Brownian Motion and Stochastic Calculus

Exercise sheet 4

Exercise 4.1 Let W be a Brownian motion on $[0, \infty)$ and $S_{0}>0, \sigma>0, \mu \in \mathbb{R}$ constants. The stochastic process $S=\left(S_{t}\right)_{t \geq 0}$ given by

$$
S_{t}=S_{0} \exp \left(\sigma W_{t}+\left(\mu-\sigma^{2} / 2\right) t\right)
$$

is called geometric Brownian motion.
(a) Prove that for $\mu \neq \sigma^{2} / 2$, we have

$$
\lim _{t \rightarrow \infty} S_{t}=\infty \quad P \text {-a.s. } \quad \text { or } \quad \lim _{t \rightarrow \infty} S_{t}=0 \quad P \text {-a.s. }
$$

When do the respective cases arise?
(b) Discuss the behaviour of $\left(S_{t}\right)$ as $t \rightarrow \infty$ in the case $\mu=\sigma^{2} / 2$.
(c) Henceforth, suppose that $\mu=0$. Show that S is a martingale, but not uniformly integrable.
(d) Let τ be a finite stopping time independent of W. Show that $E\left[S_{\tau}\right]=S_{0}$.
(e) Fix $S_{0}=1$, let $a \in(0,1)$ and let $\tau_{a}=\inf \left\{t: S_{t} \leq a\right\}$ be its hitting time. Show that $\tau_{a}<\infty$ almost surely and that $S_{\tau_{a}}=a<1$. In particular, $E\left[S_{\tau_{a}}\right]=a<1=S_{0}$.

Solution 4.1

(a) Noting that a.s. $W_{t} / t \rightarrow 0$, we have

- If $\left(\mu-\sigma^{2} / 2\right)>0$, then $\sigma W_{t}+\left(\mu-\sigma^{2} / 2\right) t \rightarrow \infty$ a.s., thus $\lim _{t \rightarrow \infty} S_{t}=\infty$.
- If $\left(\mu-\sigma^{2} / 2\right)<0$, then $\sigma W_{t}+\left(\mu-\sigma^{2} / 2\right) t \rightarrow-\infty$ a.s., thus $\lim _{t \rightarrow \infty} S_{t}=0$.
(b) The fact that a.s. $\liminf _{t \rightarrow \infty} B_{t}=-\infty$ and $\lim \sup _{t \rightarrow \infty} B_{t}=\infty$ implies that when $\mu=\sigma^{2} / 2$, $\liminf _{t \rightarrow \infty} S_{t}=0$ and $\lim \sup _{t \rightarrow \infty} S_{t}=\infty$. In particular, $\left(S_{t}\right)$ almost surely does not converge as $t \rightarrow \infty$.
(c) Note that if $s \leq t$, we have that $W_{t}-W_{s}$ is independent of \mathcal{F}_{s} and follows the law of a centred normal with variance $t-s$, so that

$$
\begin{aligned}
E\left[S_{t} \mid \mathcal{F}_{s}\right] & =S_{0} E\left[\exp \left(\sigma\left(W_{t}-W_{s}\right)+\sigma W_{s}-\sigma^{2} t / 2\right) \mid \mathcal{F}_{s}\right] \\
& =S_{0} \exp \left(\sigma W_{s}-\sigma^{2} s / 2\right) E\left[\exp \left(\sigma\left(W_{t}-W_{s}\right)-\sigma^{2}(t-s) / 2\right]=S_{s}\right.
\end{aligned}
$$

Since $S \geq 0$, the same calculation with $s=0$ shows that S_{t} is integrable for all $t \in[0, \infty)$. Thus, $\left(S_{t}\right)$ is a martingale that converges to 0 a.s. due to (a). By contradiction, suppose that it is uniformly integrable. We should have then $S_{0}=E\left[S_{\infty}\right]=0$, which does not hold.
(d) Since τ is independent of W and hence also of S, we can condition on τ to find that

$$
E\left[S_{\tau}\right]=E\left[E\left[S_{\tau} \mid \tau\right]\right]=E\left[\left.E\left[S_{t}\right]\right|_{t=\tau}\right]=S_{0}
$$

because S is a martingale.
(e) Since $\lim _{t \rightarrow \infty} S_{t}=0$ a.s., it follows that $P\left[\exists t \geq 0: S_{t} \leq a\right]=1$, and therefore $P\left[\tau_{a}<\infty\right]=1$. As $S_{0}=1$, we have that $P\left[\tau_{a}>0\right]=1$. Note S is P-a.s. continuous; thus for some $\tilde{\Omega} \subseteq \Omega$ with $P[\tilde{\Omega}]=1$, we have for all $\omega \in \tilde{\Omega}$ that $S_{\tau_{a}(\omega)}(\omega)=\lim _{t \nearrow \tau_{a}(\omega)} S_{t}(\omega) \geq a$, since $S_{t}(\omega)>a$ for $0 \leq t<\tau_{a}(\omega)$, and $S_{\tau_{a}(\omega)}(\omega)=\lim _{t \searrow \tau_{a}(\omega)} S_{t}(\omega) \leq a$, since for any $\varepsilon>0$, there exists $t \in\left[\tau_{a}(\omega), \tau_{a}(\omega)+\varepsilon\right]$ such that $S_{t}(\omega) \leq a$. Therefore we must have that $S_{\tau_{a}(\omega)}(\omega)=a$ for $\omega \in \tilde{\Omega}$, i.e. $S_{\tau_{a}}=a P$-a.s.

Exercise 4.2 Consider two stopping times σ, τ on a filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right), P\right)$. The goal of this exercise, together with exercise 3.1, is to show that

$$
E\left[E\left[\cdot \mid \mathcal{F}_{\sigma}\right] \mid \mathcal{F}_{\tau}\right]=E\left[\cdot \mid \mathcal{F}_{\sigma \wedge \tau}\right]=E\left[E\left[\cdot \mid \mathcal{F}_{\tau}\right] \mid \mathcal{F}_{\sigma}\right] \quad P \text {-a.s. }
$$

i.e., the operators $E\left[\cdot \mid \mathcal{F}_{\tau}\right]$ and $E\left[\cdot \mid \mathcal{F}_{\sigma}\right]$ commute and their composition equals $E\left[\cdot \mid \mathcal{F}_{\sigma \wedge \tau}\right]$.

Remark: For arbitrary sub- σ-algebras $\mathcal{G}, \mathcal{G}^{\prime} \subseteq \mathcal{F}$, the conditional expectations $E\left[E[\cdot \mid \mathcal{G}] \mid \mathcal{G}^{\prime}\right]$, $E\left[E\left[\cdot \mid \mathcal{G}^{\prime}\right] \mid \mathcal{G}\right]$ and $E\left[\cdot \mid \mathcal{G} \cap \mathcal{G}^{\prime}\right]$ do not coincide in general.

(b) Show that $E\left[Y \mid \mathcal{F}_{\tau}\right]$ is $\mathcal{F}_{\sigma \wedge \tau}$-measurable if Y is an integrable \mathcal{F}_{σ}-measurable random variable. Conclude (\star).
(c) Let $M=\left(M_{t}\right)_{t \geq 0}$ be a martingale with all trajectories right-continuous. Show that the stopped process $M^{\tau}=\left(M_{\tau \wedge t}\right)_{t \geq 0}$ is again a martingale.
Hint: Use (\star) and the stopping theorem.

Solution 4.2

(a) Since $\{\sigma \leq \tau\},\{\sigma<\tau\} \in \mathcal{F}_{\sigma}$ by exercise $\mathbf{3 . 1}(\mathbf{a})$, we have that $Y \mathbb{1}_{\{\sigma \leq \tau\}}, Y \mathbb{1}_{\{\sigma<\tau\}}$ are both \mathcal{F}_{σ}-measurable. Now let us prove that they are \mathcal{F}_{τ}-measurable. This holds if Y takes finitely many values. Indeed, let $Y^{n}=\sum_{i=1}^{n} \lambda_{i} \mathbb{1}_{A_{i}}$ for some $A_{1}, \ldots, A_{n} \in \mathcal{F}_{\sigma}$ and $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$. Then $Y^{n} \mathbb{1}_{\{\sigma \leq \tau\}}$ is \mathcal{F}_{τ}-measurable if $A_{i} \cap \mathbb{1}_{\{\sigma \leq \tau\}}$ is \mathcal{F}_{τ}-measurable for each i, which holds by exercise $\mathbf{3 . 1 (b)}$. The argument for $Y^{n} \mathbb{1}_{\{\sigma<\tau\}}$ is analogous.
For general Y, we can construct simple random variables Y^{n} of the above form such that $Y^{n}(\omega) \rightarrow Y(\omega)$ for all $\omega \in \Omega$, and thus $Y^{n} \mathbb{1}_{\sigma \leq \tau} \rightarrow Y \mathbb{1}_{\{\sigma \leq \tau\}}$, which is therefore \mathcal{F}_{τ}-measurable, and likewise for $Y \mathbb{1}_{\{\sigma<\tau\}}$. By exercise $\mathbf{3 . 1}(\overline{\mathbf{a}})$, we conclude that $Y \mathbb{1}_{\{\sigma \leq \tau\}}$ and $Y \mathbb{1}_{\{\sigma<\tau\}}$ are $\mathcal{F}_{\sigma \wedge \tau}$-measurable.
(b) We note that

$$
E\left[Y \mid \mathcal{F}_{\tau}\right]=E\left[Y \mathbb{1}_{\{\tau<\sigma\}} \mid \mathcal{F}_{\tau}\right]+E\left[Y \mathbb{1}_{\{\sigma \leq \tau\}} \mid \mathcal{F}_{\tau}\right]=E\left[Y \mid \mathcal{F}_{\tau}\right] \mathbb{1}_{\tau<\sigma}+Y \mathbb{1}_{\sigma \leq \tau}
$$

where each term is $\mathcal{F}_{\sigma \wedge \tau}$-measurable by (a) so that $E\left[Y \mid \mathcal{F}_{\tau}\right]$ is $\mathcal{F}_{\sigma \wedge \tau}$-measurable.
To show (\star) it is enough to note that if Z is integrable, then $E\left[Z \mid \mathcal{F}_{\sigma}\right]$ is \mathcal{F}_{σ}-measurable and $E\left[E\left[Z \mid \mathcal{F}_{\sigma}\right] \mid \mathcal{F}_{\tau}\right]$ is $\mathcal{F}_{\sigma \wedge \tau}$-measurable. Therefore

$$
E\left[E\left[Z \mid \mathcal{F}_{\sigma}\right] \mid \mathcal{F}_{\tau}\right]=E\left[E\left[E\left[Z \mid \mathcal{F}_{\sigma}\right] \mid \mathcal{F}_{\tau}\right] \mid \mathcal{F}_{\sigma \wedge \tau}\right]=E\left[E\left[Z \mid \mathcal{F}_{\sigma}\right] \mid \mathcal{F}_{\sigma \wedge \tau}\right]=E\left[Z \mid \mathcal{F}_{\sigma \wedge \tau}\right]
$$

by the tower property. The other direction follows by symmetry.
(c) Take $s \leq t$ and note that $\tau \wedge s \leq \tau \wedge t$ are bounded stopping times. By the stopping theorem,

$$
E\left[M_{\tau \wedge t} \mid \mathcal{F}_{s}\right]=E\left[E\left[M_{t} \mid \mathcal{F}_{\tau \wedge t}\right] \mid \mathcal{F}_{s}\right]=E\left[M_{t} \mid \mathcal{F}_{\tau \wedge s}\right]=M_{\tau \wedge s}
$$

where in the second equality we used (\star).

Exercise 4.3 Let (S, \mathcal{S}) be a measurable space, let $Y=\left(Y_{t}\right)_{t \geq 0}$ be the canonical process on $\left(S^{[0, \infty)}, \mathcal{S}^{[0, \infty)}\right)$, i.e., $Y_{t}(y)=y(t)$ for $y \in S^{[0, \infty)}, t \geq 0$, and let $\left(K_{t}\right)_{t \geq 0}$ be a transition semigroup on (S, \mathcal{S}). Moreover, for each $x \in S$, assume that there exists a unique probability measure \mathbb{P}_{x} on $\left(S^{[0, \infty)}, \mathcal{S}^{[0, \infty)}\right)$ under which Y is a Markov process with transition semigroup $\left(K_{t}\right)_{t \geq 0}$ and initial distribution $\nu=\delta_{\{x\}}$.

Suppose $Z \geq 0$ is an $\mathcal{S}^{[0, \infty)}$-measurable random variable on $S^{[0, \infty)}$. Use the monotone class theorem to prove that the map $x \mapsto \mathbb{E}_{x}[Z], x \in S$, is \mathcal{S}-measurable.

Solution 4.3 Let \mathcal{H} denote the real vector space of all bounded, $\mathcal{S}^{[0, \infty)}$-measurable functions $Z: S^{[0, \infty)} \rightarrow \mathbb{R}$ such that the map $x \mapsto \mathbb{E}_{x}[Z], x \in S$, is \mathcal{S}-measurable. Since pointwise limits of measurable functions are measurable, \mathcal{H} is closed under monotone bounded convergence. The family

$$
\mathcal{M}=\left\{\prod_{k=0}^{n} f_{k}\left(Y_{t_{k}}\right): n \in \mathbb{N}, 0=t_{0}<t_{1}<\cdots<t_{n}, f_{k}: S \rightarrow \mathbb{R} \mathcal{S} \text {-measurable and bounded }\right\}
$$

is closed under multiplication and $\sigma(\mathcal{M})=\mathcal{S}^{[0, \infty)}$. It remains to show that $\mathcal{M} \subseteq \mathcal{H}$ (note that $1 \in \mathcal{M}$). Indeed, for an element $Z=\prod_{k=0}^{n} f_{k}\left(Y_{t_{k}}\right)$ in \mathcal{M}, we have for all $x \in S$ that

$$
\begin{align*}
\mathbb{E}_{x}[Z] & =\int_{S} \delta_{\{x\}}\left(d x_{0}\right) f_{0}\left(x_{0}\right) \int_{S} K_{t_{1}-t_{0}}\left(x_{0}, d x_{1}\right) f_{1}\left(x_{1}\right) \cdots \int_{S} K_{t_{n}-t_{n-1}}\left(x_{n-1}, d x_{n}\right) f_{n}\left(x_{n}\right) \\
& =f_{0}(x) \int_{S} K_{t_{1}-t_{0}}\left(x, d x_{1}\right) f_{1}\left(x_{1}\right) \cdots \int_{S} K_{t_{n}-t_{n-1}}\left(x_{n-1}, d x_{n}\right) f_{n}\left(x_{n}\right) . \tag{1}
\end{align*}
$$

Using measure-theoretic induction, it is easy to see that $x \mapsto \int_{S} f(y) K(x, d y), x \in S$, is \mathcal{S}-measurable for any bounded, \mathcal{S}-measurable function $f: S \rightarrow \mathbb{R}$ and any stochastic kernel K on (S, \mathcal{S}) (in fact, a more general result follows from the proof of Fubini's theorem for measures of the form $\nu \otimes K$, see for instance lecture notes "Wahrscheinlichkeitstheorie" (Föllmer/Schweizer), proof of Theorem II.1.4). Using this fact inductively in (1), we conclude that $x \mapsto \mathbb{E}_{x}[Z]$ is \mathcal{S}-measurable for $Z \in \mathcal{M}$.

The monotone class theorem implies that \mathcal{H} contains all bounded, $\mathcal{S}^{[0, \infty)}$-measurable Z. For a general $\mathcal{S}^{[0, \infty)}$-measurable $Z \geq 0$, we have for each $x \in S$ that $\mathbb{E}_{x}[Z]=\lim _{n \rightarrow \infty} \mathbb{E}_{x}[Z \wedge n]$ by monotone convergence. Thus, as a pointwise limit of \mathcal{S}-measurable functions, $x \mapsto \mathbb{E}_{x}[Z]$ is \mathcal{S}-measurable.

Exercise 4.4 Part (a) of this exercise is optional, but the results are needed in (b) and (c).
(a) Let $L \in \mathbb{N}$ and consider a matrix $Q \in \mathbb{R}^{L \times L}$. For $t \in[0,+\infty)$, define $\exp (t Q):=\sum_{n=0}^{\infty} \frac{t^{n} Q^{n}}{n!}$.

1. Show that $\exp (t Q)$ is well-defined for any $t \in[0,+\infty)$ and $\exp (0 Q)=\mathbb{I}$, the identity matrix.
2. Show that $Q^{n} \exp (t Q)=\exp (t Q) Q^{n}$ and that $\exp (s Q) \exp (t Q)=\exp (t Q) \exp (s Q)=$ $\exp ((t+s) Q)$ for any $n \in \mathbb{N}$ and $s, t \geq 0$.
3. Show that

$$
\lim _{h \searrow 0} \frac{\exp ((t+h) Q)-\exp (t Q)}{h}=Q \exp (t Q)
$$

4. Show that

$$
\lim _{M \rightarrow \infty}\left(1+\frac{t Q}{M}\right)^{M}=\exp (t Q)
$$

(b) Consider $S=\left\{x_{1}, \ldots, x_{L}\right\} \subseteq \mathbb{R}$. Define the operators $\left(K_{t}\right)_{t \geq 0}$ by

$$
K_{t}\left(x_{i}, A\right)=\sum_{x_{j} \in A}(\exp (t Q))_{i j}, \quad \text { for } A \subseteq S
$$

Show that $K_{s+t}\left(x_{i},\left\{x_{\ell}\right\}\right)=\sum_{j=1}^{L} K_{s}\left(x_{i},\left\{x_{j}\right\}\right) K_{t}\left(x_{j},\left\{x_{\ell}\right\}\right)$ for $s, t \geq 0$.
(c) Suppose that there exists a Markov process X taking values in S such that

$$
\begin{equation*}
\mathbb{P}_{x_{i}}\left[X_{t}=x_{j}\right]=K_{t}\left(x_{i},\left\{x_{j}\right\}\right)=(\exp (t Q))_{i j} \tag{2}
\end{equation*}
$$

Noting the fact that for all $t \geq 0$ and $x_{i} \in S$, the map $A \mapsto K_{t}\left(x_{i}, A\right)$ must then be a probability measure, what does this imply about Q ?

Solution 4.4

(a) 1. Let $\|\cdot\|$ be the operator norm for a matrix, defined as

$$
\|A\|=\sup _{v \neq 0} \frac{|A v|}{|v|}
$$

The set of matrices $\mathbb{R}^{L \times L}$ is a Banach space with respect to this norm. For any $n \geq 0$, we have the inequality $\left\|A^{n}\right\| \leq\|A\|^{n}$, and therefore

$$
\sum_{n=0}^{\infty}\left\|\frac{t^{n} Q^{n}}{n!}\right\| \leq \sum_{n=0}^{\infty} \frac{t^{n}\|Q\|^{n}}{n!}=\exp (t\|Q\|)<\infty
$$

Therefore, $\exp (t Q)$ is well-defined as an absolutely convergent series in $\mathbb{R}^{L \times L}$.
2. We have that

$$
Q^{n} \exp (t Q)=Q^{n} \sum_{m=0}^{\infty} \frac{t^{m} Q^{m}}{m!}=\sum_{m=0}^{\infty} \frac{t^{m} Q^{m+n}}{m!}=\exp (t Q) Q^{n}
$$

and
$\exp (s Q) \exp (t Q)=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{s^{m} t^{n} Q^{m+n}}{m!n!}=\sum_{l=0}^{\infty} \frac{Q^{l}}{l!} \sum_{m+n=l}\binom{l}{m} s^{m} t^{n}=\sum_{l=0}^{\infty} \frac{(s+t)^{l} Q^{l}}{l!}=\exp ((s+t) Q)$.
3. We have that

$$
\exp ((t+h) Q)=\exp (t Q) \exp (h Q)=\exp (t Q)\left(\mathbb{I}+h Q+O\left(h^{2}\right)\right)
$$

and therefore

$$
\frac{d}{d t} \exp (t Q)=\exp (t Q) Q=Q \exp (t Q)
$$

4. For each $k \in \mathbb{N}$, we have that

$$
\lim _{M \rightarrow \infty}\binom{M}{k} \frac{(t Q)^{k}}{M^{k}}=\lim _{M \rightarrow \infty} \frac{M(M-1) \cdots(M-k+1)}{M^{k}} \frac{(t Q)^{k}}{k!}=\frac{(t Q)^{k}}{k!}
$$

Moreover, we have the uniform bound $\left\|\binom{M}{k} \frac{(t Q)^{k}}{M^{k}}\right\| \leq \frac{(t\|Q\|)^{k}}{k!}$, which is summable. Therefore, by the dominated convergence theorem (with respect to the counting measure),

$$
\lim _{M \rightarrow \infty}\left(\mathbb{I}+\frac{t Q}{M}\right)^{M}=\lim _{M \rightarrow \infty} \sum_{k=0}^{M}\binom{M}{k} \frac{(t Q)^{k}}{M^{k}}=\sum_{k=0}^{\infty} \frac{(t Q)^{k}}{k!}=\exp (t Q)
$$

(b) We calculate

$$
\begin{aligned}
\sum_{j=1}^{L} K_{s}\left(x_{i},\left\{x_{j}\right\}\right) K_{t}\left(x_{j},\left\{x_{\ell}\right\}\right) & =\sum_{j=1}^{L}(\exp (s Q))_{i j} \exp (t Q)_{j \ell} \\
& =(\exp (s Q) \exp (t Q))_{i \ell} \\
& =\exp ((s+t) Q)_{i \ell} \\
& =K_{s+t}\left(x_{i},\left\{x_{\ell}\right\}\right)
\end{aligned}
$$

(c) Suppose that such a Markov process exists. Note that for each $i, j \in\{1, \ldots, L\}$, we have that $(\exp (0 Q))_{i j}=\mathbb{I}_{i j}=\mathbb{1}_{\{i=j\}}$, by (a1). From (a3), we find that for $i \neq j$,

$$
\lim _{h \searrow 0} \frac{\mathbb{P}_{x_{i}}\left[X_{h}=x_{j}\right]}{h}=\lim _{h \searrow 0} \frac{\exp (h Q)_{i j}-\exp (0 Q)_{i j}}{h}=Q_{i j}
$$

and

$$
\lim _{h \searrow 0} \frac{\mathbb{P}_{x_{i}}\left(X_{h}=x_{j}\right)-1}{h}=\lim _{h \searrow 0} \frac{\exp (h Q)_{i i}-\exp (0 Q)_{i i}}{h}=Q_{i i}
$$

for $i \in\{1, \ldots, L\}$.
Since X exists, the operator K_{t} must be a transition kernel, and therefore $A \mapsto K_{t}\left(x_{i}, A\right)$ must be a probability measure for each $t \geq 0$ and $x_{i} \in S$. In particular, note that

$$
K_{t}\left(x_{i}, S\right)=1=\sum_{j=1}^{L}(\exp (t Q))_{i j}
$$

and therefore $\sum_{j=1}^{L}(\exp (t Q))_{i j}=1$ must hold for all $t \geq 0$. Taking the derivative at $t=0$, we find that $\sum_{j=1}^{L} Q_{i j}=0$ for each i.
Moreover, we must have that $K_{t}\left(x_{i},\left\{x_{j}\right\}\right)=(\exp (t Q))_{i j} \geq 0$ for all i, j. Since $(\exp (t Q))_{i j}=0$ for $t=0$ and $i \neq j$, we can take the derivative to find that $Q_{i j} \geq 0$ for all $i \neq j$.
We conclude that the conditions $Q_{i j} \geq 0$ for $i \neq j$ and $Q_{i i}=-\sum_{i \neq j} Q_{i j}$ are necessary. One can show that they are also sufficient.

