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Exercise 4.1 Let W be a Brownian motion on [0,∞) and S0 > 0, σ > 0, µ ∈ R constants. The
stochastic process S = (St)t≥0 given by

St = S0 exp
(
σWt + (µ− σ2/2)t

)
is called geometric Brownian motion.
(a) Prove that for µ 6= σ2/2, we have

lim
t→∞

St =∞ P -a.s. or lim
t→∞

St = 0 P -a.s.

When do the respective cases arise?

(b) Discuss the behaviour of (St) as t→∞ in the case µ = σ2/2.

(c) Henceforth, suppose that µ = 0. Show that S is a martingale, but not uniformly integrable.

(d) Let τ be a finite stopping time independent of W . Show that E[Sτ ] = S0.

(e) Fix S0 = 1, let a ∈ (0, 1) and let τa = inf{t : St ≤ a} be its hitting time. Show that τa <∞
almost surely and that Sτa

= a < 1. In particular, E[Sτa
] = a < 1 = S0.

Solution 4.1
(a) Noting that a.s. Wt/t→ 0, we have

• If (µ− σ2/2) > 0, then σWt + (µ− σ2/2)t→∞ a.s., thus limt→∞ St =∞.
• If (µ− σ2/2) < 0, then σWt + (µ− σ2/2)t→ −∞ a.s., thus limt→∞ St = 0.

(b) The fact that a.s. lim inft→∞Bt = −∞ and lim supt→∞Bt =∞ implies that when µ = σ2/2,
lim inft→∞ St = 0 and lim supt→∞ St =∞. In particular, (St) almost surely does not converge
as t→∞.

(c) Note that if s ≤ t, we have that Wt−Ws is independent of Fs and follows the law of a centred
normal with variance t− s, so that

E [St | Fs] = S0E
[
exp(σ(Wt −Ws) + σWs − σ2t/2) | Fs

]
= S0 exp(σWs − σ2s/2)E

[
exp(σ(Wt −Ws)− σ2(t− s)/2

]
= Ss.

Since S ≥ 0, the same calculation with s = 0 shows that St is integrable for all t ∈ [0,∞).
Thus, (St) is a martingale that converges to 0 a.s. due to (a). By contradiction, suppose that
it is uniformly integrable. We should have then S0 = E [S∞] = 0, which does not hold.

(d) Since τ is independent of W and hence also of S, we can condition on τ to find that

E[Sτ ] = E
[
E[Sτ | τ ]

]
= E

[
E[St]|t=τ

]
= S0

because S is a martingale.

(e) Since limt→∞ St = 0 a.s., it follows that P [∃ t ≥ 0 : St ≤ a] = 1, and therefore P [τa <∞] = 1.
As S0 = 1, we have that P [τa > 0] = 1. Note S is P -a.s. continuous; thus for some Ω̃ ⊆ Ω
with P [Ω̃] = 1, we have for all ω ∈ Ω̃ that Sτa(ω)(ω) = limt↗τa(ω) St(ω) ≥ a, since St(ω) > a
for 0 ≤ t < τa(ω), and Sτa(ω)(ω) = limt↘τa(ω) St(ω) ≤ a, since for any ε > 0, there exists
t ∈ [τa(ω), τa(ω) + ε] such that St(ω) ≤ a. Therefore we must have that Sτa(ω)(ω) = a for
ω ∈ Ω̃, i.e. Sτa = a P -a.s.
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Exercise 4.2 Consider two stopping times σ, τ on a filtered probability space (Ω,F , (Ft), P ). The
goal of this exercise, together with exercise 3.1, is to show that

E[E[ · |Fσ]|Fτ ] = E[ · |Fσ∧τ ] = E[E[ · |Fτ ]|Fσ] P -a.s., (?)

i.e., the operators E[ · |Fτ ] and E[ · |Fσ] commute and their composition equals E[ · |Fσ∧τ ].
Remark: For arbitrary sub-σ-algebras G,G′ ⊆ F , the conditional expectations E[E[ · |G]|G′],
E[E[ · |G′]|G] and E[ · |G ∩ G′] do not coincide in general.

(a) Show that if Y is Fσ-measurable, then Y 1{σ≤τ} and Y 1{σ<τ} are Fσ∧τ -measurable.

(b) Show that E[Y |Fτ ] is Fσ∧τ -measurable if Y is an integrable Fσ-measurable random variable.
Conclude (?).

(c) Let M = (Mt)t≥0 be a martingale with all trajectories right-continuous. Show that the
stopped process Mτ = (Mτ∧t)t≥0 is again a martingale.
Hint: Use (?) and the stopping theorem.

Solution 4.2

(a) Since {σ ≤ τ}, {σ < τ} ∈ Fσ by exercise 3.1(a), we have that Y 1{σ≤τ}, Y 1{σ<τ} are both
Fσ-measurable. Now let us prove that they are Fτ -measurable. This holds if Y takes finitely
many values. Indeed, let Y n =

∑n
i=1 λi1Ai

for some A1, . . . , An ∈ Fσ and λ1, . . . , λn ∈ R.
Then Y n1{σ≤τ} is Fτ -measurable if Ai ∩ 1{σ≤τ} is Fτ -measurable for each i, which holds by
exercise 3.1(b). The argument for Y n1{σ<τ} is analogous.
For general Y , we can construct simple random variables Y n of the above form such that
Y n(ω)→ Y (ω) for all ω ∈ Ω, and thus Y n1σ≤τ → Y 1{σ≤τ}, which is therefore Fτ -measurable,
and likewise for Y 1{σ<τ}. By exercise 3.1(a), we conclude that Y 1{σ≤τ} and Y 1{σ<τ} are
Fσ∧τ -measurable.

(b) We note that

E [Y | Fτ ] = E
[
Y 1{τ<σ} | Fτ

]
+ E

[
Y 1{σ≤τ} | Fτ

]
= E [Y | Fτ ]1τ<σ + Y 1σ≤τ ,

where each term is Fσ∧τ -measurable by (a) so that E [Y | Fτ ] is Fσ∧τ -measurable.
To show (?) it is enough to note that if Z is integrable, then E [Z | Fσ] is Fσ-measurable and
E [E [Z | Fσ] | Fτ ] is Fσ∧τ -measurable. Therefore

E
[
E [Z | Fσ] | Fτ

]
= E

[
E
[
E [Z | Fσ] | Fτ

]
| Fσ∧τ

]
= E

[
E [Z | Fσ] | Fσ∧τ

]
= E [Z | Fσ∧τ ] ,

by the tower property. The other direction follows by symmetry.

(c) Take s ≤ t and note that τ ∧ s ≤ τ ∧ t are bounded stopping times. By the stopping theorem,

E [Mτ∧t | Fs] = E [E [Mt | Fτ∧t] | Fs] = E [Mt | Fτ∧s] = Mτ∧s

where in the second equality we used (?).
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Exercise 4.3 Let (S,S) be a measurable space, let Y = (Yt)t≥0 be the canonical process on
(S[0,∞),S [0,∞)), i.e., Yt(y) = y(t) for y ∈ S[0,∞), t ≥ 0, and let (Kt)t≥0 be a transition semigroup
on (S,S). Moreover, for each x ∈ S, assume that there exists a unique probability measure Px on
(S[0,∞),S [0,∞)) under which Y is a Markov process with transition semigroup (Kt)t≥0 and initial
distribution ν = δ{x}.

Suppose Z ≥ 0 is an S [0,∞)-measurable random variable on S[0,∞). Use the monotone class
theorem to prove that the map x 7→ Ex[Z], x ∈ S, is S-measurable.

Solution 4.3 Let H denote the real vector space of all bounded, S [0,∞)-measurable functions
Z : S[0,∞) → R such that the map x 7→ Ex[Z], x ∈ S, is S-measurable. Since pointwise limits
of measurable functions are measurable, H is closed under monotone bounded convergence. The
family

M =
{

n∏
k=0

fk(Ytk ) : n ∈ N, 0 = t0 < t1 < · · · < tn, fk : S → R S-measurable and bounded
}

is closed under multiplication and σ(M) = S [0,∞). It remains to show that M ⊆ H (note that
1 ∈M). Indeed, for an element Z =

∏n
k=0 fk(Ytk ) inM, we have for all x ∈ S that

Ex[Z] =
∫
S

δ{x}(dx0)f0(x0)
∫
S

Kt1−t0(x0, dx1)f1(x1) · · ·
∫
S

Ktn−tn−1(xn−1, dxn)fn(xn)

= f0(x)
∫
S

Kt1−t0(x, dx1)f1(x1) · · ·
∫
S

Ktn−tn−1(xn−1, dxn)fn(xn). (1)

Using measure-theoretic induction, it is easy to see that x 7→
∫
S
f(y)K(x, dy), x ∈ S, is S-measurable

for any bounded, S-measurable function f : S → R and any stochastic kernel K on (S,S) (in fact,
a more general result follows from the proof of Fubini’s theorem for measures of the form ν ⊗K,
see for instance lecture notes “Wahrscheinlichkeitstheorie” (Föllmer/Schweizer), proof of Theorem
II.1.4). Using this fact inductively in (1), we conclude that x 7→ Ex[Z] is S-measurable for Z ∈M.

The monotone class theorem implies that H contains all bounded, S [0,∞)-measurable Z. For
a general S [0,∞)-measurable Z ≥ 0, we have for each x ∈ S that Ex[Z] = limn→∞ Ex[Z ∧ n]
by monotone convergence. Thus, as a pointwise limit of S-measurable functions, x 7→ Ex[Z] is
S-measurable.
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Exercise 4.4 Part (a) of this exercise is optional, but the results are needed in (b) and (c).

(a) Let L ∈ N and consider a matrix Q ∈ RL×L. For t ∈ [0,+∞), define exp(tQ) :=
∑∞
n=0

tnQn

n! .

1. Show that exp(tQ) is well-defined for any t ∈ [0,+∞) and exp(0Q) = I, the identity
matrix.

2. Show that Qn exp(tQ) = exp(tQ)Qn and that exp(sQ) exp(tQ) = exp(tQ) exp(sQ) =
exp((t+ s)Q) for any n ∈ N and s, t ≥ 0.

3. Show that
lim
h↘0

exp((t+ h)Q)− exp(tQ)
h

= Q exp(tQ).

4. Show that

lim
M→∞

(
1 + tQ

M

)M
= exp(tQ).

(b) Consider S = {x1, . . . , xL} ⊆ R. Define the operators (Kt)t≥0 by

Kt(xi, A) =
∑
xj∈A

(exp(tQ))ij , for A ⊆ S.

Show that Ks+t(xi, {x`}) =
∑L
j=1 Ks(xi, {xj})Kt(xj , {x`}) for s, t ≥ 0.

(c) Suppose that there exists a Markov process X taking values in S such that

Pxi
[Xt = xj ] = Kt(xi, {xj}) = (exp(tQ))ij . (2)

Noting the fact that for all t ≥ 0 and xi ∈ S, the map A 7→ Kt(xi, A) must then be a
probability measure, what does this imply about Q?

Solution 4.4

(a) 1. Let ‖ · ‖ be the operator norm for a matrix, defined as

‖A‖ = sup
v 6=0

|Av|
|v|

.

The set of matrices RL×L is a Banach space with respect to this norm. For any n ≥ 0,
we have the inequality ‖An‖ ≤ ‖A‖n, and therefore

∞∑
n=0

∥∥∥∥ tnQnn!

∥∥∥∥ ≤ ∞∑
n=0

tn‖Q‖n

n! = exp(t‖Q‖) <∞.

Therefore, exp(tQ) is well-defined as an absolutely convergent series in RL×L.
2. We have that

Qn exp(tQ) = Qn
∞∑
m=0

tmQm

m! =
∞∑
m=0

tmQm+n

m! = exp(tQ)Qn

and

exp(sQ) exp(tQ) =
∞∑
m=0

∞∑
n=0

smtnQm+n

m!n! =
∞∑
l=0

Ql

l!
∑

m+n=l

(
l

m

)
smtn =

∞∑
l=0

(s+ t)lQl

l! = exp
(
(s+t)Q

)
.
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3. We have that

exp((t+ h)Q) = exp(tQ) exp(hQ) = exp(tQ)
(
I + hQ+O(h2)

)
and therefore

d

dt
exp(tQ) = exp(tQ)Q = Q exp(tQ).

4. For each k ∈ N, we have that

lim
M→∞

(
M

k

)
(tQ)k

Mk
= lim
M→∞

M(M − 1) · · · (M − k + 1)
Mk

(tQ)k

k! = (tQ)k

k! .

Moreover, we have the uniform bound
∥∥∥(Mk ) (tQ)k

Mk

∥∥∥ ≤ (t‖Q‖)k

k! , which is summable.
Therefore, by the dominated convergence theorem (with respect to the counting measure),

lim
M→∞

(
I + tQ

M

)M
= lim
M→∞

M∑
k=0

(
M

k

)
(tQ)k

Mk
=
∞∑
k=0

(tQ)k

k! = exp(tQ).

(b) We calculate

L∑
j=1

Ks(xi, {xj})Kt(xj , {x`}) =
L∑
j=1

(exp(sQ))ij exp(tQ)j`

=
(

exp(sQ) exp(tQ)
)
i`

= exp
(
(s+ t)Q

)
i`

= Ks+t(xi, {x`}).

(c) Suppose that such a Markov process exists. Note that for each i, j ∈ {1, . . . , L}, we have that
(exp(0Q))ij = Iij = 1{i=j}, by (a1). From (a3), we find that for i 6= j,

lim
h↘0

Pxi [Xh = xj ]
h

= lim
h↘0

exp(hQ)ij − exp(0Q)ij
h

= Qij

and
lim
h↘0

Pxi
(Xh = xj)− 1

h
= lim
h↘0

exp(hQ)ii − exp(0Q)ii
h

= Qii.

for i ∈ {1, . . . , L}.
Since X exists, the operator Kt must be a transition kernel, and therefore A 7→ Kt(xi, A)
must be a probability measure for each t ≥ 0 and xi ∈ S. In particular, note that

Kt(xi, S) = 1 =
L∑
j=1

(exp(tQ))ij

and therefore
∑L
j=1(exp(tQ))ij = 1 must hold for all t ≥ 0. Taking the derivative at t = 0,

we find that
∑L
j=1 Qij = 0 for each i.

Moreover, we must have that Kt(xi, {xj}) = (exp(tQ))ij ≥ 0 for all i, j. Since (exp(tQ))ij = 0
for t = 0 and i 6= j, we can take the derivative to find that Qij ≥ 0 for all i 6= j.
We conclude that the conditions Qij ≥ 0 for i 6= j and Qii = −

∑
i 6=j Qij are necessary. One

can show that they are also sufficient.
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