \tau}$ -measurable.

(b) We note that

$$E[Y \mid \mathcal{F}_{\tau}] = E\left[Y \mathbb{1}_{\{\tau < \sigma\}} \mid \mathcal{F}_{\tau}\right] + E\left[Y \mathbb{1}_{\{\sigma \le \tau\}} \mid \mathcal{F}_{\tau}\right] = E\left[Y \mid \mathcal{F}_{\tau}\right] \mathbb{1}_{\tau < \sigma} + Y \mathbb{1}_{\sigma \le \tau},$$

where each term is $\mathcal{F}_{\sigma\wedge\tau}$ -measurable by (a) so that $E[Y \mid \mathcal{F}_{\tau}]$ is $\mathcal{F}_{\sigma\wedge\tau}$ -measurable.

To show (*) it is enough to note that if Z is integrable, then $E[Z | \mathcal{F}_{\sigma}]$ is \mathcal{F}_{σ} -measurable and $E[E[Z | \mathcal{F}_{\sigma}] | \mathcal{F}_{\tau}]$ is $\mathcal{F}_{\sigma \wedge \tau}$ -measurable. Therefore

$$E[E[Z \mid \mathcal{F}_{\sigma}] \mid \mathcal{F}_{\tau}] = E[E[E[Z \mid \mathcal{F}_{\sigma}] \mid \mathcal{F}_{\tau}] \mid \mathcal{F}_{\sigma \wedge \tau}] = E[E[Z \mid \mathcal{F}_{\sigma}] \mid \mathcal{F}_{\sigma \wedge \tau}] = E[Z \mid \mathcal{F}_{\sigma \wedge \tau}],$$

by the tower property. The other direction follows by symmetry.

(c) Take $s \leq t$ and note that $\tau \wedge s \leq \tau \wedge t$ are bounded stopping times. By the stopping theorem,

$$E[M_{\tau \wedge t} \mid \mathcal{F}_s] = E[E[M_t \mid \mathcal{F}_{\tau \wedge t}] \mid \mathcal{F}_s] = E[M_t \mid \mathcal{F}_{\tau \wedge s}] = M_{\tau \wedge s}$$

where in the second equality we used (\star) .

Exercise 4.3 Let (S, \mathcal{S}) be a measurable space, let $Y = (Y_t)_{t\geq 0}$ be the canonical process on $(S^{[0,\infty)}, \mathcal{S}^{[0,\infty)})$, i.e., $Y_t(y) = y(t)$ for $y \in S^{[0,\infty)}$, $t \geq 0$, and let $(K_t)_{t\geq 0}$ be a transition semigroup on (S, \mathcal{S}) . Moreover, for each $x \in S$, assume that there exists a unique probability measure \mathbb{P}_x on $(S^{[0,\infty)}, \mathcal{S}^{[0,\infty)})$ under which Y is a Markov process with transition semigroup $(K_t)_{t\geq 0}$ and initial distribution $\nu = \delta_{\{x\}}$.

Suppose $Z \ge 0$ is an $\mathcal{S}^{[0,\infty)}$ -measurable random variable on $S^{[0,\infty)}$. Use the monotone class theorem to prove that the map $x \mapsto \mathbb{E}_x[Z], x \in S$, is \mathcal{S} -measurable.

Solution 4.3 Let \mathcal{H} denote the real vector space of all bounded, $\mathcal{S}^{[0,\infty)}$ -measurable functions $Z: S^{[0,\infty)} \to \mathbb{R}$ such that the map $x \mapsto \mathbb{E}_x[Z], x \in S$, is \mathcal{S} -measurable. Since pointwise limits of measurable functions are measurable, \mathcal{H} is closed under monotone bounded convergence. The family

$$\mathcal{M} = \left\{ \prod_{k=0}^{n} f_k(Y_{t_k}) : n \in \mathbb{N}, 0 = t_0 < t_1 < \dots < t_n, f_k : S \to \mathbb{R} \text{ } \mathcal{S}\text{-measurable and bounded} \right\}$$

is closed under multiplication and $\sigma(\mathcal{M}) = \mathcal{S}^{[0,\infty)}$. It remains to show that $\mathcal{M} \subseteq \mathcal{H}$ (note that $1 \in \mathcal{M}$). Indeed, for an element $Z = \prod_{k=0}^{n} f_k(Y_{t_k})$ in \mathcal{M} , we have for all $x \in S$ that

$$\mathbb{E}_{x}[Z] = \int_{S} \delta_{\{x\}}(dx_{0}) f_{0}(x_{0}) \int_{S} K_{t_{1}-t_{0}}(x_{0}, dx_{1}) f_{1}(x_{1}) \cdots \int_{S} K_{t_{n}-t_{n-1}}(x_{n-1}, dx_{n}) f_{n}(x_{n})$$

$$= f_{0}(x) \int_{S} K_{t_{1}-t_{0}}(x, dx_{1}) f_{1}(x_{1}) \cdots \int_{S} K_{t_{n}-t_{n-1}}(x_{n-1}, dx_{n}) f_{n}(x_{n}).$$
(1)

Using measure-theoretic induction, it is easy to see that $x \mapsto \int_S f(y)K(x, dy), x \in S$, is S-measurable for any bounded, S-measurable function $f: S \to \mathbb{R}$ and any stochastic kernel K on (S, S) (in fact, a more general result follows from the proof of Fubini's theorem for measures of the form $\nu \otimes K$, see for instance lecture notes "Wahrscheinlichkeitstheorie" (Föllmer/Schweizer), proof of Theorem II.1.4). Using this fact inductively in (1), we conclude that $x \mapsto \mathbb{E}_x[Z]$ is S-measurable for $Z \in \mathcal{M}$.

The monotone class theorem implies that \mathcal{H} contains all bounded, $\mathcal{S}^{[0,\infty)}$ -measurable Z. For a general $\mathcal{S}^{[0,\infty)}$ -measurable $Z \ge 0$, we have for each $x \in S$ that $\mathbb{E}_x[Z] = \lim_{n\to\infty} \mathbb{E}_x[Z \land n]$ by monotone convergence. Thus, as a pointwise limit of \mathcal{S} -measurable functions, $x \mapsto \mathbb{E}_x[Z]$ is \mathcal{S} -measurable. **Exercise 4.4** Part (a) of this exercise is optional, but the results are needed in (b) and (c).

- (a) Let $L \in \mathbb{N}$ and consider a matrix $Q \in \mathbb{R}^{L \times L}$. For $t \in [0, +\infty)$, define $\exp(tQ) := \sum_{n=0}^{\infty} \frac{t^n Q^n}{n!}$.
 - 1. Show that $\exp(tQ)$ is well-defined for any $t \in [0, +\infty)$ and $\exp(0Q) = \mathbb{I}$, the identity matrix.
 - 2. Show that $Q^n \exp(tQ) = \exp(tQ)Q^n$ and that $\exp(sQ)\exp(tQ) = \exp(tQ)\exp(sQ) = \exp((t+s)Q)$ for any $n \in \mathbb{N}$ and $s, t \ge 0$.
 - 3. Show that

$$\lim_{h \searrow 0} \frac{\exp((t+h)Q) - \exp(tQ)}{h} = Q \exp(tQ).$$

4. Show that

$$\lim_{M \to \infty} \left(1 + \frac{tQ}{M} \right)^M = \exp(tQ).$$

(b) Consider $S = \{x_1, \ldots, x_L\} \subseteq \mathbb{R}$. Define the operators $(K_t)_{t \ge 0}$ by

$$K_t(x_i, A) = \sum_{x_j \in A} (\exp(tQ))_{ij}, \quad \text{for } A \subseteq S.$$

Show that $K_{s+t}(x_i, \{x_\ell\}) = \sum_{j=1}^L K_s(x_i, \{x_j\}) K_t(x_j, \{x_\ell\})$ for $s, t \ge 0$.

(c) Suppose that there exists a Markov process X taking values in S such that

$$\mathbb{P}_{x_i}[X_t = x_j] = K_t(x_i, \{x_j\}) = (\exp(tQ))_{ij}.$$
(2)

Noting the fact that for all $t \ge 0$ and $x_i \in S$, the map $A \mapsto K_t(x_i, A)$ must then be a probability measure, what does this imply about Q?

Solution 4.4

(a) 1. Let $\|\cdot\|$ be the operator norm for a matrix, defined as

$$||A|| = \sup_{v \neq 0} \frac{|Av|}{|v|}.$$

The set of matrices $\mathbb{R}^{L \times L}$ is a Banach space with respect to this norm. For any $n \ge 0$, we have the inequality $||A^n|| \le ||A||^n$, and therefore

$$\sum_{n=0}^{\infty} \left\| \frac{t^n Q^n}{n!} \right\| \le \sum_{n=0}^{\infty} \frac{t^n \|Q\|^n}{n!} = \exp(t \|Q\|) < \infty.$$

Therefore, $\exp(tQ)$ is well-defined as an absolutely convergent series in $\mathbb{R}^{L \times L}$.

2. We have that

$$Q^{n} \exp(tQ) = Q^{n} \sum_{m=0}^{\infty} \frac{t^{m}Q^{m}}{m!} = \sum_{m=0}^{\infty} \frac{t^{m}Q^{m+n}}{m!} = \exp(tQ)Q^{n}$$

and

$$\exp(sQ)\exp(tQ) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{s^m t^n Q^{m+n}}{m!n!} = \sum_{l=0}^{\infty} \frac{Q^l}{l!} \sum_{m+n=l} \binom{l}{m} s^m t^n = \sum_{l=0}^{\infty} \frac{(s+t)^l Q^l}{l!} = \exp\left((s+t)Q\right)$$

3. We have that

$$\exp((t+h)Q) = \exp(tQ)\exp(hQ) = \exp(tQ)\left(\mathbb{I} + hQ + O(h^2)\right)$$

and therefore

$$\frac{d}{dt}\exp(tQ) = \exp(tQ)Q = Q\exp(tQ).$$

4. For each $k \in \mathbb{N}$, we have that

$$\lim_{M \to \infty} \binom{M}{k} \frac{(tQ)^k}{M^k} = \lim_{M \to \infty} \frac{M(M-1)\cdots(M-k+1)}{M^k} \frac{(tQ)^k}{k!} = \frac{(tQ)^k}{k!}$$

Moreover, we have the uniform bound $\left\|\binom{M}{k}\frac{(tQ)^k}{M^k}\right\| \leq \frac{(t\|Q\|)^k}{k!}$, which is summable. Therefore, by the dominated convergence theorem (with respect to the counting measure),

$$\lim_{M \to \infty} \left(\mathbb{I} + \frac{tQ}{M} \right)^M = \lim_{M \to \infty} \sum_{k=0}^M \binom{M}{k} \frac{(tQ)^k}{M^k} = \sum_{k=0}^\infty \frac{(tQ)^k}{k!} = \exp(tQ).$$

(b) We calculate

$$\sum_{j=1}^{L} K_s(x_i, \{x_j\}) K_t(x_j, \{x_\ell\}) = \sum_{j=1}^{L} (\exp(sQ))_{ij} \exp(tQ)_{j\ell}$$

= $(\exp(sQ) \exp(tQ))_{i\ell}$
= $\exp((s+t)Q)_{i\ell}$
= $K_{s+t}(x_i, \{x_\ell\}).$

(c) Suppose that such a Markov process exists. Note that for each $i, j \in \{1, ..., L\}$, we have that $(\exp(0Q))_{ij} = \mathbb{I}_{\{i=j\}}$, by (a1). From (a3), we find that for $i \neq j$,

$$\lim_{h \searrow 0} \frac{\mathbb{P}_{x_i}[X_h = x_j]}{h} = \lim_{h \searrow 0} \frac{\exp(hQ)_{ij} - \exp(0Q)_{ij}}{h} = Q_{ij}$$

and

$$\lim_{h \searrow 0} \frac{\mathbb{P}_{x_i}(X_h = x_j) - 1}{h} = \lim_{h \searrow 0} \frac{\exp(hQ)_{ii} - \exp(0Q)_{ii}}{h} = Q_{ii}$$

for $i \in \{1, ..., L\}$.

Since X exists, the operator K_t must be a transition kernel, and therefore $A \mapsto K_t(x_i, A)$ must be a probability measure for each $t \ge 0$ and $x_i \in S$. In particular, note that

$$K_t(x_i, S) = 1 = \sum_{j=1}^{L} (\exp(tQ))_{ij}$$

and therefore $\sum_{j=1}^{L} (\exp(tQ))_{ij} = 1$ must hold for all $t \ge 0$. Taking the derivative at t = 0, we find that $\sum_{j=1}^{L} Q_{ij} = 0$ for each *i*.

Moreover, we must have that $K_t(x_i, \{x_j\}) = (\exp(tQ))_{ij} \ge 0$ for all i, j. Since $(\exp(tQ))_{ij} = 0$ for t = 0 and $i \ne j$, we can take the derivative to find that $Q_{ij} \ge 0$ for all $i \ne j$.

We conclude that the conditions $Q_{ij} \ge 0$ for $i \ne j$ and $Q_{ii} = -\sum_{i \ne j} Q_{ij}$ are necessary. One can show that they are also sufficient.