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Exercise 5.1

(a) Let (Ω,F , (Ft), P ) be a filtered probability space. Assume that Ω = {ω1, . . . , ωk} is finite and
that F = 2Ω.
Show that the Rk-valued process

Xt =
(
P [{ω1} | Ft], . . . , P [{ωk} | Ft]

)>
is a Markov process.

(b) Let W be a Brownian motion. Which of the following processes X are Markov? Write down
the corresponding transition kernels in those cases.

1. Xt = |Wt| (reflected Brownian motion).

2. Xt =
∫ t

0 Wudu (integrated Brownian motion).
3. Xt = Wτa∧t, where τa = inf{t ≥ 0 : Wt ≥ a} is the hitting time of a > 0.
4. Xt = W τ

t for a random time τ ∼ Exp(1) independent of W .
5. Xt = t− t ∧ τ , where τ ∼ Exp(1) is a random time.

Solution 5.1

(a) Let s ≤ t and let g be a bounded measurable function. For ω ∈ Ω, we have that

(E[g(Xt) | Fs]) (ω) =
k∑
i=1

g(Xt(ωi)) (P [{ωi} | Fs]) (ω) =
k∑
i=1

g(Xt(ωi))Xi
s(ω).

Note that the g(Xt(ωi)) are constants which do not depend on ω. Therefore, the conditional
expectation is a (linear) function of Xs, so the process is Markov.

(b) 1. This is a Markov process. Let (FWt ), (F |W |t ) be the filtrations generated by W, |W |
respectively. For Borel A ⊆ [0,∞), t ≥ 0 and h > 0, we have that

P
[
|Wt+h| ∈ A

∣∣ FWt ] = P
[
Wt+h ∈ A

∣∣ FWt ]+ P
[
−Wt+h ∈ A

∣∣ FWt ]
=
∫
A

1√
2πh

(
e−

(y−Wt)2
2h + e−

(y+Wt)2
2h

)
dy

=
∫
A

1√
2πh

(
e−

(y−|Wt|)2
2h + e−

(y+|Wt|)2
2h

)
dy.

By the tower law and since this is F |W |t -measurable, this is also

P
[
|Wt+h| ∈ A

∣∣∣ F |W |t

]
= Kh(|Wt|, A) = P [|Wt+h| ∈ A | σ(|Wt|)] ,

so X is Markov.
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2. This is not a Markov process. Let (FXt ) be the filtration generated by X. For Borel
A ⊆ R,

P
[
Xt ∈ A | FWs

]
= P

[
Xs + (t− s)Ws +

∫ t

s

(Wr −Ws)dr ∈ A
∣∣∣∣ FWs ]

= ft−s
(
Xs + (t− s)Ws, A

)
,

where ft(x,A) = P [x+
∫ t

0 Wrdr ∈ A], using the Markov property of W . We also note
that FWt = FXt , where “⊇” is immediate and “⊆” follows by Ws = limε↘0

Xs−Xs−ε

ε .
Therefore,

P [Xt ∈ A | FXs ] = P [Xt ∈ A | FWs ] = ft−s
(
Xs + (t− s)Ws, A

)
.

But x 7→ ft(x,A) is injective (strictly increasing) for A = [0,∞) and Ws is not σ(Xs)-
measurable (this follows from exercise 4.3), so X is not Markov.

3. This is a Markov process. Let (FXt ) be the filtration generated by X. For Borel
A ⊆ R, define fat (w,A) = P [w + Wt∧τa−w ∈ A] for t ≥ 0 and 0 ≤ w ≤ a. Note that
{τa < t} ∈ FWt for all t > 0, and moreover

{Xt = a} = {τa ≤ t} = {τa < t} ∪ {τa = a}.

Since fah (a,A) = δa(A), we find that
P [Xt+h ∈ A | FWt ] = 1{τa<t}δa(A) + fah (Wt, A)1{τa≥t}

= 1{Xt=a}δa(A) + fah (Xt, A)1{Xt<a},

where the first line is justified by the Markov property of W , and the second one follows
since {τa ≤ t} = {Xt = a}. Since this is FXt -measurable and FXt ⊆ FWt , we have that

P [Xt+h ∈ A | FXt ] = P [Xt+h ∈ A | FWt ] = 1{Xt=a}δa(A) + fah (Xt, A)1{Xt<a},

which is σ(Xt)-measurable, so X is Markov.
Remark: One can show that

fat (w, (−∞, y]) = Φ
(

2a− y − w√
t

)
− Φ

(
−y + w√

t

)
,

for Φ the distribution function of a standard Gaussian and any y < a, while fat (w, {a}) =
2Φ
(−a+w√

t

)
.

4. This is not a Markov process. Note that {τ < t} ∈ FXt for each t > 0, since

{τ < t} =
⋃

q∈(0,t)∩Q

⋂
r∈(q,t)∩Q

{Xr = Xq} ∈ FXt

as X stays constant after τ . Therefore,
P [Xt ∈ A | FXs ]1{τ<s} = δXs(A)1{τ<s}.

However, {τ < s} 6∈ σ(Xs); therefore X is not Markov.
5. This is a Markov process. Note that the filtration is

FXt = σ(τ ∧ t) = σ(Xt),
since σ(Xs) = σ(τ ∧ s) = σ((τ ∧ t) ∧ s) ⊆ σ(Xt) for s ≤ t. Therefore, it follows
immediately that X is Markov. Note that on {Xt > 0}, it holds that τ < t and
therefore Xt+h = Xt + h a.s. On the other hand, on {Xt = 0} = {τ ≥ t}, we have that
(τ | {τ ≥ t}) ∼ t+ Exp(1) by the memoryless property of the exponential distribution,
and therefore (Xt+h | Xt) ∼ 0 ∨ (h− Exp(1)). This allows us to compute the kernel

Kh(x,A) = 1{x>0}δx+h(A) + 1{x=0}

(
e−hδ{0}(A) +

∫ h

0
e−s1{s∈A}ds

)
.
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Exercise 5.2 Let W = (Wt)t≥0 be a Brownian motion and define the integrated Brownian motion
Y = (Yt)t≥0 by Yt =

∫ t
0 Wsds. Moreover, let FW := (FWt )t≥0 be the raw filtration generated by

W .

(a) For each h ≥ 0, show that the pair (Wh, Yh) has a two-dimensional normal distribution with
mean zero and covariance matrix given by(

h h2/2
h2/2 h3/3

)
.

Hint: You may want to apply Donsker’s theorem by constructing a continuous mapping
F : C([0,∞)) → R2 such that F ((Wt)t≥0) = (Wh, Yh). You may also use a result on weak
convergence of Gaussian random variables.

(b) Show that the pair (W,Y ) is a (homogeneous) Markov process with state space R2, filtration
FW = FW,Y and transition semigroup (Kh)h≥0 given by

Kh

(
(w, y), ·

)
= N

((
w

y + hw

)
,

(
h h2/2

h2/2 h3/3

))
, h ≥ 0.

Solution 5.2

(a) We assume for convenience that h = 1, since otherwise we can obtain the result by rescaling:
note that (Wt)t≥0

d= (λ−1Wλ2t)t≥0 for any λ > 0, so that

(Wh, Yh) =
(
Wh,

∫ h

0
Wsds

)
d=
(
√
hW1,

√
h

∫ h

0
Ws/hds

)

=
(√

hW1,
√
h3
∫ 1

0
Wudu

)
=
(√

hW1,
√
h3Y1

)
,

from which we can compute the distribution of (Wt, Yt) given that of (W1, Y1).
Consider the mapping F : C([0,∞))→ R2 given by

F
(
(Xt)t≥0

)
=
(
X1,

∫ 1

0
Xs

)
.

This is clearly continuous on C([0,∞)). We can construct an approximation (Xn) to W in
two ways:

1. As the Donsker approximation to Brownian motion, with jumps Zj distributed according
to N (0, 1), in which case Xn ⇒W . Then,

F
(
(Xn

t )t≥0
)

= (Xn
1 , Y

n
1 ) =

 1√
n

n∑
j=1

Zj ,
1

n
√
n

n∑
j=1

(
j − 1

2

)
Zj

⇒ F (W ) = (W1, Y1).

2. As the linear interpolation Xn
t = n(k(t) + n−1 − t)Wk(t) + n(t − k(t))Wk(t)+n−1 for

k(t) = bntc/n, in which case we have pointwise convergence Xn →W . This of course
implies Xn ⇒W .

Since the two approximations (Xn) have the same law and (Xn)⇒W in both cases, either
will work for the rest of the proof.

3 / 7



Brownian Motion and Stochastic Calculus, Spring 2022
D-MATH Exercise sheet 5

Since the increments are Gaussian, we can compute the law

(Xn
1 , Y

n
1 ) ∼ N

((
0
0

)
,

(
1, 1

n2

∑n
j=1

(
j − 1

2
)
,

1
n2

∑n
j=1

(
j − 1

2
)
, 1

n3

∑n
j=1

(
j − 1

2
)2 )) .

Taking n→∞, the limiting terms in the matrix can be calculated as Riemann sums:

1
n2

n∑
j=1

(
j − 1

2

)
=

1∑
j/n=1

(
j

n
− 1

2n

)
1
n
→
∫ 1

0
xdx = 1

2 ,

and likewise

1
n3

n∑
j=1

(
j − 1

2

)2
→
∫ 1

0
x2dx = 1

3 ,

noting that in both cases the term ( 1
2 ) becomes negligible. We recall the theorem about

weak convergence of Gaussian random variables: if Zn ∼ N (µn,Σn) with µn → µ ∈ Rk and
Σn → Σ ∈ Rk×k, then Zn ⇒ Z, where Z ∼ N (µ,Σ). Applying this result, we get that

(X1, Y1) ∼ N
((

0
0

)
,

(
1, 1

2
1
2 ,

1
3

))
,

as we wanted, which then gives the distribution of (Xt, Yt).

(b) Let (FWt )t≥0 denote the (raw) filtration generated by W , f : R2 → [0,∞) a bounded Borel
function, and t ≥ 0, h > 0. By construction, Y is FW -adapted. Moreover, writing

Wt+h = Wt + (Wt+h −Wt),

Yt+h = Yt +
∫ t+h

t

Wu du = Yt + hWt +
∫ t+h

t

(Wu −Wt) du

and using the fact that W is Markov, we obtain

E[f(Wt+h, Yt+h)|FWt ] = gh(Wt, Yt),

where gh(x, y) = E
[
f
(
w +Wh, y + hw +

∫ h
0 Wu du

)]
. Thus, by part (a),

E[f(Wt+h, Yt+h)|FWt ] =
∫
R2
f(x)Kh

(
(Wt, Yt), dx

)
,

i.e., (W,Y ) is a Markov process with transition semigroup (Kh)h≥0 given by

Kh((w, y), ·) = N
((

w
y + hw

)
,

(
h h2/2

h2/2 h3/3

))
, h ≥ 0.
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Exercise 5.3

(a) Recall the canonical space (S[0,∞),S [0,∞)) of all real-valued functions equipped with the
σ-algebra generated by all projections. Let λ > 0, x ∈ R and construct on (S[0,∞),S [0,∞)) a
probability measure P such that the canonical process (Yt)t≥0 has independent increments,
satisfies P [Y0 = x] = 1 and Yt − Ys ∼ Poi(λ(t− s)).
Hint: Use the Kolmogorov consistency theorem.

(b) A Poisson process is a process (Nt)t≥0 such that all trajectories are RCLL and piecewise
constant, all jumps are of size +1, and the increments Nt−Ns ∼ Poi(λ(t−s)) are independent.
Show that the process (Yt)t≥0 defined in (a) admits a version which is a Poisson process.

(c) Let (Nt)t≥0 be a Poisson process. For n ∈ N, find the distribution of the random variables

τn = inf{t ≥ 0 : Nt −N0 = n}.

(d) Show that N is a Markov process.

Solution 5.3

(a) For 0 ≤ t1 < · · · < tm, we set I = {t1, . . . , tm} and construct a measure ν(I) on R|I| = Rm by

ν(I)[{x+ k1, . . . , x+ km}
]

=
m∏
j=1

e−λ(tj−tj−1) (λ(tj − tj−1))kj−kj−1

(kj − kj−1)!

for k1, . . . , km ∈ N with k1 ≤ · · · ≤ km and letting t0 = 0 and k0 = 0. We assign no mass
outside of points of this form.
We show that {ν(I) : I ⊆ [0,∞) finite} is a consistent family of measures. By taking a union
of the time indices, we can w.l.o.g. restrict ourselves to checking that ν(I) and ν(J) are
consistent for I = {t1, . . . , tm} and J = {t`1 , . . . , t`n

} ⊆ I, where n ≤ m, 0 ≤ t1 < · · · < tm
and 1 ≤ `1 < · · · < `n ≤ m. For convenience, set `0 = 0 so that t`0 = t0 = 0. For each
i ∈ {1, . . . ,m}, we have the following identity by the multinomial formula:(

λ(
∑`i

j=`i−1+1(tj − tj−1))
)k`i
−k`i−1

(k`i − k`i−1)!

= 1
(k`i − k`i−1)!

∑∑
aj=k`i

−k`i−1

(
k`i
− k`i−1

a`i−1+1, . . . , a`i

) `i∏
j=`i−1+1

(λ(tj − tj−1))aj

=
∑∑

aj=k`i
−k`i−1

`i∏
j=`i−1+1

(λ(tj − tj−1))aj

aj !

=
∑

k̃`i−1≤···≤k̃`i

k̃`i−1 =k`i−1
k̃`i

=k`i

`i∏
j=`i−1+1

(λ(tj − tj−1))k̃j−k̃k−1

(k̃j − k̃j−1)!
,

where
∑
aj =

∑`i

j=`i−1+1 aj and setting k̃j = k̃j−1 + aj .
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Using this identity we find

ν(J)[{x+ k`1 , . . . , x+ k`n
}
]

=
n∏
i=1

e−λ(t`i
−t`i−1 ) (λ(t`i

− t`i−1))k`i
−k`i−1

(k`i
− k`i−1)!

=
n∏
i=1

exp

−λ `i∑
j=`i−1+1

(tj − tj−1)

 (λ(
∑`i

j=`i−1+1(tj − tj−1))
)k`i
−k`i−1

(k`i
− k`i−1)!

=
n∏
i=1

∑
k̃`i−1≤···≤k̃`i

k̃`i−1 =k`i−1
k̃`i

=k`i

`i∏
j=`i−1+1

e−λ(tj−tj−1) (λ (tj − tj−1))k̃j−k̃j−1

(k̃j − k̃j−1)!

=
∑

k̃0≤···≤k̃m

∀i: k̃`i
=k`i

m∏
j=1

e−λ(tj−tj−1) (λ (tj − tj−1))k̃j−k̃j−1

(k̃j − k̃j−1)!

= ν(I)
[
R× · · · × R× {x+ k`1} × R× · · · × R× {x+ k`n} × R× · · · × R

]
,

so that the finite-dimensional marginals are consistent. Therefore, the Kolmogorov consistency
theorem ensures that there exists a probability measure P on (S[0,∞),S [0,∞)) which is
consistent with all the finite-dimensional marginals ν(I). It follows that (Yt)t≥0 has independent
increments, with P [Y0 = x] = 1 and Yt−Ys ∼ Poi(λ(t− s)), since these are statements about
the finite dimensional marginals that follow immediately by construction.

(b) By construction and countability, we see that the process (Yq)q∈Q+ is (outside of a P -nullset)
an increasing piecewise constant process with Y0 = x and all jumps ∈ N.
Next, we show that

P

[
Yt = lim

Q3q↗t
Yq = lim

Q3q↘t
Yq

]
= 1

for each t ∈ R+. Indeed, P [Yt ≥ Yq] = 1 for all q < t by construction, so Yt ≥ supQ3q<t Yq
a.s.; on the other hand P [Yt > Yq] = 1− exp(−λ(t− q))↘ 0 as q ↗ t, so

P [Yt ≥ 1 + sup
Q3q<t

Yq] ≤ lim
Q3q↗t

P [Yt ≥ Yq + 1] = 0.

The other side is analogous.
We can also show that (Yq)q∈Q+ only has jumps of size +1. Indeed, for all m ∈ N,

P
[
(Yq)q∈Q∩[0,m] has a jump of size > 1

]
≤ inf
n∈N

P

m2n⋃
j=1
{Y2−nj − Y2−n(j−1) ≥ 2}


≤ inf
n∈N

m2n∑
j=1

P
[
Y2−nj − Y2−n(j−1) ≥ 2

]
= inf
n∈N

m2n
∞∑
k=2

e−λ2−n (λ2−n)k

k! = 0.

Taking a union over m ∈ N we extend the result to all of Q+.
Now, construct the process (Nt)t≥0 by Nt = limQ3q↘t Yq. Since (Yq)q∈Q is a.s. an increasing
piecewise constant process with all jumps of size +1, the same must hold for (Nt)t≥0, and
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moreover N is RCLL. We have that N is a version of Y since P [Yt = limq↘t Yq = Nt] = 1 for
all t ≥ 0, and therefore N0 = x and the increments Nt −Ns ∼ Poi(λ(t− s)) are independent,
since the same holds for Y .

(c) For t ≥ 0, we have that

P [τn > t] = P [Nt ≤ n− 1] =
n−1∑
k=0

e−λt
(λt)k

k! .

Differentiating in t,

fτn
(t) = −

n−1∑
k=0

λe−λt

(
−
n−1∑
k=0

(λt)k

k! +
n−1∑
k=1

k(λt)k−1

k!

)

= −λe−λt
(
−
n−1∑
k=0

(λt)k

k! +
n−2∑
k=0

(λt)k

k!

)

= λntn−1

(n− 1)!e
−λt,

therefore τn ∼ Gamma(n, λ).

(d) This follows from stationary independent increments property, since for s ≤ t and measurable
bounded f : R→ R, we have

E[f(Nt) | σ(Nr : r ≤ s)] = E
[
f
(
Ns + (Nt −Ns)

) ∣∣ σ(Nr : r ≤ s)
]

=
∞∑
k=0

f(Ns + k)e−λ(t−s) (λ(t− s))k

k!

which implies that N is Markov with kernel

Kh(x,A) =
∞∑
k=0

δx+k(A)e−λh (λh)k

k! .

With the same argument, Y is Markov as well with the same kernel.
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