Brownian Motion and Stochastic Calculus

Exercise sheet 5

Exercise 5.1

(a) Let $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right), P\right)$ be a filtered probability space. Assume that $\Omega=\left\{\omega_{1}, \ldots, \omega_{k}\right\}$ is finite and that $\mathcal{F}=2^{\Omega}$.
Show that the \mathbb{R}^{k}-valued process

$$
X_{t}=\left(P\left[\left\{\omega_{1}\right\} \mid \mathcal{F}_{t}\right], \ldots, P\left[\left\{\omega_{k}\right\} \mid \mathcal{F}_{t}\right]\right)^{\top}
$$

is a Markov process.
(b) Let W be a Brownian motion. Which of the following processes X are Markov? Write down the corresponding transition kernels in those cases.

1. $X_{t}=\left|W_{t}\right|$ (reflected Brownian motion).
2. $X_{t}=\int_{0}^{t} W_{u} d u$ (integrated Brownian motion).
3. $X_{t}=W_{\tau_{a} \wedge t}$, where $\tau_{a}=\inf \left\{t \geq 0: W_{t} \geq a\right\}$ is the hitting time of $a>0$.
4. $X_{t}=W_{t}^{\tau}$ for a random time $\tau \sim \operatorname{Exp}(1)$ independent of W.
5. $X_{t}=t-t \wedge \tau$, where $\tau \sim \operatorname{Exp}(1)$ is a random time.

Solution 5.1

(a) Let $s \leq t$ and let g be a bounded measurable function. For $\omega \in \Omega$, we have that

$$
\left(E\left[g\left(X_{t}\right) \mid \mathcal{F}_{s}\right]\right)(\omega)=\sum_{i=1}^{k} g\left(X_{t}\left(\omega_{i}\right)\right)\left(P\left[\left\{\omega_{i}\right\} \mid \mathcal{F}_{s}\right]\right)(\omega)=\sum_{i=1}^{k} g\left(X_{t}\left(\omega_{i}\right)\right) X_{s}^{i}(\omega)
$$

Note that the $g\left(X_{t}\left(\omega_{i}\right)\right)$ are constants which do not depend on ω. Therefore, the conditional expectation is a (linear) function of X_{s}, so the process is Markov.
(b) 1. This is a Markov process. Let $\left(\mathcal{F}_{t}^{W}\right),\left(\mathcal{F}_{t}^{|W|}\right)$ be the filtrations generated by $W,|W|$ respectively. For Borel $A \subseteq[0, \infty), t \geq 0$ and $h>0$, we have that

$$
\begin{aligned}
P\left[\left|W_{t+h}\right| \in A \mid \mathcal{F}_{t}^{W}\right] & =P\left[W_{t+h} \in A \mid \mathcal{F}_{t}^{W}\right]+P\left[-W_{t+h} \in A \mid \mathcal{F}_{t}^{W}\right] \\
& =\int_{A} \frac{1}{\sqrt{2 \pi h}}\left(e^{-\frac{\left(y-W_{t}\right)^{2}}{2 h}}+e^{-\frac{\left(y+W_{t}\right)^{2}}{2 h}}\right) d y \\
& =\int_{A} \frac{1}{\sqrt{2 \pi h}}\left(e^{-\frac{\left(y-\left|W_{t}\right|\right)^{2}}{2 h}}+e^{-\frac{\left(y+\left|W_{t}\right|\right)^{2}}{2 h}}\right) d y
\end{aligned}
$$

By the tower law and since this is $\mathcal{F}_{t}^{|W|}$-measurable, this is also

$$
P\left[\left|W_{t+h}\right| \in A \mid \mathcal{F}_{t}^{|W|}\right]=K_{h}\left(\left|W_{t}\right|, A\right)=P\left[\left|W_{t+h}\right| \in A \mid \sigma\left(\left|W_{t}\right|\right)\right]
$$

so X is Markov.
2. This is not a Markov process. Let $\left(\mathcal{F}_{t}^{X}\right)$ be the filtration generated by X. For Borel $A \subseteq \mathbb{R}$,

$$
\begin{aligned}
P\left[X_{t} \in A \mid \mathcal{F}_{s}^{W}\right] & =P\left[X_{s}+(t-s) W_{s}+\int_{s}^{t}\left(W_{r}-W_{s}\right) d r \in A \mid \mathcal{F}_{s}^{W}\right] \\
& =f_{t-s}\left(X_{s}+(t-s) W_{s}, A\right)
\end{aligned}
$$

where $f_{t}(x, A)=P\left[x+\int_{0}^{t} W_{r} d r \in A\right]$, using the Markov property of W. We also note that $\mathcal{F}_{t}^{W}=\mathcal{F}_{t}^{X}$, where " \supseteq " is immediate and " \subseteq " follows by $W_{s}=\lim _{\varepsilon} \nmid 0 \frac{X_{s}-X_{s-\varepsilon}}{\varepsilon}$. Therefore,

$$
P\left[X_{t} \in A \mid \mathcal{F}_{s}^{X}\right]=P\left[X_{t} \in A \mid \mathcal{F}_{s}^{W}\right]=f_{t-s}\left(X_{s}+(t-s) W_{s}, A\right)
$$

But $x \mapsto f_{t}(x, A)$ is injective (strictly increasing) for $A=[0, \infty)$ and W_{s} is not $\sigma\left(X_{s}\right)-$ measurable (this follows from exercise 4.3), so X is not Markov.
3. This is a Markov process. Let $\left(\mathcal{F}_{t}^{X}\right)$ be the filtration generated by X. For Borel $A \subseteq \mathbb{R}$, define $f_{t}^{a}(w, A)=P\left[w+W_{t \wedge \tau_{a-w}} \in A\right]$ for $t \geq 0$ and $0 \leq w \leq a$. Note that $\left\{\tau_{a}<t\right\} \in \mathcal{F}_{t}^{W}$ for all $t>0$, and moreover

$$
\left\{X_{t}=a\right\}=\left\{\tau_{a} \leq t\right\}=\left\{\tau_{a}<t\right\} \cup\left\{\tau_{a}=a\right\}
$$

Since $f_{h}^{a}(a, A)=\delta_{a}(A)$, we find that

$$
\begin{aligned}
P\left[X_{t+h} \in A \mid \mathcal{F}_{t}^{W}\right] & =\mathbb{1}_{\left\{\tau_{a}<t\right\}} \delta_{a}(A)+f_{h}^{a}\left(W_{t}, A\right) \mathbb{1}_{\left\{\tau_{a} \geq t\right\}} \\
& =\mathbb{1}_{\left\{X_{t}=a\right\}} \delta_{a}(A)+f_{h}^{a}\left(X_{t}, A\right) \mathbb{1}_{\left\{X_{t}<a\right\}}
\end{aligned}
$$

where the first line is justified by the Markov property of W, and the second one follows since $\left\{\tau_{a} \leq t\right\}=\left\{X_{t}=a\right\}$. Since this is \mathcal{F}_{t}^{X}-measurable and $\mathcal{F}_{t}^{X} \subseteq \mathcal{F}_{t}^{W}$, we have that

$$
P\left[X_{t+h} \in A \mid \mathcal{F}_{t}^{X}\right]=P\left[X_{t+h} \in A \mid \mathcal{F}_{t}^{W}\right]=\mathbb{1}_{\left\{X_{t}=a\right\}} \delta_{a}(A)+f_{h}^{a}\left(X_{t}, A\right) \mathbb{1}_{\left\{X_{t}<a\right\}},
$$

which is $\sigma\left(X_{t}\right)$-measurable, so X is Markov.
Remark: One can show that

$$
f_{t}^{a}(w,(-\infty, y])=\Phi\left(\frac{2 a-y-w}{\sqrt{t}}\right)-\Phi\left(\frac{-y+w}{\sqrt{t}}\right)
$$

for Φ the distribution function of a standard Gaussian and any $y<a$, while $f_{t}^{a}(w,\{a\})=$ $2 \Phi\left(\frac{-a+w}{\sqrt{t}}\right)$.
4. This is not a Markov process. Note that $\{\tau<t\} \in \mathcal{F}_{t}^{X}$ for each $t>0$, since

$$
\{\tau<t\}=\bigcup_{q \in(0, t) \cap \mathbb{Q}} \bigcap_{r \in(q, t) \cap \mathbb{Q}}\left\{X_{r}=X_{q}\right\} \in \mathcal{F}_{t}^{X}
$$

as X stays constant after τ. Therefore,

$$
P\left[X_{t} \in A \mid \mathcal{F}_{s}^{X}\right] \mathbb{1}_{\{\tau<s\}}=\delta_{X_{s}}(A) \mathbb{1}_{\{\tau<s\}}
$$

However, $\{\tau<s\} \notin \sigma\left(X_{s}\right)$; therefore X is not Markov.
5. This is a Markov process. Note that the filtration is

$$
\mathcal{F}_{t}^{X}=\sigma(\tau \wedge t)=\sigma\left(X_{t}\right)
$$

since $\sigma\left(X_{s}\right)=\sigma(\tau \wedge s)=\sigma((\tau \wedge t) \wedge s) \subseteq \sigma\left(X_{t}\right)$ for $s \leq t$. Therefore, it follows immediately that X is Markov. Note that on $\left\{X_{t}>0\right\}$, it holds that $\tau<t$ and therefore $X_{t+h}=X_{t}+h$ a.s. On the other hand, on $\left\{X_{t}=0\right\}=\{\tau \geq t\}$, we have that $(\tau \mid\{\tau \geq t\}) \sim t+\operatorname{Exp}(1)$ by the memoryless property of the exponential distribution, and therefore $\left(X_{t+h} \mid X_{t}\right) \sim 0 \vee(h-\operatorname{Exp}(1))$. This allows us to compute the kernel

$$
K_{h}(x, A)=\mathbb{1}_{\{x>0\}} \delta_{x+h}(A)+\mathbb{1}_{\{x=0\}}\left(e^{-h} \delta_{\{0\}}(A)+\int_{0}^{h} e^{-s} \mathbb{1}_{\{s \in A\}} d s\right)
$$

Exercise 5.2 Let $W=\left(W_{t}\right)_{t \geq 0}$ be a Brownian motion and define the integrated Brownian motion $Y=\left(Y_{t}\right)_{t \geq 0}$ by $Y_{t}=\int_{0}^{t} W_{s} d s$. Moreover, let $\mathbb{F}^{W}:=\left(\mathcal{F}_{t}^{W}\right)_{t \geq 0}$ be the raw filtration generated by W.
(a) For each $h \geq 0$, show that the pair $\left(W_{h}, Y_{h}\right)$ has a two-dimensional normal distribution with mean zero and covariance matrix given by

$$
\left(\begin{array}{cc}
h & h^{2} / 2 \\
h^{2} / 2 & h^{3} / 3
\end{array}\right)
$$

Hint: You may want to apply Donsker's theorem by constructing a continuous mapping $F: C([0, \infty)) \rightarrow \mathbb{R}^{2}$ such that $F\left(\left(W_{t}\right)_{t \geq 0}\right)=\left(W_{h}, Y_{h}\right)$. You may also use a result on weak convergence of Gaussian random variables.
(b) Show that the pair (W, Y) is a (homogeneous) Markov process with state space \mathbb{R}^{2}, filtration $\mathbb{F}^{W}=\mathbb{F}^{W, Y}$ and transition semigroup $\left(K_{h}\right)_{h \geq 0}$ given by

$$
K_{h}((w, y), \cdot)=\mathcal{N}\left(\binom{w}{y+h w},\left(\begin{array}{cc}
h & h^{2} / 2 \\
h^{2} / 2 & h^{3} / 3
\end{array}\right)\right), \quad h \geq 0
$$

Solution 5.2

(a) We assume for convenience that $h=1$, since otherwise we can obtain the result by rescaling: note that $\left(W_{t}\right)_{t \geq 0} \stackrel{d}{=}\left(\lambda^{-1} W_{\lambda^{2} t}\right)_{t \geq 0}$ for any $\lambda>0$, so that

$$
\begin{aligned}
\left(W_{h}, Y_{h}\right)=\left(W_{h}, \int_{0}^{h} W_{s} d s\right) & \stackrel{d}{=}\left(\sqrt{h} W_{1}, \sqrt{h} \int_{0}^{h} W_{s / h} d s\right) \\
& =\left(\sqrt{h} W_{1}, \sqrt{h^{3}} \int_{0}^{1} W_{u} d u\right)=\left(\sqrt{h} W_{1}, \sqrt{h^{3}} Y_{1}\right)
\end{aligned}
$$

from which we can compute the distribution of $\left(W_{t}, Y_{t}\right)$ given that of $\left(W_{1}, Y_{1}\right)$.
Consider the mapping $F: C([0, \infty)) \rightarrow \mathbb{R}^{2}$ given by

$$
F\left(\left(X_{t}\right)_{t \geq 0}\right)=\left(X_{1}, \int_{0}^{1} X_{s}\right)
$$

This is clearly continuous on $C([0, \infty))$. We can construct an approximation (X^{n}) to W in two ways:

1. As the Donsker approximation to Brownian motion, with jumps Z_{j} distributed according to $\mathcal{N}(0,1)$, in which case $X^{n} \Rightarrow W$. Then,

$$
F\left(\left(X_{t}^{n}\right)_{t \geq 0}\right)=\left(X_{1}^{n}, Y_{1}^{n}\right)=\left(\frac{1}{\sqrt{n}} \sum_{j=1}^{n} Z_{j}, \frac{1}{n \sqrt{n}} \sum_{j=1}^{n}\left(j-\frac{1}{2}\right) Z_{j}\right) \Rightarrow F(W)=\left(W_{1}, Y_{1}\right)
$$

2. As the linear interpolation $X_{t}^{n}=n\left(k(t)+n^{-1}-t\right) W_{k(t)}+n(t-k(t)) W_{k(t)+n^{-1}}$ for $k(t)=\lfloor n t\rfloor / n$, in which case we have pointwise convergence $X^{n} \rightarrow W$. This of course implies $X^{n} \Rightarrow W$.

Since the two approximations $\left(X^{n}\right)$ have the same law and $\left(X^{n}\right) \Rightarrow W$ in both cases, either will work for the rest of the proof.

Since the increments are Gaussian, we can compute the law

$$
\left(X_{1}^{n}, Y_{1}^{n}\right) \sim \mathcal{N}\left(\binom{0}{0},\left(\begin{array}{cc}
1, & \frac{1}{n^{2}} \sum_{j=1}^{n}\left(j-\frac{1}{2}\right), \\
\frac{1}{n^{2}} \sum_{j=1}^{n}\left(j-\frac{1}{2}\right), & \frac{1}{n^{3}} \sum_{j=1}^{n}\left(j-\frac{1}{2}\right)^{2}
\end{array}\right)\right)
$$

Taking $n \rightarrow \infty$, the limiting terms in the matrix can be calculated as Riemann sums:

$$
\frac{1}{n^{2}} \sum_{j=1}^{n}\left(j-\frac{1}{2}\right)=\sum_{j / n=1}^{1}\left(\frac{j}{n}-\frac{1}{2 n}\right) \frac{1}{n} \rightarrow \int_{0}^{1} x d x=\frac{1}{2}
$$

and likewise

$$
\frac{1}{n^{3}} \sum_{j=1}^{n}\left(j-\frac{1}{2}\right)^{2} \rightarrow \int_{0}^{1} x^{2} d x=\frac{1}{3}
$$

noting that in both cases the term $\left(\frac{1}{2}\right)$ becomes negligible. We recall the theorem about weak convergence of Gaussian random variables: if $Z^{n} \sim \mathcal{N}\left(\mu_{n}, \Sigma_{n}\right)$ with $\mu_{n} \rightarrow \mu \in \mathbb{R}^{k}$ and $\Sigma_{n} \rightarrow \Sigma \in \mathbb{R}^{k \times k}$, then $Z^{n} \Rightarrow Z$, where $Z \sim \mathcal{N}(\mu, \Sigma)$. Applying this result, we get that

$$
\left(X_{1}, Y_{1}\right) \sim \mathcal{N}\left(\binom{0}{0},\left(\begin{array}{cc}
1, & \frac{1}{2} \\
\frac{1}{2}, & \frac{1}{3}
\end{array}\right)\right)
$$

as we wanted, which then gives the distribution of $\left(X_{t}, Y_{t}\right)$.
(b) Let $\left(\mathcal{F}_{t}^{W}\right)_{t \geq 0}$ denote the (raw) filtration generated by $W, f: \mathbb{R}^{2} \rightarrow[0, \infty)$ a bounded Borel function, and $t \geq 0, h>0$. By construction, Y is \mathbb{F}^{W}-adapted. Moreover, writing

$$
\begin{aligned}
W_{t+h} & =W_{t}+\left(W_{t+h}-W_{t}\right) \\
Y_{t+h} & =Y_{t}+\int_{t}^{t+h} W_{u} d u=Y_{t}+h W_{t}+\int_{t}^{t+h}\left(W_{u}-W_{t}\right) d u
\end{aligned}
$$

and using the fact that W is Markov, we obtain

$$
E\left[f\left(W_{t+h}, Y_{t+h}\right) \mid \mathcal{F}_{t}^{W}\right]=g_{h}\left(W_{t}, Y_{t}\right)
$$

where $g_{h}(x, y)=E\left[f\left(w+W_{h}, y+h w+\int_{0}^{h} W_{u} d u\right)\right]$. Thus, by part (a),

$$
E\left[f\left(W_{t+h}, Y_{t+h}\right) \mid \mathcal{F}_{t}^{W}\right]=\int_{\mathbb{R}^{2}} f(x) K_{h}\left(\left(W_{t}, Y_{t}\right), d x\right)
$$

i.e., (W, Y) is a Markov process with transition semigroup $\left(K_{h}\right)_{h \geq 0}$ given by

$$
K_{h}((w, y), \cdot)=\mathcal{N}\left(\binom{w}{y+h w},\left(\begin{array}{cc}
h & h^{2} / 2 \\
h^{2} / 2 & h^{3} / 3
\end{array}\right)\right), \quad h \geq 0
$$

Exercise 5.3

(a) Recall the canonical space $\left(S^{[0, \infty)}, \mathcal{S}^{[0, \infty)}\right)$ of all real-valued functions equipped with the σ-algebra generated by all projections. Let $\lambda>0, x \in \mathbb{R}$ and construct on $\left(S^{[0, \infty)}, \mathcal{S}^{[0, \infty)}\right.$) a probability measure P such that the canonical process $\left(Y_{t}\right)_{t \geq 0}$ has independent increments, satisfies $P\left[Y_{0}=x\right]=1$ and $Y_{t}-Y_{s} \sim \operatorname{Poi}(\lambda(t-s))$.
Hint: Use the Kolmogorov consistency theorem.
(b) A Poisson process is a process $\left(N_{t}\right)_{t \geq 0}$ such that all trajectories are RCLL and piecewise constant, all jumps are of size +1 , and the increments $N_{t}-N_{s} \sim \operatorname{Poi}(\lambda(t-s))$ are independent. Show that the process $\left(Y_{t}\right)_{t \geq 0}$ defined in (a) admits a version which is a Poisson process.
(c) Let $\left(N_{t}\right)_{t \geq 0}$ be a Poisson process. For $n \in \mathbb{N}$, find the distribution of the random variables

$$
\tau_{n}=\inf \left\{t \geq 0: N_{t}-N_{0}=n\right\}
$$

(d) Show that N is a Markov process.

Solution 5.3

(a) For $0 \leq t_{1}<\cdots<t_{m}$, we set $I=\left\{t_{1}, \ldots, t_{m}\right\}$ and construct a measure $\nu^{(I)}$ on $\mathbb{R}^{|I|}=\mathbb{R}^{m}$ by

$$
\nu^{(I)}\left[\left\{x+k_{1}, \ldots, x+k_{m}\right\}\right]=\prod_{j=1}^{m} e^{-\lambda\left(t_{j}-t_{j-1}\right)} \frac{\left(\lambda\left(t_{j}-t_{j-1}\right)\right)^{k_{j}-k_{j-1}}}{\left(k_{j}-k_{j-1}\right)!}
$$

for $k_{1}, \ldots, k_{m} \in \mathbb{N}$ with $k_{1} \leq \cdots \leq k_{m}$ and letting $t_{0}=0$ and $k_{0}=0$. We assign no mass outside of points of this form.
We show that $\left\{\nu^{(I)}: I \subseteq[0, \infty)\right.$ finite $\}$ is a consistent family of measures. By taking a union of the time indices, we can w.l.o.g. restrict ourselves to checking that $\nu^{(I)}$ and $\nu^{(J)}$ are consistent for $I=\left\{t_{1}, \ldots, t_{m}\right\}$ and $J=\left\{t_{\ell_{1}}, \ldots, t_{\ell_{n}}\right\} \subseteq I$, where $n \leq m, 0 \leq t_{1}<\cdots<t_{m}$ and $1 \leq \ell_{1}<\cdots<\ell_{n} \leq m$. For convenience, set $\ell_{0}=0$ so that $t_{\ell_{0}}=t_{0}=0$. For each $i \in\{1, \ldots, m\}$, we have the following identity by the multinomial formula:

$$
\begin{aligned}
& \frac{\left(\lambda\left(\sum_{j=\ell_{i-1}+1}^{\ell_{i}}\left(t_{j}-t_{j-1}\right)\right)\right)^{k_{\ell_{i}}-k_{\ell_{i-1}}}}{\left(k_{\ell_{i}}-k_{\ell_{i-1}}\right)!} \\
= & \frac{1}{\left(k_{\ell_{i}}-k_{\ell_{i-1}}\right)!} \sum_{\sum_{a_{j}=k_{\ell_{i}}-k_{\ell_{i-1}}}\binom{k_{\ell_{i}}-k_{\ell_{i-1}}}{a_{\ell_{i-1}+1}, \ldots, a_{\ell_{i}}} \prod_{j=\ell_{i-1}+1}^{\ell_{i}}}\left(\lambda\left(t_{j}-t_{j-1}\right)\right)^{a_{j}} \\
= & \sum_{\sum_{a_{j}=k_{\ell_{i}}-k_{\ell_{i-1}}} \prod_{j=\ell_{i-1}+1}^{\ell_{i}} \frac{\left(\lambda\left(t_{j}-t_{j-1}\right)\right)^{a_{j}}}{a_{j}!}}^{=} \quad \sum_{\substack{\tilde{k}_{\ell_{i-1}} \leq \cdots \leq \tilde{k}_{\ell_{i}} \\
\tilde{k}_{\ell_{i_{-1}}}=k_{\ell_{i-1}} \\
\tilde{k}_{\ell_{j}}=k_{\ell_{i}}}} \prod_{\substack{\ell_{i}}} \frac{\left(\lambda\left(t_{j}-t_{j-1}\right)\right)^{\tilde{k}_{j}-\tilde{k}_{k-1}}}{\left(\tilde{k}_{j}-\tilde{k}_{j-1}\right)!},
\end{aligned}
$$

where $\sum a_{j}=\sum_{j=\ell_{i-1}+1}^{\ell_{i}} a_{j}$ and setting $\tilde{k}_{j}=\tilde{k}_{j-1}+a_{j}$.

Using this identity we find

$$
\begin{aligned}
& \nu^{(J)}\left[\left\{x+k_{\ell_{1}}, \ldots, x+k_{\ell_{n}}\right\}\right] \\
& =\prod_{i=1}^{n} e^{-\lambda\left(t_{\ell_{i}}-t_{\ell_{i-1}}\right)} \frac{\left(\lambda\left(t_{\ell_{i}}-t_{\ell_{i-1}}\right)\right)^{k_{\ell_{i}}-k_{\ell_{i-1}}}}{\left(k_{\ell_{i}}-k_{\ell_{i-1}}\right)!} \\
& =\prod_{i=1}^{n} \exp \left(-\lambda \sum_{j=\ell_{i-1}+1}^{\ell_{i}}\left(t_{j}-t_{j-1}\right)\right) \frac{\left(\lambda\left(\sum_{j=\ell_{i-1}+1}^{\ell_{i}}\left(t_{j}-t_{j-1}\right)\right)\right)^{k_{\ell_{i}}-k_{\ell_{i-1}}}}{\left(k_{\ell_{i}}-k_{\ell_{i-1}}\right)!} \\
& =\prod_{i=1}^{n} \sum_{\tilde{k}_{\ell_{i-1}} \leq \cdots \leq \tilde{k}_{\ell_{i}}} \prod_{j=\ell_{i-1}+1}^{\ell_{i}} e^{-\lambda\left(t_{j}-t_{j-1}\right)} \frac{\left(\lambda\left(t_{j}-t_{j-1}\right)\right)^{\tilde{k}_{j}-\tilde{k}_{j-1}}}{\left(\tilde{k}_{j}-\tilde{k}_{j-1}\right)!} \\
& \begin{aligned}
\tilde{k}_{\ell_{i-1}} & =k_{\ell_{i-1}} \\
\tilde{k}_{\ell_{i}} & =k_{\ell_{i}}
\end{aligned} \\
& =\sum_{\substack{\tilde{k}_{0} \leq \cdots \leq \tilde{k}_{m} \\
\forall i: \tilde{k}_{\ell_{i}}=k_{\ell_{i}}}} \prod_{j=1}^{m} e^{-\lambda\left(t_{j}-t_{j-1}\right)} \frac{\left(\lambda\left(t_{j}-t_{j-1}\right)\right)^{\tilde{k}_{j}-\tilde{k}_{j-1}}}{\left(\tilde{k}_{j}-\tilde{k}_{j-1}\right)!} \\
& =\nu^{(I)}\left[\mathbb{R} \times \cdots \times \mathbb{R} \times\left\{x+k_{\ell_{1}}\right\} \times \mathbb{R} \times \cdots \times \mathbb{R} \times\left\{x+k_{\ell_{n}}\right\} \times \mathbb{R} \times \cdots \times \mathbb{R}\right],
\end{aligned}
$$

so that the finite-dimensional marginals are consistent. Therefore, the Kolmogorov consistency theorem ensures that there exists a probability measure P on $\left(S^{[0, \infty)}, \mathcal{S}^{[0, \infty)}\right)$ which is consistent with all the finite-dimensional marginals $\nu^{(I)}$. It follows that $\left(Y_{t}\right)_{t \geq 0}$ has independent increments, with $P\left[Y_{0}=x\right]=1$ and $Y_{t}-Y_{s} \sim \operatorname{Poi}(\lambda(t-s))$, since these are statements about the finite dimensional marginals that follow immediately by construction.
(b) By construction and countability, we see that the process $\left(Y_{q}\right)_{q \in \mathbb{Q}_{+}}$is (outside of a P-nullset) an increasing piecewise constant process with $Y_{0}=x$ and all jumps $\in \mathbb{N}$.
Next, we show that

$$
P\left[Y_{t}=\lim _{\mathbb{Q} \ni q \nearrow t} Y_{q}=\lim _{\mathbb{Q} \ni q \searrow t} Y_{q}\right]=1
$$

for each $t \in \mathbb{R}_{+}$. Indeed, $P\left[Y_{t} \geq Y_{q}\right]=1$ for all $q<t$ by construction, so $Y_{t} \geq \sup _{\mathbb{Q} \ni q<t} Y_{q}$ a.s.; on the other hand $P\left[Y_{t}>Y_{q}\right]=1-\exp (-\lambda(t-q)) \searrow 0$ as $q \nearrow t$, so

$$
P\left[Y_{t} \geq 1+\sup _{\mathbb{Q} \ni q<t} Y_{q}\right] \leq \lim _{\mathbb{Q} \ni q \nearrow t} P\left[Y_{t} \geq Y_{q}+1\right]=0
$$

The other side is analogous.
We can also show that $\left(Y_{q}\right)_{q \in \mathbb{Q}_{+}}$only has jumps of size +1 . Indeed, for all $m \in \mathbb{N}$,

$$
\begin{aligned}
P\left[\left(Y_{q}\right)_{q \in \mathbb{Q} \cap[0, m]} \text { has a jump of size }>1\right] & \leq \inf _{n \in \mathbb{N}} P\left[\bigcup_{j=1}^{m 2^{n}}\left\{Y_{2^{-n} j}-Y_{2^{-n}(j-1)} \geq 2\right\}\right] \\
& \leq \inf _{n \in \mathbb{N}} \sum_{j=1}^{m 2^{n}} P\left[Y_{2^{-n} j}-Y_{2^{-n}(j-1)} \geq 2\right] \\
& =\inf _{n \in \mathbb{N}} m 2^{n} \sum_{k=2}^{\infty} e^{-\lambda 2^{-n}} \frac{\left(\lambda 2^{-n}\right)^{k}}{k!}=0 .
\end{aligned}
$$

Taking a union over $m \in \mathbb{N}$ we extend the result to all of \mathbb{Q}_{+}.
Now, construct the process $\left(N_{t}\right)_{t \geq 0}$ by $N_{t}=\lim _{\mathbb{Q} \ni q \searrow t} Y_{q}$. Since $\left(Y_{q}\right)_{q \in \mathbb{Q}}$ is a.s. an increasing piecewise constant process with all jumps of size +1 , the same must hold for $\left(N_{t}\right)_{t \geq 0}$, and
moreover N is RCLL. We have that N is a version of Y since $P\left[Y_{t}=\lim _{q \backslash t} Y_{q}=N_{t}\right]=1$ for all $t \geq 0$, and therefore $N_{0}=x$ and the increments $N_{t}-N_{s} \sim \operatorname{Poi}(\lambda(t-s))$ are independent, since the same holds for Y.
(c) For $t \geq 0$, we have that

$$
P\left[\tau_{n}>t\right]=P\left[N_{t} \leq n-1\right]=\sum_{k=0}^{n-1} e^{-\lambda t} \frac{(\lambda t)^{k}}{k!}
$$

Differentiating in t,

$$
\begin{aligned}
f_{\tau_{n}}(t) & =-\sum_{k=0}^{n-1} \lambda e^{-\lambda t}\left(-\sum_{k=0}^{n-1} \frac{(\lambda t)^{k}}{k!}+\sum_{k=1}^{n-1} \frac{k(\lambda t)^{k-1}}{k!}\right) \\
& =-\lambda e^{-\lambda t}\left(-\sum_{k=0}^{n-1} \frac{(\lambda t)^{k}}{k!}+\sum_{k=0}^{n-2} \frac{(\lambda t)^{k}}{k!}\right) \\
& =\frac{\lambda^{n} t^{n-1}}{(n-1)!} e^{-\lambda t}
\end{aligned}
$$

therefore $\tau_{n} \sim \operatorname{Gamma}(n, \lambda)$.
(d) This follows from stationary independent increments property, since for $s \leq t$ and measurable bounded $f: \mathbb{R} \rightarrow \mathbb{R}$, we have

$$
\begin{aligned}
E\left[f\left(N_{t}\right) \mid \sigma\left(N_{r}: r \leq s\right)\right] & =E\left[f\left(N_{s}+\left(N_{t}-N_{s}\right)\right) \mid \sigma\left(N_{r}: r \leq s\right)\right] \\
& =\sum_{k=0}^{\infty} f\left(N_{s}+k\right) e^{-\lambda(t-s)} \frac{(\lambda(t-s))^{k}}{k!}
\end{aligned}
$$

which implies that N is Markov with kernel

$$
K_{h}(x, A)=\sum_{k=0}^{\infty} \delta_{x+k}(A) e^{-\lambda h} \frac{(\lambda h)^{k}}{k!}
$$

With the same argument, Y is Markov as well with the same kernel.

