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Brownian Motion and Stochastic Calculus
Exercise sheet 4

Exercise 4.1 Let W be a Brownian motion on [0,00) and Sy > 0, 0 > 0, u € R constants. The
stochastic process S = (S¢)¢>0 given by

Sy = Sgexp (aWt + (p— 02/2)t)
is called geometric Brownian motion.

(a) Prove that for u # 02/2, we have

lim S; = o0 P-a.s. or lim S; =0 P-a.s.
t—o0 t—o00

When do the respective cases arise?

(b) Discuss the behaviour of (S;) as t — oo in the case u = 02/2.

)
(c) Henceforth, suppose that g = 0. Show that S is a martingale, but not uniformly integrable.
(d) Let 7 be a finite stopping time independent of W. Show that E[S,;] = So.

)

(e) Fix Sp =1, let a € (0,1) and let 7, = inf{¢ : Sy < a} be its hitting time. Show that 7, < oo
almost surely and that S;, = a < 1. In particular, E[S,,] =a <1 = 5.

Solution 4.1
(a) Noting that a.s. W3/t — 0, we have
o If (u—0?/2) >0, then oW, + (u — 02/2)t — 00 a.s., thus lim;_, S; = co.
o If (u—0?/2) <0, then oW, + (pn — 02/2)t = —00 a.s., thus lim;_,o S; = 0.
(b) The fact that a.s. liminf; o, By = —oc and limsup,_, ., B; = co implies that when p = 02/2,

liminf; o Sy = 0 and limsup,_, ., St = oo. In particular, (S;) almost surely does not converge
as t — oo.

(c) Note that if s < ¢, we have that W; — W is independent of F; and follows the law of a centred
normal with variance t — s, so that

E[S; | Fs] = SoE [exp(a(Wy — Wy) + oW, — °t/2) | Fy]
= Spexp(cW, — 0°s/2)E [exp(a(W; — W) — o”(t — 5) /2] = S,.
Since S > 0, the same calculation with s = 0 shows that .S, is integrable for all ¢ € [0, 00).

Thus, (S;) is a martingale that converges to 0 a.s. due to (a). By contradiction, suppose that
it is uniformly integrable. We should have then Sy = E [S.] = 0, which does not hold.

(d) Since 7 is independent of W and hence also of S, we can condition on 7 to find that
E[S:] = E[E[S: | 7]] = E[E[S|i=+] = So
because S is a martingale.

(e) Since lim; o0 St = 0 a.s., it follows that P[3¢ > 0: S; < a] =1, and therefore P[r, < oo] = 1.
As Sy = 1, we have that P[r, > 0] = 1. Note S is P-a.s. continuous; thus for some  C Q
with P[Q] = 1, we have for all w € Q that S, (,)(w) = lim; s, () St(w) > a, since Sy(w) > a
for 0 <t < 74(w), and 5. () (w) = limy 7, () St(w) < a, since for any € > 0, there exists
t € [1q(w), Ta(w) + €] such that S;(w) < a. Therefore we must have that S, () (w) = a for
weQ, ie S, =a P-as.
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Exercise 4.2 Counsider two stopping times o, 7 on a filtered probability space (Q, F, (F;), P). The
goal of this exercise, together with exercise 3.1, is to show that

E[E[ - |Fl|Fr] = E[ - |Fonr] = E[E] - |F]|Fs]  P-as., (%)

i.e., the operators E[ - |F;] and E| - |F,| commute and their composition equals E[ - |Fyar].
Remark: For arbitrary sub-o-algebras G,G’ C F, the conditional expectations E[E] - |G]|G'],
E[E[-1]G']|G] and E[ - |G N G'] do not coincide in general.

(a)
(b)

()

Show that if Y is F,-measurable, then Y1 ;,<;y and Y1, are F,s--measurable.

Show that E[Y|F;| is Foar-measurable if Y is an integrable F,-measurable random variable.
Conclude (*).

Let M = (M;);>0 be a martingale with all trajectories right-continuous. Show that the
stopped process M7 = (M;a¢)e>0 is again a martingale.
Hint: Use (x) and the stopping theorem.

Solution 4.2

(a)

Since {o < 7},{0 < 7} € F, by exercise 3.1(a), we have that Y1 ,<,y,Y1{,.,} are both
F,-measurable. Now let us prove that they are F.-measurable. This holds if Y takes finitely
many values. Indeed, let Y" = Z?zl Aily, for some Ai,..., A, € Fy and Aq,..., A, € R,
Then Y"1 (,<;y is Fr-measurable if A; N 1;,<,} is Fr-measurable for each 4, which holds by
exercise 3.1(b). The argument for Y"1, is analogous.

For general Y, we can construct simple random variables Y™ of the above form such that
Y™(w) = Y (w) forallw € Q, and thus Y"1,<; — Y1{,<,}, which is therefore F--measurable,
and likewise for Y'1;,.,,. By exercise 3.1(a), we conclude that Y1li5<ry and Y1,y are
Fonr-measurable.

We note that
EY | F]=E [Y]l{T@.} | ]-"T] + F [Y]l{agT} | fT] =FEY | F]lico +Y1o<s,

where each term is F,,--measurable by (a) so that E[Y | F;] is Foar-measurable.

To show (%) it is enough to note that if Z is integrable, then F [Z | F,| is F,-measurable and
E[E|[Z | Fs] | Fr] is Fonr-measurable. Therefore

EE(Z|F) | F] = E[E[E(Z | F| Fo) | Fone| = E[E1Z | Fol| Fone] = E[Z] Fordl,

by the tower property. The other direction follows by symmetry.

Take s < t and note that 7 A s < 7 At are bounded stopping times. By the stopping theorem,
E Mo | ) = E[E M, | Fond] | Fo] = E[My | Fonsl = Mons

where in the second equality we used (x).
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Exercise 4.3 Let (S,S) be a measurable space, let Y = (¥;):>0 be the canonical process on
(S10:0) §10.20)) “ie., Yi(y) = y(t) for y € S[0°), ¢ >0, and let (Kt)t>0 be a transition semigroup
on (S,S8). Moreover, for each x € S, assume that there exists a unique probability measure P, on
(S10-20) | S10:20)) under which Y is a Markov process with transition semigroup (K;);>o and initial
distribution v = ..

Suppose Z > 0 is an S[%°)-measurable random variable on S!
theorem to prove that the map = — E,[Z],2 € S, is S-measurable.

0,20) Use the monotone class

Solution 4.3 Let H denote the real vector space of all bounded, S(*°)-measurable functions
Z : S19) 5 R such that the map z — E, [Z], x € S, is S-measurable. Since pointwise limits
of measurable functions are measurable, H is closed under monotone bounded convergence. The
family

M= {H fe(Ye) neN 0=ty <ty < <ty fr: S — R S-measurable and bounded}
k=0

is closed under multiplication and o(M) = SI%°). Tt remains to show that M C H (note that
1 € M). Indeed, for an element Z = []}_, fx(Ys,) in M, we have for all z € S that

E.[Z] =/55{90}(d1?0)f0(330)/SKtrto(xo’dﬂ?l)fl(xl)"'/SKt,ﬁtnfl(%flvdfﬂn)fn(xn)
=fo(x)LKtl—to(x7d$1)f1($1)"'/SKtn—tnfl(xn—l’dxn)fn(ﬂfn)~ (1)

Using measure-theoretic induction, it is easy to see that = — [ f(y)K(z,dy), = € S, is S-measurable
for any bounded, S-measurable function f : S — R and any stochastic kernel K on (S,S) (in fact,
a more general result follows from the proof of Fubini’s theorem for measures of the form v ® K,
see for instance lecture notes “Wahrscheinlichkeitstheorie” (Follmer/Schweizer), proof of Theorem
I1.1.4). Using this fact inductively in (1), we conclude that x — E,[Z] is S-measurable for Z € M.

The monotone class theorem implies that H contains all bounded, S%°°)-measurable Z. For
a general S[0°)_measurable Z > 0, we have for each z € S that E, [Z] = limp 00 E4[Z A 1]
by monotone convergence. Thus, as a pointwise limit of S-measurable functions, = — E,[Z] is
S-measurable.
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Exercise 4.4 Part (a) of this exercise is optional, but the results are needed in (b) and (c).

a) Let L € N and consider a matrix ) € . For t € [0, +00), define exp(tQ) := g nQn
Let L € N and id Q € RLXL 0 defi 0 ZootQ

n!

1. Show that exp(tQ) is well-defined for any t € [0,+00) and exp(0Q) = I, the identity
matrix.

2. Show that Q" exp(tQ) = exp(tQ)Q™ and that exp(sQ)exp(tQ) = exp(tQ) exp(sQ) =
exp((t + s)Q) for any n € N and s,¢ > 0.

3. Show that (¢t 1+ 1)) (tQ)
. exp((t+ — exp .
,{1{% h = Qexp(tQ).
4. Show that
li 14 @ Y (tQ)
din (1437) = ew@)

(b) Consider S = {z1,...,25} C R. Define the operators (K;);>o by

Ki(z;,A) = Z (exp(tQ))sj, for AC S.

@, €A
Show that Kgi¢(zi, {ze}) = Zle Ko(xi,{z;})Ki(x;,{xe}) for s,t > 0.
(¢) Suppose that there exists a Markov process X taking values in S such that
Po,[Xi = aj] = Ki(wi, {2;}) = (exp(tQ));- (2)

Noting the fact that for all ¢ > 0 and z; € S, the map A — K;(z;, A) must then be a
probability measure, what does this imply about Q7

Solution 4.4

(a) 1. Let || - || be the operator norm for a matrix, defined as
Av
4] = sup 121
v#£0 |v]

The set of matrices R“*” is a Banach space with respect to this norm. For any n > 0,
we have the inequality ||A™] < ||A||", and therefore

>

n=0

thn

n!

& tn n
<> PO — eopri) < oo

n=0

Therefore, exp(tQ) is well-defined as an absolutely convergent series in RZ* L.
2. We have that

X omym X om o ym+n
Q" exp(tQ) = Q" > ! ﬂ?, => ! C,i' = exp(tQ)Q"
m=0 : m=0 '
and
X gmgnmtn 0 o Lo!
exp(sQ) exp(tQ) = Z Z tmgﬂ Z C% ( ) Sy — Z % = exp ((s+t)Q).
m=0n=0 1=0 m4n 1=0 ’

4/5



Brownian Motion and Stochastic Calculus, Spring 2022
D-MATH Exercise sheet 4

3. We have that

exp((t + h)Q) = exp(tQ) exp(hQ) = exp(tQ) (I+ hQ + O(h?))

and therefore

2 e(1Q) = exp(1Q)Q = Qep(1Q).

4. For each k € N, we have that

. (M> (QF . MM -1 (M-k+1) (1QF _ (1Q)F

k) MF T Moo MF KK

M— o0

k k
35[22 < (t“%”) , which is summable.

Moreover, we have the uniform bound H(A,f)(

Therefore, by the dominated convergence theorem (with respect to the counting measure),

Jim (]1+ ﬁ)M — lim f: (M) Q) _§~QF _ o).

k=0 k=0

(b) We calculate

B L

ZKS(J% (o VK (2, {w0)) = Z(exp(sQ))ij exp(tQ) e
= exp(SQ) exp(tQ))lg
=exp ((s+1)Q),,

(c) Suppose that such a Markov process exists. Note that for each 4,5 € {1,..., L}, we have that
(exp(0Q))i; = Lij = 1—j3, by (al). From (a3), we find that for i # j,

. P [Xn=x5] . exp(hQ)iy —exp(0Q)s
o = S T =
and P, (X 1 h

h\0 h h\0 h
forie {1,...,L}.

Since X exists, the operator K; must be a transition kernel, and therefore A — K;(x;, A)
must be a probability measure for each ¢ > 0 and x; € S. In particular, note that

L
Kiy(2:,8) =1="Y (exp(tQ))s;
j=1
and therefore Zle(exp(tQ))ij = 1 must hold for all ¢ > 0. Taking the derivative at t = 0,
we find that Zle Qi; = 0 for each i.

Moreover, we must have that K;(z;, {z;}) = (exp(tQ)):; > 0 for all 4, j. Since (exp(tQ));; =0
for t =0 and ¢ # j, we can take the derivative to find that @;; > 0 for all ¢ # j.

We conclude that the conditions Q;; > 0 for i # j and Qs = — >, £ Q:; are necessary. One
can show that they are also sufficient.
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