Brownian Motion and Stochastic Calculus

Exercise sheet 5

Exercise 5.1

(a) Let $(\Omega, \mathcal{F}, (\mathcal{F}_t), P)$ be a filtered probability space. Assume that $\Omega = \{\omega_1, \ldots, \omega_k\}$ is finite and that $\mathcal{F} = 2^{\Omega}$.

Show that the \mathbb{R}^k -valued process

$$X_t = \left(P[\{\omega_1\} \mid \mathcal{F}_t], \dots, P[\{\omega_k\} \mid \mathcal{F}_t] \right)^{\top}$$

is a Markov process.

- (b) Let W be a Brownian motion. Which of the following processes X are Markov? Write down the corresponding transition kernels in those cases.
 - 1. $X_t = |W_t|$ (reflected Brownian motion).
 - 2. $X_t = \int_0^t W_u du$ (integrated Brownian motion).
 - 3. $X_t = W_{\tau_a \wedge t}$, where $\tau_a = \inf\{t \ge 0 : W_t \ge a\}$ is the hitting time of a > 0.
 - 4. $X_t = W_t^{\tau}$ for a random time $\tau \sim \text{Exp}(1)$ independent of W.
 - 5. $X_t = t t \wedge \tau$, where $\tau \sim \text{Exp}(1)$ is a random time.

Solution 5.1

(a) Let $s \leq t$ and let g be a bounded measurable function. For $\omega \in \Omega$, we have that

$$\left(E[g(X_t) \mid \mathcal{F}_s]\right)(\omega) = \sum_{i=1}^k g(X_t(\omega_i)) \left(P[\{\omega_i\} \mid \mathcal{F}_s]\right)(\omega) = \sum_{i=1}^k g(X_t(\omega_i)) X_s^i(\omega).$$

Note that the $g(X_t(\omega_i))$ are constants which do not depend on ω . Therefore, the conditional expectation is a (linear) function of X_s , so the process is Markov.

(b) 1. This is a Markov process. Let $(\mathcal{F}_t^W), (\mathcal{F}_t^{|W|})$ be the filtrations generated by W, |W| respectively. For Borel $A \subseteq [0, \infty), t \ge 0$ and h > 0, we have that

$$\begin{split} P\left[|W_{t+h}| \in A \mid \mathcal{F}_{t}^{W}\right] &= P\left[W_{t+h} \in A \mid \mathcal{F}_{t}^{W}\right] + P\left[-W_{t+h} \in A \mid \mathcal{F}_{t}^{W}\right] \\ &= \int_{A} \frac{1}{\sqrt{2\pi h}} \left(e^{-\frac{(y-W_{t})^{2}}{2h}} + e^{-\frac{(y+W_{t})^{2}}{2h}}\right) dy \\ &= \int_{A} \frac{1}{\sqrt{2\pi h}} \left(e^{-\frac{(y-|W_{t}|)^{2}}{2h}} + e^{-\frac{(y+|W_{t}|)^{2}}{2h}}\right) dy. \end{split}$$

By the tower law and since this is $\mathcal{F}_t^{|W|}$ -measurable, this is also

$$P\left[|W_{t+h}| \in A \mid \mathcal{F}_{t}^{|W|}\right] = K_{h}(|W_{t}|, A) = P\left[|W_{t+h}| \in A \mid \sigma(|W_{t}|)\right],$$

so X is Markov.

2. This is not a Markov process. Let (\mathcal{F}_t^X) be the filtration generated by X. For Borel $A \subseteq \mathbb{R}$,

$$P\left[X_t \in A \mid \mathcal{F}_s^W\right] = P\left[X_s + (t-s)W_s + \int_s^t (W_r - W_s)dr \in A \mid \mathcal{F}_s^W\right]$$
$$= f_{t-s} (X_s + (t-s)W_s, A),$$

where $f_t(x, A) = P[x + \int_0^t W_r dr \in A]$, using the Markov property of W. We also note that $\mathcal{F}_t^W = \mathcal{F}_t^X$, where " \supseteq " is immediate and " \subseteq " follows by $W_s = \lim_{\varepsilon \searrow 0} \frac{X_s - X_{s-\varepsilon}}{\varepsilon}$. Therefore,

$$P[X_t \in A \mid \mathcal{F}_s^X] = P[X_t \in A \mid \mathcal{F}_s^W] = f_{t-s} (X_s + (t-s)W_s, A).$$

But $x \mapsto f_t(x, A)$ is injective (strictly increasing) for $A = [0, \infty)$ and W_s is not $\sigma(X_s)$ -measurable (this follows from exercise **4.3**), so X is not Markov.

3. This is a Markov process. Let (\mathcal{F}_t^X) be the filtration generated by X. For Borel $A \subseteq \mathbb{R}$, define $f_t^a(w, A) = P[w + W_{t \wedge \tau_{a-w}} \in A]$ for $t \ge 0$ and $0 \le w \le a$. Note that $\{\tau_a < t\} \in \mathcal{F}_t^W$ for all t > 0, and moreover

$$\{X_t = a\} = \{\tau_a \le t\} = \{\tau_a < t\} \cup \{\tau_a = a\}$$

Since $f_h^a(a, A) = \delta_a(A)$, we find that

$$P[X_{t+h} \in A \mid \mathcal{F}_{t}^{W}] = \mathbb{1}_{\{\tau_{a} < t\}} \delta_{a}(A) + f_{h}^{a}(W_{t}, A) \mathbb{1}_{\{\tau_{a} \ge t\}}$$
$$= \mathbb{1}_{\{X_{t} = a\}} \delta_{a}(A) + f_{h}^{a}(X_{t}, A) \mathbb{1}_{\{X_{t} < a\}}$$

where the first line is justified by the Markov property of W, and the second one follows since $\{\tau_a \leq t\} = \{X_t = a\}$. Since this is \mathcal{F}_t^X -measurable and $\mathcal{F}_t^X \subseteq \mathcal{F}_t^W$, we have that

$$P[X_{t+h} \in A \mid \mathcal{F}_t^X] = P[X_{t+h} \in A \mid \mathcal{F}_t^W] = \mathbb{1}_{\{X_t = a\}} \delta_a(A) + f_h^a(X_t, A) \mathbb{1}_{\{X_t < a\}},$$

which is $\sigma(X_t)$ -measurable, so X is Markov. *Remark:* One can show that

$$f_t^a(w, (-\infty, y]) = \Phi\left(\frac{2a - y - w}{\sqrt{t}}\right) - \Phi\left(\frac{-y + w}{\sqrt{t}}\right),$$

for Φ the distribution function of a standard Gaussian and any y < a, while $f_t^a(w, \{a\}) = 2\Phi\left(\frac{-a+w}{\sqrt{t}}\right)$.

4. This is not a Markov process. Note that $\{\tau < t\} \in \mathcal{F}_t^X$ for each t > 0, since

$$\{\tau < t\} = \bigcup_{q \in (0,t) \cap \mathbb{Q}} \bigcap_{r \in (q,t) \cap \mathbb{Q}} \{X_r = X_q\} \in \mathcal{F}_t^X$$

as X stays constant after τ . Therefore,

$$P[X_t \in A \mid \mathcal{F}_s^X] \mathbb{1}_{\{\tau < s\}} = \delta_{X_s}(A) \mathbb{1}_{\{\tau < s\}}.$$

However, $\{\tau < s\} \notin \sigma(X_s)$; therefore X is not Markov.

5. This is a Markov process. Note that the filtration is

$$\mathcal{F}_t^X = \sigma(\tau \wedge t) = \sigma(X_t),$$

since $\sigma(X_s) = \sigma(\tau \land s) = \sigma((\tau \land t) \land s) \subseteq \sigma(X_t)$ for $s \leq t$. Therefore, it follows immediately that X is Markov. Note that on $\{X_t > 0\}$, it holds that $\tau < t$ and therefore $X_{t+h} = X_t + h$ a.s. On the other hand, on $\{X_t = 0\} = \{\tau \geq t\}$, we have that $(\tau \mid \{\tau \geq t\}) \sim t + \operatorname{Exp}(1)$ by the memoryless property of the exponential distribution, and therefore $(X_{t+h} \mid X_t) \sim 0 \lor (h - \operatorname{Exp}(1))$. This allows us to compute the kernel

$$K_h(x,A) = \mathbb{1}_{\{x>0\}}\delta_{x+h}(A) + \mathbb{1}_{\{x=0\}}\left(e^{-h}\delta_{\{0\}}(A) + \int_0^h e^{-s}\mathbb{1}_{\{s\in A\}}ds\right).$$

Exercise 5.2 Let $W = (W_t)_{t\geq 0}$ be a Brownian motion and define the *integrated Brownian motion* $Y = (Y_t)_{t\geq 0}$ by $Y_t = \int_0^t W_s ds$. Moreover, let $\mathbb{F}^W := (\mathcal{F}^W_t)_{t\geq 0}$ be the raw filtration generated by W.

(a) For each $h \ge 0$, show that the pair (W_h, Y_h) has a two-dimensional normal distribution with mean zero and covariance matrix given by

$$\begin{pmatrix} h & h^2/2 \\ h^2/2 & h^3/3 \end{pmatrix}.$$

Hint: You may want to apply Donsker's theorem by constructing a continuous mapping $F: C([0,\infty)) \to \mathbb{R}^2$ such that $F((W_t)_{t\geq 0}) = (W_h, Y_h)$. You may also use a result on weak convergence of Gaussian random variables.

(b) Show that the pair (W, Y) is a (homogeneous) Markov process with state space \mathbb{R}^2 , filtration $\mathbb{F}^W = \mathbb{F}^{W,Y}$ and transition semigroup $(K_h)_{h\geq 0}$ given by

$$K_h((w,y),\cdot) = \mathcal{N}\left(\begin{pmatrix} w\\ y+hw \end{pmatrix}, \begin{pmatrix} h & h^2/2\\ h^2/2 & h^3/3 \end{pmatrix}\right), \quad h \ge 0.$$

Solution 5.2

(a) We assume for convenience that h = 1, since otherwise we can obtain the result by rescaling: note that $(W_t)_{t>0} \stackrel{d}{=} (\lambda^{-1} W_{\lambda^2 t})_{t>0}$ for any $\lambda > 0$, so that

$$\begin{split} (W_h, Y_h) &= \left(W_h, \int_0^h W_s ds \right) \stackrel{d}{=} \left(\sqrt{h} W_1, \sqrt{h} \int_0^h W_{s/h} ds \right) \\ &= \left(\sqrt{h} W_1, \sqrt{h^3} \int_0^1 W_u du \right) = \left(\sqrt{h} W_1, \sqrt{h^3} Y_1 \right), \end{split}$$

from which we can compute the distribution of (W_t, Y_t) given that of (W_1, Y_1) . Consider the mapping $F : C([0, \infty)) \to \mathbb{R}^2$ given by

$$F((X_t)_{t\geq 0}) = \left(X_1, \int_0^1 X_s\right).$$

This is clearly continuous on $C([0,\infty))$. We can construct an approximation (X^n) to W in two ways:

1. As the Donsker approximation to Brownian motion, with jumps Z_j distributed according to $\mathcal{N}(0,1)$, in which case $X^n \Rightarrow W$. Then,

$$F((X_t^n)_{t\geq 0}) = (X_1^n, Y_1^n) = \left(\frac{1}{\sqrt{n}} \sum_{j=1}^n Z_j, \frac{1}{n\sqrt{n}} \sum_{j=1}^n \left(j - \frac{1}{2}\right) Z_j\right) \Rightarrow F(W) = (W_1, Y_1).$$

2. As the linear interpolation $X_t^n = n(k(t) + n^{-1} - t)W_{k(t)} + n(t - k(t))W_{k(t)+n^{-1}}$ for $k(t) = \lfloor nt \rfloor / n$, in which case we have pointwise convergence $X^n \to W$. This of course implies $X^n \to W$.

Since the two approximations (X^n) have the same law and $(X^n) \Rightarrow W$ in both cases, either will work for the rest of the proof.

Since the increments are Gaussian, we can compute the law

$$(X_1^n, Y_1^n) \sim \mathcal{N}\left(\begin{pmatrix} 0\\ 0 \end{pmatrix}, \begin{pmatrix} 1, & \frac{1}{n^2} \sum_{j=1}^n \left(j - \frac{1}{2}\right), \\ \frac{1}{n^2} \sum_{j=1}^n \left(j - \frac{1}{2}\right), & \frac{1}{n^3} \sum_{j=1}^n \left(j - \frac{1}{2}\right)^2 \end{pmatrix} \right).$$

Taking $n \to \infty$, the limiting terms in the matrix can be calculated as Riemann sums:

$$\frac{1}{n^2} \sum_{j=1}^n \left(j - \frac{1}{2} \right) = \sum_{j/n=1}^1 \left(\frac{j}{n} - \frac{1}{2n} \right) \frac{1}{n} \to \int_0^1 x dx = \frac{1}{2},$$

and likewise

$$\frac{1}{n^3} \sum_{j=1}^n \left(j - \frac{1}{2}\right)^2 \to \int_0^1 x^2 dx = \frac{1}{3},$$

noting that in both cases the term $(\frac{1}{2})$ becomes negligible. We recall the theorem about weak convergence of Gaussian random variables: if $Z^n \sim \mathcal{N}(\mu_n, \Sigma_n)$ with $\mu_n \to \mu \in \mathbb{R}^k$ and $\Sigma_n \to \Sigma \in \mathbb{R}^{k \times k}$, then $Z^n \Rightarrow Z$, where $Z \sim \mathcal{N}(\mu, \Sigma)$. Applying this result, we get that

$$(X_1, Y_1) \sim \mathcal{N}\left(\left(\begin{array}{c} 0\\ 0 \end{array} \right), \left(\begin{array}{c} 1, & \frac{1}{2}\\ \frac{1}{2}, & \frac{1}{3} \end{array} \right) \right),$$

as we wanted, which then gives the distribution of (X_t, Y_t) .

(b) Let $(\mathcal{F}_t^W)_{t\geq 0}$ denote the (raw) filtration generated by $W, f: \mathbb{R}^2 \to [0, \infty)$ a bounded Borel function, and $t \geq 0, h > 0$. By construction, Y is \mathbb{F}^W -adapted. Moreover, writing

$$W_{t+h} = W_t + (W_{t+h} - W_t),$$

$$Y_{t+h} = Y_t + \int_t^{t+h} W_u \, du = Y_t + hW_t + \int_t^{t+h} (W_u - W_t) \, du$$

and using the fact that W is Markov, we obtain

$$E[f(W_{t+h}, Y_{t+h})|\mathcal{F}_t^W] = g_h(W_t, Y_t),$$

where $g_h(x,y) = E\left[f\left(w + W_h, y + hw + \int_0^h W_u \, du\right)\right]$. Thus, by part (a),

$$E[f(W_{t+h}, Y_{t+h})|\mathcal{F}_t^W] = \int_{\mathbb{R}^2} f(x) K_h((W_t, Y_t), dx),$$

i.e., (W, Y) is a Markov process with transition semigroup $(K_h)_{h\geq 0}$ given by

$$K_h((w,y),\cdot) = \mathcal{N}\left(\begin{pmatrix} w\\ y+hw \end{pmatrix}, \begin{pmatrix} h & h^2/2\\ h^2/2 & h^3/3 \end{pmatrix}\right), \quad h \ge 0.$$

Exercise 5.3

(a) Recall the canonical space $(S^{[0,\infty)}, \mathcal{S}^{[0,\infty)})$ of all real-valued functions equipped with the σ -algebra generated by all projections. Let $\lambda > 0$, $x \in \mathbb{R}$ and construct on $(S^{[0,\infty)}, \mathcal{S}^{[0,\infty)})$ a probability measure P such that the canonical process $(Y_t)_{t\geq 0}$ has independent increments, satisfies $P[Y_0 = x] = 1$ and $Y_t - Y_s \sim \operatorname{Poi}(\lambda(t-s))$.

Hint: Use the Kolmogorov consistency theorem.

- (b) A Poisson process is a process $(N_t)_{t\geq 0}$ such that all trajectories are RCLL and piecewise constant, all jumps are of size +1, and the increments $N_t N_s \sim \text{Poi}(\lambda(t-s))$ are independent. Show that the process $(Y_t)_{t\geq 0}$ defined in (a) admits a version which is a Poisson process.
- (c) Let $(N_t)_{t>0}$ be a Poisson process. For $n \in \mathbb{N}$, find the distribution of the random variables

$$\tau_n = \inf\{t \ge 0 : N_t - N_0 = n\}.$$

(d) Show that N is a Markov process.

Solution 5.3

(a) For $0 \le t_1 < \cdots < t_m$, we set $I = \{t_1, \ldots, t_m\}$ and construct a measure $\nu^{(I)}$ on $\mathbb{R}^{|I|} = \mathbb{R}^m$ by

$$\nu^{(I)} \left[\{x + k_1, \dots, x + k_m\} \right] = \prod_{j=1}^m e^{-\lambda(t_j - t_{j-1})} \frac{(\lambda(t_j - t_{j-1}))^{k_j - k_{j-1}}}{(k_j - k_{j-1})!}$$

for $k_1, \ldots, k_m \in \mathbb{N}$ with $k_1 \leq \cdots \leq k_m$ and letting $t_0 = 0$ and $k_0 = 0$. We assign no mass outside of points of this form.

We show that $\{\nu^{(I)}: I \subseteq [0, \infty) \text{ finite}\}$ is a consistent family of measures. By taking a union of the time indices, we can w.l.o.g. restrict ourselves to checking that $\nu^{(I)}$ and $\nu^{(J)}$ are consistent for $I = \{t_1, \ldots, t_m\}$ and $J = \{t_{\ell_1}, \ldots, t_{\ell_n}\} \subseteq I$, where $n \leq m, 0 \leq t_1 < \cdots < t_m$ and $1 \leq \ell_1 < \cdots < \ell_n \leq m$. For convenience, set $\ell_0 = 0$ so that $t_{\ell_0} = t_0 = 0$. For each $i \in \{1, \ldots, m\}$, we have the following identity by the multinomial formula:

$$\frac{\left(\lambda(\sum_{j=\ell_{i-1}+1}^{\ell_i}(t_j-t_{j-1}))\right)^{k_{\ell_i}-k_{\ell_{i-1}}}}{(k_{\ell_i}-k_{\ell_{i-1}})!} = \frac{1}{(k_{\ell_i}-k_{\ell_{i-1}})!} \sum_{a_j=k_{\ell_i}-k_{\ell_{i-1}}} \left(\frac{k_{\ell_i}-k_{\ell_{i-1}}}{a_{\ell_{i-1}+1},\ldots,a_{\ell_i}}\right) \prod_{j=\ell_{i-1}+1}^{\ell_i} (\lambda(t_j-t_{j-1}))^{a_j} = \sum_{\substack{\sum a_j=k_{\ell_i}-k_{\ell_{i-1}}\\\sum a_j=k_{\ell_i}-k_{\ell_{i-1}}}} \prod_{j=\ell_{i-1}+1}^{\ell_i} \frac{(\lambda(t_j-t_{j-1}))^{a_j}}{a_j!}}{a_j!} = \sum_{\substack{\widetilde{k}_{\ell_{i-1}}=k_{\ell_{i-1}}\\\widetilde{k}_{\ell_i}=k_{\ell_i}}} \prod_{j=\ell_{i-1}+1}^{\ell_i} \frac{(\lambda(t_j-t_{j-1}))^{\widetilde{k}_j-\widetilde{k}_{k-1}}}{(\widetilde{k}_j-\widetilde{k}_{j-1})!},$$

where $\sum a_j = \sum_{j=\ell_{i-1}+1}^{\ell_i} a_j$ and setting $\tilde{k}_j = \tilde{k}_{j-1} + a_j$.

Using this identity we find

$$\begin{split} \nu^{(J)} \left[\left\{ x + k_{\ell_1}, \dots, x + k_{\ell_n} \right\} \right] \\ &= \prod_{i=1}^n e^{-\lambda(t_{\ell_i} - t_{\ell_{i-1}})} \frac{(\lambda(t_{\ell_i} - t_{\ell_{i-1}}))^{k_{\ell_i} - k_{\ell_{i-1}}}}{(k_{\ell_i} - k_{\ell_{i-1}})!} \\ &= \prod_{i=1}^n \exp\left(-\lambda \sum_{j=\ell_{i-1}+1}^{\ell_i} (t_j - t_{j-1}) \right) \frac{(\lambda(\sum_{j=\ell_{i-1}+1}^{\ell_i} (t_j - t_{j-1})))^{k_{\ell_i} - k_{\ell_{i-1}}}}{(k_{\ell_i} - k_{\ell_{i-1}})!} \\ &= \prod_{i=1}^n \sum_{\substack{k_{\ell_{i-1}} \leq \dots \leq \tilde{k}_{\ell_i} \\ \tilde{k}_{\ell_i} = k_{\ell_i}}} \prod_{j=\ell_{i-1}+1}^{\ell_i} e^{-\lambda(t_j - t_{j-1})} \frac{(\lambda(t_j - t_{j-1}))^{\tilde{k}_j - \tilde{k}_{j-1}}}{(\tilde{k}_j - \tilde{k}_{j-1})!} \\ &= \sum_{\substack{k_{0} \leq \dots \leq \tilde{k}_{m} \\ \forall i: \ \tilde{k}_{\ell_i} = k_{\ell_i}}} \prod_{j=1}^m e^{-\lambda(t_j - t_{j-1})} \frac{(\lambda(t_j - t_{j-1}))^{\tilde{k}_j - \tilde{k}_{j-1}}}{(\tilde{k}_j - \tilde{k}_{j-1})!} \\ &= \nu^{(I)} \left[\mathbb{R} \times \dots \times \mathbb{R} \times \{x + k_{\ell_1}\} \times \mathbb{R} \times \dots \times \mathbb{R} \times \{x + k_{\ell_n}\} \times \mathbb{R} \times \dots \times \mathbb{R} \right]. \end{split}$$

so that the finite-dimensional marginals are consistent. Therefore, the Kolmogorov consistency theorem ensures that there exists a probability measure P on $(S^{[0,\infty)}, \mathcal{S}^{[0,\infty)})$ which is consistent with all the finite-dimensional marginals $\nu^{(I)}$. It follows that $(Y_t)_{t\geq 0}$ has independent increments, with $P[Y_0 = x] = 1$ and $Y_t - Y_s \sim \text{Poi}(\lambda(t-s))$, since these are statements about the finite dimensional marginals that follow immediately by construction.

(b) By construction and countability, we see that the process $(Y_q)_{q \in \mathbb{Q}_+}$ is (outside of a *P*-nullset) an increasing piecewise constant process with $Y_0 = x$ and all jumps $\in \mathbb{N}$.

Next, we show that

$$P\left[Y_t = \lim_{\mathbb{Q} \ni q \nearrow t} Y_q = \lim_{\mathbb{Q} \ni q \searrow t} Y_q\right] = 1$$

for each $t \in \mathbb{R}_+$. Indeed, $P[Y_t \ge Y_q] = 1$ for all q < t by construction, so $Y_t \ge \sup_{\mathbb{Q} \ni q < t} Y_q$ a.s.; on the other hand $P[Y_t > Y_q] = 1 - \exp(-\lambda(t-q)) \searrow 0$ as $q \nearrow t$, so

$$P[Y_t \ge 1 + \sup_{\mathbb{Q} \ni q < t} Y_q] \le \lim_{\mathbb{Q} \ni q \nearrow t} P[Y_t \ge Y_q + 1] = 0.$$

The other side is analogous.

We can also show that $(Y_q)_{q \in \mathbb{Q}_+}$ only has jumps of size +1. Indeed, for all $m \in \mathbb{N}$,

$$P[(Y_q)_{q \in \mathbb{Q} \cap [0,m]} \text{ has a jump of size} > 1] \leq \inf_{n \in \mathbb{N}} P\left[\bigcup_{j=1}^{m2^n} \{Y_{2^{-n}j} - Y_{2^{-n}(j-1)} \geq 2\}\right]$$
$$\leq \inf_{n \in \mathbb{N}} \sum_{j=1}^{m2^n} P\left[Y_{2^{-n}j} - Y_{2^{-n}(j-1)} \geq 2\right]$$
$$= \inf_{n \in \mathbb{N}} m2^n \sum_{k=2}^{\infty} e^{-\lambda 2^{-n}} \frac{(\lambda 2^{-n})^k}{k!} = 0.$$

Taking a union over $m \in \mathbb{N}$ we extend the result to all of \mathbb{Q}_+ .

Now, construct the process $(N_t)_{t\geq 0}$ by $N_t = \lim_{\mathbb{Q} \ni q \searrow t} Y_q$. Since $(Y_q)_{q \in \mathbb{Q}}$ is a.s. an increasing piecewise constant process with all jumps of size +1, the same must hold for $(N_t)_{t\geq 0}$, and

moreover N is RCLL. We have that N is a version of Y since $P[Y_t = \lim_{q \searrow t} Y_q = N_t] = 1$ for all $t \ge 0$, and therefore $N_0 = x$ and the increments $N_t - N_s \sim \text{Poi}(\lambda(t-s))$ are independent, since the same holds for Y.

(c) For $t \ge 0$, we have that

$$P[\tau_n > t] = P[N_t \le n - 1] = \sum_{k=0}^{n-1} e^{-\lambda t} \frac{(\lambda t)^k}{k!}.$$

Differentiating in t,

$$f_{\tau_n}(t) = -\sum_{k=0}^{n-1} \lambda e^{-\lambda t} \left(-\sum_{k=0}^{n-1} \frac{(\lambda t)^k}{k!} + \sum_{k=1}^{n-1} \frac{k(\lambda t)^{k-1}}{k!} \right)$$
$$= -\lambda e^{-\lambda t} \left(-\sum_{k=0}^{n-1} \frac{(\lambda t)^k}{k!} + \sum_{k=0}^{n-2} \frac{(\lambda t)^k}{k!} \right)$$
$$= \frac{\lambda^n t^{n-1}}{(n-1)!} e^{-\lambda t},$$

therefore $\tau_n \sim \text{Gamma}(n, \lambda)$.

(d) This follows from stationary independent increments property, since for $s \leq t$ and measurable bounded $f : \mathbb{R} \to \mathbb{R}$, we have

$$E[f(N_t) \mid \sigma(N_r : r \le s)] = E[f(N_s + (N_t - N_s)) \mid \sigma(N_r : r \le s)]$$
$$= \sum_{k=0}^{\infty} f(N_s + k)e^{-\lambda(t-s)} \frac{(\lambda(t-s))^k}{k!}$$

which implies that N is Markov with kernel

$$K_h(x,A) = \sum_{k=0}^{\infty} \delta_{x+k}(A) e^{-\lambda h} \frac{(\lambda h)^k}{k!}.$$

With the same argument, Y is Markov as well with the same kernel.