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Exercise 6.1 Let (S,S) = (R2,B(R2)) and for each x ∈ R2, let Px denote the unique probability
measure on (S[0,∞),S [0,∞)) under which the coordinate process Y is a 2-dimensional Brownian
motion starting at x. Show that for any x ∈ R2,

Px
[
sup{t ≥ 0 : Yt ∈ O

}
=∞ for every non-empty open set O ⊆ R2] = 1.

Hint: For any x ∈ R2 and r ≥ 0, we define B(x, r) := {y ∈ R2 : |x − y| ≤ r} and the stopping
time TB(x,r) := inf{t ≥ 0 : Yt ∈ B(x, r)}. Use the fact that for any x ∈ R2 and r > 0, we have
TB(0,r) <∞ Px-a.s., and apply the strong Markov property of Brownian motion.
Remark: This exercise shows the recurrence of Brownian motion in R2.

Solution 6.1 From the given hint, we know that

for any x ∈ R2 and r > 0, we have TB(0,r) <∞ Px-a.s. (1)

Moreover, TB(0,r) is a Y-stopping time. Let r > 0. We define the sequence of Y-stopping times (Ti)
by

T1 = TB(0,r),

Ti+1 = T1 ◦ ϑTi+1 + Ti + 1
= inf{t ≥ Ti + 1 : Yt ∈ B(0, r)} for i ≥ 1.

Thus, (Ti) converges strictly monotonically to infinity. Using the strong Markov property in the
fourth equality, (??) in the sixth and then induction, we see that for any y ∈ R2, for i ≥ 1,

Py
[
Ti+1 <∞

]
= Ey

[
1{T1◦ϑTi+1+Ti+1<∞}

]
= Ey

[(
1{T1<∞} ◦ ϑTi+1

)
1{Ti<∞}

]
= Ey

[
1{Ti<∞} Ey

[
1{T1<∞} ◦ ϑTi+1

∣∣∣YTi+1

]]
= Ey

[
1{Ti<∞} EYTi+1

[
1{T1<∞}

]]
= Ey

[
1{Ti<∞} PYTi+1

[
T1 <∞

]]
= Py

[
Ti <∞

]
= Py

[
T1 <∞

]
= 1.

Note also that by construction, for i ≥ 1, we have YTi ∈ B(0, r) Py-a.s. on {Ti < ∞}. It thus
follows that for any y ∈ R2, the set

{
t ≥ 0 : Yt ∈ B(0, 1

n )
}
is unbounded Py-a.s. for any r = 1

n ,
n ∈ N. Now, since Py is the law of (y + Yt)t≥0 under P0, the above property implies that

P0-a.s., the set {t ≥ 0 : Yt ∈ B(z, 1
n )} is unbounded for all z ∈ Q2, n ≥ 1.

This proves the claim for x = 0 as for every open set O ⊆ R2, we can find z ∈ Q2 and n ≥ 1 such
that B(z, 1

n ) ⊆ O. The case of general x ∈ R2 follows since (Yt)t≥0 under Px has the same law as
(x+ Yt)t≥0 under P0 and O − x ⊆ R2 is open whenever O is open.
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Exercise 6.2

(a) Let (Zt)t≥0 be an adapted process with respect to a given filtration (Ft)t≥0 such that for
every bounded continuous function f , we have

E
[
f(Zt − Zs)

∣∣Fs] = E
[
f(Zt−s)

]
.

Show that Z has stationary independent increments.

(b) Let W be a Brownian motion on (Ω,F , P ). For every a ≥ 0, consider the entrance time

Ta := inf{s ≥ 0 : Ws ≥ a}.

Show that the process (Ta)a≥0 has stationary independent increments.

(c) Let (Zt)t≥0 have stationary independent increments and start at 0, (Wt) be a Brownian motion
independent of (Zt), and (Ta)a≥0 as in (b). Show that (Ẑt)t≥0 = (ZTt

)t≥0 has stationary
independent increments.
Remark: The process (Tt)t≥0 is called a subordinator.

Solution 6.2

(a) We show that for times 0 ≤ t0 < t1 < · · · < tn and measurable bounded functions f i : R→
R (i = 1, . . . , n), we have that

E

[
n∏
i=1

f i(Zti − Zti−1)
]

=
n∏
i=1

E[f i(Zti−ti−1)].

If the f i are bounded and continuous, we have by assumption that

E

[
n∏
i=1

f i(Zti − Zti−1)
]

= E

[
E

[
n∏
i=1

f i(Zti − Zti−1)

∣∣∣∣∣ Ftn−1

]]

= E

[
n−1∏
i=1

f i(Zti − Zti−1)
]
E[fn(Ztn−tn−1)]

=
n∏
i=1

E[f i(Zti−ti−1)],

proceeding by induction.
If f i = 1Ai for i = 1, . . . , n and some Ai ∈ B(R), we can find continuous f i,m with a uniform
bound supm,i[ess sup f i,m] ≤ 1 such that f i,m → f i pointwise on R. Therefore, we find by
two applications of the dominated convergence theorem that

E

[
n∏
i=1

f i(Zti − Zti−1)
]

= lim
m→∞

E

[
n∏
i=1

f i,m(Zti − Zti−1)
]

= lim
m→∞

n∏
i=1

E[f i,m(Zti−ti−1)] =
n∏
i=1

E[f i(Zti−ti−1)].

This extends to simple functions by linearity, and then to measurable bounded functions by
approximation with simple functions. This proves the claim.
This already establishes independence, and we now show that

E
[
f(Zt1 − Zt0 , . . . , Ztn − Ztn−1)

]
= E

[
f(Zt1+h − Zt0+h, . . . , Ztn+h − Ztn−1+h)

]
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for any h ≥ 0 and bounded measurable f : Rk → R, which implies stationarity of the
increments. Letting H be the set of bounded measurable functions such that this is satisfied
for all h ≥ 0, we have that H is a vector space, contains 1 and is closed under bounded
monotone convergence by the dominated convergence theorem. Moreover, by what we showed
above, H ⊇M, whereM is the set of functions of the form f(z1, . . . , zn) =

∏n
i=1 f

i(zi) for
bounded measurable f i, since

E

[
n∏
i=1

f i(Zti − Zti−1)
]

=
n∏
i=1

E
[
f i
(
Zti−ti−1

)]
= E

[
n∏
i=1

f i(Zti+h − Zti−1+h)
]

for all h ≥ 0. Using the monotone class theorem, we conclude that H contains all bounded
measurable functions and therefore Z has stationary increments.

(b) Since the claim refers only to distributional properties of (Wt)t≥0, we may assume w.l.o.g.
that (Wt) = (Yt) is given as a coordinate process on S[0,∞) with measure P0. We first notice
that if 0 < a < b, then

Tb = inf{s ≥ 0 : Ys ≥ b} = Ta + inf{s ≥ 0 : YTa+s ≥ b} = Ta + Tb ◦ ϑTa
.

So for every bounded measurable function f , by the strong Markov property of Brownian
motion and as (s+ Yu)u≥0 has the same law under P0 as (Yu)u≥0 under Ps, we obtain that

E0
[
f(Tb − Ta)

∣∣YTa

]
= E0

[
f(Tb) ◦ ϑTa

∣∣YTa

]
= EYTa

[
f(Tb)

]
= Ea

[
f(Tb)

]
= E0

[
f(Tb−a)

]
,

where Pa denotes the law of (a+Yt)t≥0 under P0. Since the process (Ta)a≥0 is clearly adapted
to the filtration (YTa

)a≥0, we obtain the desired result directly from (a).

(c) Let 0 = t0 ≤ t1 ≤ · · · ≤ tn and f i : R → R be bounded and measurable. Using the
independence properties as well as (a) and (b), we obtain

E

[
n∏
i=1

f i(Ẑti − Ẑti−1)
]

= E

[
n∏
i=1

f i(Zτti
− Zτti−1

)
]

= E

[
E

[
n∏
i=1

f i(Zτti
− Zτti−1

)

∣∣∣∣∣ FW∞
]]

= E

E [ n∏
i=1

f i(Zsi − Zsi−1)
] ∣∣∣∣∣

si=τti


= E

[
n∏
i=1

E
[
f i(Zsi

− Zsi−1)
] ∣∣
si=τti

]

=
n∏
i=1

E
[
f i(Z(τti

−τti−1 ))
]

=
n∏
i=1

E
[
E[f i(Z(τti

−τti−1 )) | FZ∞]
]

=
n∏
i=1

E
[
f i(Zτti−ti−1

)
]

=
n∏
i=1

E
[
f i(Ẑti−ti−1)

]
.

By the same argument as in (a), this implies that Ẑ has independent and stationary increments.
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Exercise 6.3 Let φ : Rk → Rk be a locally Lipschitz function with linear growth, meaning that
|φ(x)− φ(y)| ≤ Cn|x− y| for some Cn ≥ 0 and all x, y : |x|, |y| ≤ n, and

|φ(x)| ≤ C(1 + |x|) for some C ≥ 0.

For each x ∈ Rk, define Xx : [0,∞)→ Rk as the solution to the ODE
dXx

t

dt
= φ(Xx

t ), t ≥ 0,
Xx

0 = x.
(2)

Due the assumptions on φ, each ODE has a unique solution Xx (you do not need to prove this).
(a) Define the unique probability measures Px on (S[0,∞),S [0,∞)) such that

Px[Yt = Xx
t ] = 1

for all x ∈ Rk and t ≥ 0. Show that Y is a strong Markov process.
(b) Construct an example where φ : Rk → Rk is a continuous function and (Xx) is a solution to

(1) for each x, but the measures
Px[Yt = Xx

t ] = 1
do not define a Markov process.

Solution 6.3
(a) Since φ is locally Lipschitz with linear growth, the solutions Xx are unique and continuously

differentiable on [0,∞). We first note that for s, t ≥ 0,

Xx
s+t = X

Xx
s

t .

This follows from the fact that (Xx
s+t)t≥0 is the unique solution to (1) with Xx

s+0 = Xx
s .

Now, we define
Px
[
(Yt1 , . . . , Ytn) ∈ A

]
= δ(Xx

t1
,...,Xx

tn
)(A)

for x ∈ Rk, A ⊆ Rk×n and 0 ≤ t1 ≤ · · · ≤ tn, which defines via Kolmogorov’s consistency
theorem a unique probability measure on (S[0,∞),S [0,∞)).
Since Px is a point mass, any random variable is constant up to a nullset, and S [0,∞) is
Px-trivial for all x ∈ R. Concretely, for any random variable Z : S[0,∞) → R, we have that
Z((Yt)t≥0) = Z((Xx

t )t≥0) Px-a.s. for each x ∈ Rk. Therefore, both the Markov and strong
Markov property are in this case equivalent to the deterministic identity

ϑs
(
(Xx

t )t≥0
)

= (XXx
s

t )t≥0,

which we showed above.
(b) Consider k = 1 and let φ(y) = 2

√
|y|. Note that φ is not locally Lipschitz; in particular, (1)

does not have a unique solution. In fact, we can find solutions

Xx
t =


(
√
x+ t)2

, x > 0,
0, x = 0,∣∣∣t−√|x|∣∣∣ (t−√|x|) , x < 0

to (1). However, we note that for x < 0,
ϑ√|x|

(
(Xx

t )t≥0
)

= (t2)t≥0,

whereas
X
Xx√
|x| ≡ X0 ≡ 0,

and therefore the associated process Y is not Markov.
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