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Exercise 5.1

(a) Let (Q,F, (F:), P) be a filtered probability space. Assume that Q = {w,...,wi} is finite and
that F = 2.

Show that the R¥-valued process

X, = (Pl{wi} | A, Pl{wn} | )
is a Markov process.

(b) Let W be a Brownian motion. Which of the following processes X are Markov? Write down
the corresponding transition kernels in those cases.

1. X; = |[Wy| (reflected Brownian motion).

2. Xy = fot W,du (integrated Brownian motion).

3. Xy = W, at, where 7, = inf{t > 0: W; > a} is the hitting time of a > 0.
4

5

. Xy = W/ for a random time 7 ~ Exp(1) independent of W.

. Xy =t —1t AT, where 7 ~ Exp(1) is a random time.
Solution 5.1

(a) Let s <t and let g be a bounded measurable function. For w € Q, we have that

k k

(Blg(Xo) | Fi]) (@) = D~ g(Xe(wi) (Plwi} | Fol) (w) = D g(Xi(wi)) Xi(w).

i=1 i=1

Note that the g(X(w;)) are constants which do not depend on w. Therefore, the conditional
expectation is a (linear) function of X, so the process is Markov.

(b) 1. This is a Markov process. Let (F}V), (}—tIW\) be the filtrations generated by W, |W/|
respectively. For Borel A C [0,00), t > 0 and h > 0, we have that

PWyn| € A|FV] =P [Win € A|FV] +P[-Winc A| F)]

1 _ (y=wy)? (w2
= /A 5T (e 2h +e 2h ) dy
1 _ w=1weD? _ (W D?
= A 7271-}7: (6 2h +e 2h ) dy.

By the tower law and since this is f,flw‘—measurable, this is also

P [Wenl € A | FM] = Kn(IWil, 4) = P[Wesnl € A| oW,

so X is Markov.
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2. This is not a Markov process. Let (F;¥) be the filtration generated by X. For Borel
ACR,

t
PX,e A|FY] =P XS+(t—s)Ws+/ (W, —Wy)dr € A fSW]

= ft—s(Xs + (t - S)stA)a
where fi(z, A) = Pl + fg W,.dr € A], using the Markov property of W. We also note
that .7-"tW = .7-"tX, where “2” is immediate and “C” follows by W, = lim.\ o %
Therefore,

PX; € A|FX]=PX; € A| FYV] = fiis(Xs + (t — )W, A).

But x — fi(z, A) is injective (strictly increasing) for A = [0, 00) and W; is not o(X;)-
measurable (this follows from exercise 4.3), so X is not Markov.

3. This is a Markov process. Let (F;X) be the filtration generated by X. For Borel
A C R, define f*(w,A) = Plw+ Wipr,_, € A] for t > 0 and 0 < w < a. Note that
{r. <t} € FV for all t > 0, and moreover

{Xy=a} ={r, <t} ={ra <t}U{r =a}.

Since f'(a, A) = 64(A), we find that

PXppn € Al FV] =1, <y0a(A) + fr(We, A)Lir, 50

= ]l{Xt:a}(Sa(A) + fﬁ(Xt? A)]l{Xf,<a}7
where the first line is justified by the Markov property of W, and the second one follows
since {7, <t} = {X; = a}. Since this is F;*-measurable and F;* C F}V, we have that
PXipn € A| Fi¥] = Pl Xpsn € A| Y] = Lix,=ay0a(A) + f7 (X2, A)Lix,<a)
which is o(X;)-measurable, so X is Markov.
Remark: One can show that
20—y —w —y + w>
fw, (oo, y) =P ———— | — @ ,
fitw, (oopl) =@ (201 o (2

for @ the distribution function of a standard Gaussian and any y < a, while f(w, {a}) =
20(=2%").

4. This is not a Markov process. Note that {T < ¢t} € F;¥ for each t > 0, since

{r<ty= | N {X-=X}eFs
9€(0,6)NQ re(g,6)NQ
as X stays constant after 7. Therefore,
PIXy € Al Fi Nl presy = 0x,(A)1{r<s)-
However, {7 < s} & o(X5); therefore X is not Markov.
5. This is a Markov process. Note that the filtration is

ftX =o(T A t) = o(Xy),

since 0(Xs) = o(t As) = o((t At) As) C o(Xy) for s < t. Therefore, it follows
immediately that X is Markov. Note that on {X; > 0}, it holds that 7 < ¢ and
therefore X;yp = X¢ + h a.s. On the other hand, on {X; = 0} = {7 > t}, we have that
(7| {7 > t}) ~t+ Exp(1) by the memoryless property of the exponential distribution,
and therefore (X¢yp | X¢) ~ 0V (h —Exp(1)). This allows us to compute the kernel

h
Kp (2, A) = 1250} 02+1(A) + L{z=0} <€h5{0}(A) +/ esl{seA}ds> .
0
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Exercise 5.2 Let W = (W,);>0 be a Brownian motion and define the integrated Brownian motion

Y=%)wobyV: = fg Wds. Moreover, let FV := (F}V);>¢ be the raw filtration generated by
w.

(a) For each h > 0, show that the pair (W}, Y}) has a two-dimensional normal distribution with
mean zero and covariance matrix given by

h  h2%/2
h2/2 Rh3/3)"
Hint: You may want to apply Donsker’s theorem by constructing a continuous mapping

F : C([0,00)) — R? such that F((W;)i>0) = (Wh,Ys). You may also use a result on weak
convergence of Gaussian random variables.

(b) Show that the pair (W,Y) is a (homogeneous) Markov process with state space R?, filtration
FW = FWY and transition semigroup (K3 )s>0 given by

() (e ). 00

Solution 5.2

(a) We assume for convenience that h = 1, since otherwise we can obtain the result by rescaling:
note that (Wy)i>o 4 (A™1Wy24)s>0 for any A > 0, so that

h h
(Wi, Ys) = (Wh,/o Wsds> £ (ﬁwl,\/ﬁ/o Ws/hds>
= (ﬂwl,\/h?/olwudu) - (ﬁWl,mY1>,

from which we can compute the distribution of (W;,Y:) given that of (W7, Y7).
Consider the mapping F : C([0,00)) — R? given by

F((Xt)e=0) = (Xla/ole> .

This is clearly continuous on C(]0,00)). We can construct an approximation (X™) to W in
two ways:

1. As the Donsker approximation to Brownian motion, with jumps Z; distributed according
to N(0,1), in which case X™ = W. Then,

n

n S 1 (. 1 B
F((en) = (0 = | 2322 S (i-3) 2 ) = Fov) = W)

2. As the linear interpolation X = n(k(t) +n~' — t)Wyq) + n(t — k(t))Wi(t)4n—1 for
k(t) = |nt|/n, in which case we have pointwise convergence X™ — W. This of course
implies X" = W.

Since the two approximations (X™) have the same law and (X™) = W in both cases, either
will work for the rest of the proof.
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Since the increments are Gaussian, we can compute the law

n ny 0 1’ % Z?:l (.7_%)’
L N<(0)’< LY (-8, & DL G- ))

Taking n — oo, the limiting terms in the matrix can be calculated as Riemann sums:

n 1 . 1
1 o1 i1\ 1 1
—_— — —_—— —_— —_— d = —
n? Z<J 2> Z (n 2n>n_>/0xx 2’

Jj=1 j/n=1

1 - ( 1)2 /1 ) 1
— j—=] — | zodx =,
n3 — 2 0 3

J

3

and likewise

noting that in both cases the term (%) becomes negligible. We recall the theorem about

weak convergence of Gaussian random variables: if Z" ~ N (p, 3,) with g, — p € R* and
Yp — ¥ € RFXE then Z" = Z, where Z ~ N'(u1,%). Applying this result, we get that

N () (10 1))

as we wanted, which then gives the distribution of (X, Y;).
(b) Let (FV)i>0 denote the (raw) filtration generated by W, f : R? — [0,00) a bounded Borel
function, and ¢t > 0, h > 0. By construction, Y is F"-adapted. Moreover, writing

S NI

Wish = Wi + (Wign — Wy),
t+h t+h
Yign =Y + VVudUZYt+hWt+/ (Wy — Wh) du
t

t

and using the fact that W is Markov, we obtain
E[f Wern, Yirn)|FY] = gn(Wh, Ya),

where gy, (z,y) = E [f (w + Wh,y + hw + foh W, du)} . Thus, by part (a),

Elf(Wysn, Yisn) | FY] :/R2 f(@)Kn (W, Yy), da),

ie., (W,Y) is a Markov process with transition semigroup (Kp)p>0 given by

Bl ) = ((, ) (i sla)) n=0
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Exercise 5.3

(a) Recall the canonical space (S S§[0:%)) of all real-valued functions equipped with the
o-algebra generated by all projections. Let A > 0, z € R and construct on (S[O’Oo), 8[0700)) a
probability measure P such that the canonical process (Y;):>0 has independent increments,
satisfies P[Yy =] =1 and Y; — Yy ~ Poi(A(t — s)).

Hint: Use the Kolmogorov consistency theorem.

(b) A Poisson process is a process (N);>o such that all trajectories are RCLL and piecewise
constant, all jumps are of size +1, and the increments Ny — Ng ~ Poi(A(t —s)) are independent.
Show that the process (Y;);>0 defined in (a) admits a version which is a Poisson process.

(c) Let (Ny)i>0 be a Poisson process. For n € N, find the distribution of the random variables
Tn =inf{t >0: Ny — Ny =n}.
(d) Show that N is a Markov process.

Solution 5.3

(a) For 0 <t; <--- < tp, weset I = {t1,...,t,} and construct a measure /) on Rl = R™ by

tj—tj—1) (At — tjfl))kj_k];l
(kj — kj—1)!

VD [z + ki, z+ k] = [[ e
j=1

for k1,...,km € N with by <.+ < k,,, and letting tg = 0 and kg = 0. We assign no mass
outside of points of this form.

We show that {v/) : T C [0, 00) finite} is a consistent family of measures. By taking a union
of the time indices, we can w.l.o.g. restrict ourselves to checking that v¥) and v(/) are

consistent for I = {t1,...,t,n} and J = {tg,,...,te,} €I, wheren <m, 0 <t; < -+ <ty
and 1 < /¢ < --- < ¥, < m. For convenience, set {; = 0 so that ¢,, = tx = 0. For each
i €{1,...,m}, we have the following identity by the multinomial formula:
0 e, ke,
()\(Zj:&,_1+l(tj _tjfl))) ‘ o
(kfi - kai—1>!

é.
1 ko, — ko, _ - a;
- & ( K) L0 -t

. Ag, 141y
1 i —1 )
Zaj:k[i_kfi—l '

£

/\tj—tj_1 a3
B

Z aj=ke,—ke, j=l;—1+1

_ (A(tj —tj_q))ki—ke—s
i 2 : H (kj— ki)t

where Y a; = Z_?i:li—l"rl a; and setting k; = kj_1 + a;.
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Using this identity we find
V(J) [{ZL’ + k[lﬂ o Z+ anH

= ﬁ e_A(tei—te,ifl) ()\(tfi — tfi,l))’“i_k’fi—1
(k&; - kgiil)!

—ke;_y

=A 4 Z (t] - tj*l) (kL — k@,;_l)!

i=1 j=Li_1+1
n £ ki—ki_1
— H 2 ’ H e—,\(tjftj,l)()\ (tjjtj—})) c
L _ ki —ki_1)!
i=Lke, | <<k, g=ti-atl ( ’ ’ 1)
Ef1—1_klz‘ 1
ke, =k

Ej—kj_1
. ﬁe—x(tj—tj_l) At —t-1))” ™
k)]
]EOS"‘S’;Mn J=1 (k] kjil).
Vi ko, =ke,

" ( A (s — 1))

= V(I)[RxmxRx{:n+kgl}xRx~~><R><{:r+k£n}><R><me],

so that the finite-dimensional marginals are consistent. Therefore, the Kolmogorov consistency
theorem ensures that there exists a probability measure P on (S[O’OO),S[O’OO)) which is
consistent with all the finite-dimensional marginals v, It follows that (Y2)¢>0 has independent
increments, with P[Yy = 2] =1 and Y; — Y5 ~ Poi(A(t — s)), since these are statements about
the finite dimensional marginals that follow immediately by construction.

(b) By construction and countability, we see that the process (Y)qeq, is (outside of a P-nullset)
an increasing piecewise constant process with Yy = z and all jumps € N.

Next, we show that

PlY;= lim Y,= lim Y,| =1
Q3q. 7t Q3g™\t

for each t € R, . Indeed, P[Y; > Y,] = 1 for all ¢ <t by construction, so Y; > supgs,<; Yq
a.s.; on the other hand P[Y; > Y] =1 —exp(—A(t —q)) \y 0 as ¢ /¢, so

PlY; > 1+ sup Y,] < lim P[Y;>Y,+1]=0.
Q3g<t Q3¢ 7t

The other side is analogous.

We can also show that (Y;)qecq, only has jumps of size +1. Indeed, for all m € N,

m2"

P[(Yy)qe0n(o,m) has a jump of size > 1] < irelff\;P U {Yoon; = Yoon(j—1) > 2}

Jj=1

m2"

S lnf P I:YQ—nj — Y27"(j71) 2 2:|

neN 4
J=1

oo

—n\k
= inf m2" Zeiﬁ_n 70\2 ) =0.

neN
k=2

Taking a union over m € N we extend the result to all of Q4.

k!

Now, construct the process (N;)¢>0 by Ny = limgsg ¢ Yy. Since (Yg)qeq is a.s. an increasing
piecewise constant process with all jumps of size +1, the same must hold for (V;):>o, and
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moreover N is RCLL. We have that N is a version of Y since P[Y; = limg, Y, = N;] =1 for
all ¢ > 0, and therefore Ny = = and the increments Ny — Ny ~ Poi(A(t — s)) are independent,
since the same holds for Y.

For ¢ > 0, we have that

n—1 ()\t)
Plry >t]=P[N,; <n—1] =Y e u
k=0
Differentiating in ¢,
n—1 n—1 k n—1 k—1
_ »Y (A1) k(At)
f'rn(t)__z)‘e - k! +Z k
k=0 k=0 k=1

therefore 7,, ~ Gamma(n, \).

This follows from stationary independent increments property, since for s < ¢ and measurable
bounded f: R — R, we have

E[f(Ny) | o(Ny:7 < 8)] = E[f(Ns 4+ (Ny = N)) | (N : 7 < 5)]

= if(N +k)e fA(tfs)()‘(tk;!s))lc

which implies that N is Markov with kernel
A) _ = S (A) —Ah ()‘h)k
=D Sea(A)e M2

With the same argument, Y is Markov as well with the same kernel.
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