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Exercise 7.1 Let (W;);>0 be a 2-dimensional Brownian motion on (€, F, P) started at 0 and
C # () an open cone in R?, i.e. C is an open set and for every = € C, we have Az € C for all A > 0.
Note that 0 need not belong to C. Consider the hitting time T of C, i.e.

T ==inf{t>0: W, € C}.
Show that T =0 P-a.s.

Solution 7.1 Let Py = P o W~! be Wiener measure on C([0,00); R) and (Y;);>o the coordinate
process. Define
TY :=inf{t >0:Y; € C}.

We first show that {T = 0} € V{, = ). Indeed, using that C is open, this follows directly from
the identity

{Tcy=0}=ﬁ( U {(mech)en,

n=1"re(0,1]nQ

since B,, = Ure(o,i]mQ{YT e C} € yf/n and By DO By D ---. Recall the scaling property of
Brownian motion, i.e. that for any ¢ > 0,

Y, @ Vv,
under Py. Using this property and that C' is a cone, we obtain for every ¢ > 0 that
Po[TE <t] > Po[Y; € O] = P[VtY; € C] = Py[Y; € O] > 0,

where the last inequality holds true since C' has strictly positive Lebesgue measure and Y is
bivariate normally distributed. Thus we obtain that

Po[TE = 0] = lim Po[TE < t] > Po[Y1 € C] > 0

t—0

and therefore, by the Blumenthal 0-1 law, Po[T% = 0] = 1. Since T has the same law under P as
Tg under Py, we conclude that

P[TY =0] =Po[T& =0] = 1.
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Exercise 7.2 Let Q = C([0,00); R?) and Y = (Y;):>0 denote the coordinate process. For each
x € R, let P, be the unique probability measure on (€, Y2 ) under which Y is a (d-dimensional)
Brownian motion started at . Moreover, for any open set A C R?, we denote by

Ta:=inf{t >0:Y; & A}

the first exit time of the Brownian motion Y from the set A.
Fix an open set G C R? such that E,[rg] < oo for all z € G, a bounded Borel function
g :R? — R, and define the function u : G — R by

u(y) = E, [/OTG g(Ys)ds] .

Moreover, for any ¢ > 0 and z € R?, we let U.(z) := {y : |y — x| < £} denote the open e-ball around
x and set 0.(z) 1= Ty_(2)-
Fix € > 0 and = € G such that U.(z) C G. Show that

Us(x)
u(z) =E; |u (Ygs(m)) +/ 9(Ys) ds
0

Hint: First show that 7¢ = 7 0 V,_(z) + 0(x). Then compute u(x) by conditioning on F,_,) and
using the strong Markov property.

Solution 7.2 We first observe that
nginf{tz() : Y € G°}.

So if G is open, G¢ is closed and thus one can show that 74 is a Y-stopping time. Fix ¢ > 0 and
x € G such that U.(x) C G. Then o.(x) < 7¢. Hence,

TG 0 Vo (2) + 0c(x) =inf{t > 0:Y; 09, (o) & G} + 0c(2)
Cinf{t > 0+ Vi) ¢ G +00(2) = 76 1)

Note that the process fo g(Ys) ds is continuous and adapted. Thus, OUE(z)g(YS)ds is Vo (2)-
measurable. Conditioning on V;_(,) yields

u(z) = E, [ /0 - g(i@)ds} —E,

oe () 6
/0 g(Ys)dsﬂtEx[/U (I)g(Ys)ds‘%Em” : (2)

To compute the conditional expectation on the right-hand side in (2), using (1) we note that

TG Ta—0:(T) TG
[ = [T ) ds = ([ oras) ovaco. 3)
o-(x 0 0

The strong Markov property and (3) then give that

/ 9(Ys)ds %E(m)] =E, [(/O g(Ys)dS> ° Vo, (x)

<(x)
TG
=Ey, ., [/ g(Ys) ds] =u(Yy (z)), Pz-as. (4)
0

Eq

ygs (m)]

Finally, inserting (4) into (2) yields the desired result.
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Exercise 7.3 Assume we have a filtered probability space (2, F,F, P) satisfying the usual
conditions.

(a) Let M € MG,,.. Prove that M € Ho® if and only if E[(M)s] < oo, and that in this case
M]3 = E[(M)o].

(b) An optional process X is said to be of class (DL) if for all a > 0, the family
X, = {XT : 7 stopping time, 7 < a P—a.s.}
is uniformly integrable. Show that a local martingale null at 0 is a (true) martingale null at 0
if and only if it is of class (DL).
Remarks:
e As a consequence, we obtain that a local martingale M null at 0 and with integrable
supremum, i.e. M := supy<,<; |M,| € L'(P) for all t > 0, is a true martingale.

e There exist local martingales null at 0 which are uniformly integrable (i.e. the family
{M; : t > 0} is uniformly integrable), but are not true martingales.

Solution 7.3

(a) For M € MG .., let (7)nen be a localizing sequence of stopping times for M such that
(M? — (M))™ € M§. We then have that

E[M? ] = E[(M);, ), foreach n € N,t > 0. (5)

We show the first implication. Let M € Hg’c; then by the martingale convergence theorem,
M; — My, € L? a.s. and in L% Moreover, Doob’s inequality gives M = sup,~ |M;| € L?.
We can therefore apply the dominated convergence theorem on the left-hand side of (5) for
n — oo. On the other hand, (M) is increasing, so that the monotone convergence theorem
applied on the right-hand side of (5) for n — co gives

E[M} = E[(M)] Yt>0.

By applying the dominated and the monotone convergence theorem again for ¢ — oo, we
conclude that
E[MZ%] = E[(M)s] < .

Conversely, assume that E[(M )] < co. By using (5) and the fact that (M) is increasing, we
obtain that
EIM2, ] = El(M), ] < El(M)oc] = K < . (6)

By applying Fatou’s lemma to (6), we obtain that

E[M?] < liminf E[M? ,,] < K < o0,

n—o0

so that M is bounded in L2. Moreover, by (6), (M, a¢)nen is bounded in L? and hence

n

uniformly integrable. Next, we want to pass to the limit in the equality
E[an/\t|~7:8] = MTn/\s VneN.

To do that, let A € F, and note that E[M, rsla] - E[M;14] as n — oo by the dominated
convergence theorem, and likewise E[M, a:1a] — E[M;14] as n — oo. Therefore, we obtain
that E[M;|F,] = M, so that M is a martingale, and hence in Hg*.
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(b) Let M be a true martingale and fix a > 0. Then the stopping theorem implies
M, = E[M,|F,]

for all stopping times 7 with 7 < a P-a.s. Since M, € L', we then obtain that X, is uniformly
integrable. More specifically, for any X € L', if holds that {E[X | G] : G C F a o-algebra}
is uniformly integrable. One proof is as follows: by the de la Vallée-Poussin theorem, since
X € L' and so the family {X} is uniformly integrable, there exists a non-negative increasing
convex function ¢ with lim,_, ., ¢(z)/z = oo such that Ep(|X|)] = C < oco. By Jensen’s
inequality, for any o-algebra G C F,

E[p(|EIX | 6]I)| < E[Elp(X)) | 6] = E[+(X])] < C.

Therefore by de la Vallée-Poussin theorem again, we have that {F[X | G] : G C F a o-algebra}
is uniformly integrable. In particular, the subfamily { M, = E[M,|F;] : 7 < a a stopping time}
is uniformly integrable.
Conversely, assume we have a local martingale M of class (DL), and let (7,,),en be a localizing
sequence. Since X; is uniformly integrable for all ¢ > 0, we obtain that {M, A;:n € N} is
also uniformly integrable. Therefore, the fact that M, a¢ "2 M, P-as. implies that

M. =5 M, in L'

n

and also M; € L'. Asin (a), we can then pass to the limit in the equality E[M, r¢|Fs] =
M, ns, Obtaining that E[M;|Fs] = M, so that M is a martingale.
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Exercise 7.4 For any function f : [0,00) — R with f(0) = 0, we define its total variation (or
1-variation) |f| : [0, 00) — [0, c0] by

[f1(t) :== sup{ Z |f(tix1) — f(t;)] : L is a partition of [O,t}}

t; €Il

= sup{ Z | f(tig1 At) — f(ti At)] : T is a partition of [0, oo)}
t; €Il

We say that f has finite variation (FV) if | f|(t) < oo for all ¢ > 0.

a ow that as finite variation if and only if there exist two non-decreasing functions
Sh hat f has fi f and only if th d f
fl,fz'[o OO)—)RWlth fl( )_fg( )_OSUCh thatf_fl—fg

If so, find the minimal such functions fi and f3, in the sense that fi > f1 and fg > fo for
any other non-decreasing functions fi, fo with f1(0) = fo(0) = 0 such that f = f; — fo.

Hint: Start by showing that |f|(¢) — | f](s) > |f(t) — f(s)| for 0 < s < ¢.
(b) Show that if f is right-continuous and has finite variation, then |f| is right-continuous.

Using the Carathéodory extension theorem, one can show that for any non-decreasing right-
continuous function f, there exists a unique positive measure pf on (R4, B(Ry)) such that

1 ((0,¢]) = f(t) = £(0) for all £ > 0.
(¢) Let f be right-continuous with finite variation with f(0) = 0 and g : [0,00) — R such that

| o) g tas) < o
0

Let f1, fo be the minimal functions defined in (a). Show that

/O|<>|duf1 < o0, / )l dugy (s) < o0,

[o@drs) = [ o) dun) ~ [ als)du(s)

Remark: If f is of finite variation and right-continuous, a function g is f-integrable in the
Lebesgue—Stieltjes sense if g satisfies fooo l9(s)| pj)(ds) < oo. In that case, we define the
Lebesgue-Stieltjes integral to be [ g(s)df(s).

so that

is well defined.

Solution 7.4

(a) For the “if” direction, let f = f1 — fa, where f1 and fy are non-decreasing. Then we have for
any t > 0 and any partition IT of [0, ¢] that

S ) = )] = Y |(faltin) = otis) = (At = fa(t)|

t,€ll t, €Il
< Z |f1(ti+1) - fl(ti)’ + Z ’f2(ti+1) - f2(ti)‘
tell t; €Il
< fi() + f2(D)-
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Thus,

[71() —supZ’f (tit1) )|<f1 )+ fa(t) < oo for every t > 0.
0.1 ¢, emm

For the “only if” direction, let f : [0, 00) — R have finite variation. Define

fiy = OO LORFU)

We claim that both fi, fo are non-decreasing. To show that, fix 0 < s < t and denote by Il
the set of partitions of an interval I, where I can be any of [0, s], [0,¢] or [s,t]. Then,

|fI(s) = sup Z }f i+1) )|

and  fo(t) ==

Mo.s] ¢, 11
= sup > |f(tig1) — f(t:)| + 1) = ()] = |F(£) = £(s)]
Mo,s1 ¢, 11
< sup Z |f(tig1) — f(t:)| + sup Z |f(tivr) = f(t)| = 1F () = F(s)]
0,51 t;ell s t; €Il
< sup S| ftivr) = £(t)| = 1£(8) = £(5)]
[Of t; €1

A1) = 1) = F(s)l-

So we conclude that |f| is non-decreasing with | f|(t) — [ f|(s) > | f(t) — f(s)|. It follows from
this inequality that f; and f> are non-decreasing, and f = f; — fo holds by construction.

We now show that this choice of f; and fs is minimal. Consider any other f1 and f5. Note
that the bound [f(¢)| < f1(t) + f2(t) holds by the same argument as for the “if” statement.
From the definition of fi, fo and as f1(0) = f2(0) =0

1) + @) L+ RO+ L) - L) _ -
2 - 2

1) = ft) _
2 2

fit) =

f2(t) =

as we wanted.

(b) Define (AT g)(t) = g(t+) — g(t) = lim,~ ¢ g(u) — g(¢) for any function g : [0,00) — R such
that the limit exists. From the equalities f = fi; — f> and |f| = f1 + f2, and noting that f is
right-continuous while f1, fo, f are increasing, we obtain that

0=AFf=A%f; = AT fo, AT[fl = AT fi + AT f =2A7 f1.

We want to show that (AT|f])(¢) = 0 for all ¢ > 0. Fix some ¢y > 0 and consider the functions
Fi(t) = f1(t) = (AT f1)(t0) Liistyy and fot) = fa(t) — (AT f2)(t0)Lis>ro}- 1t s clear that
fi < f1 and fo < fo, with fi + fo = f since AT f; = AT f,. Moreover, f; is increasing: this
is clear on each interval (¢, c0) and [0, t], while for 0 < s <ty < t, we have that

J1(t) > filto+) = fi(to) + (AT f1)(te) > fi(s) + (AT f1)(to),

so fi(t) > fi(s), and likewise for fs.

However, this contradicts (a) unless A" f; = At fo = AT|f| =0, as we wanted. This shows
that | f] is right-continuous.

6/7



Brownian Motion and Stochastic Calculus, Spring 2022
D-MATH Exercise sheet 7

(¢) Note that f; and fo are non-decreasing and f = f; — fo. Moreover, due to (b), both
f1 and fo are right-continuous. Let uy, and py, be the corresponding measures. Since
pr ([0,t]) = fi(t) < |f[(t) = wz([0,t]) for every t > 0, we conclude that py, < pjs on
B([0,00)) for i = 1,2. Thus, we see by a monotone class argument that

/ " 19()] g, (ds) < / " lo(s)] a1y (ds)

for all measurable functions g and ¢ = 1,2, and therefore fooo lg(s)] ps, (ds), fooo lg(s)] pes, (ds)
are both finite whenever [ [g(s)| 11/4/(ds) is.

Therefore, - -
/0 o(s) iy, (ds) — / 9(s) i1, (ds)

is well defined.
Remark: One can show that the equality

| s st = [ g = [ i)
holds independently of the choice of fi, fa satisfying the conditions in (a), not just the minimal

f1, f2, as long as the integrability condition fooo 9(8) pif, 4 7, (ds) < oo is satisfied. For instance,
this is helpful in showing that fooo g(s)df (s) is linear in f.
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