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Exercise 7.1 Let (Wt)t≥0 be a 2-dimensional Brownian motion on (Ω,F , P ) started at 0 and
C 6= ∅ an open cone in R2, i.e. C is an open set and for every x ∈ C, we have λx ∈ C for all λ > 0.
Note that 0 need not belong to C. Consider the hitting time TWC of C, i.e.

TWC := inf
{
t > 0 : Wt ∈ C

}
.

Show that TWC = 0 P -a.s.

Solution 7.1 Let P0 = P ◦W−1 be Wiener measure on C([0,∞);R) and (Yt)t≥0 the coordinate
process. Define

TYC := inf{t > 0 : Yt ∈ C}.

We first show that {TYC = 0} ∈ Y0
0+ = Y0. Indeed, using that C is open, this follows directly from

the identity {
TYC = 0

}
=
∞⋂
n=1

( ⋃
r∈(0, 1

n ]∩Q

{Yr ∈ C}
)
∈ Y0,

since Bn =
⋃
r∈(0, 1

n ]∩Q{Yr ∈ C} ∈ Y0
1/n and B1 ⊇ B2 ⊇ · · · . Recall the scaling property of

Brownian motion, i.e. that for any t ≥ 0,

Yt
(d)=
√
tY1

under P0. Using this property and that C is a cone, we obtain for every t > 0 that

P0[TYC ≤ t] ≥ P0[Yt ∈ C] = P0[
√
tY1 ∈ C] = P0[Y1 ∈ C] > 0,

where the last inequality holds true since C has strictly positive Lebesgue measure and Y1 is
bivariate normally distributed. Thus we obtain that

P0[TYC = 0] = lim
t→0

P0[TYC ≤ t] ≥ P0[Y1 ∈ C] > 0

and therefore, by the Blumenthal 0-1 law, P0[TYC = 0] = 1. Since TWC has the same law under P as
TYC under P0, we conclude that

P [TWC = 0] = P0[TYC = 0] = 1.
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Exercise 7.2 Let Ω = C([0,∞);Rd) and Y = (Yt)t≥0 denote the coordinate process. For each
x ∈ Rd, let Px be the unique probability measure on (Ω,Y0

∞) under which Y is a (d-dimensional)
Brownian motion started at x. Moreover, for any open set A ⊆ Rd, we denote by

τA := inf{t ≥ 0 : Yt 6∈ A}

the first exit time of the Brownian motion Y from the set A.
Fix an open set G ⊆ Rd such that Ex[τG] < ∞ for all x ∈ G, a bounded Borel function

g : Rd → R, and define the function u : G→ R by

u(y) := Ey
[∫ τG

0
g(Ys) ds

]
.

Moreover, for any ε > 0 and x ∈ Rd, we let Uε(x) := {y : |y−x| < ε} denote the open ε-ball around
x and set σε(x) := τUε(x).

Fix ε > 0 and x ∈ G such that Uε(x) ⊆ G. Show that

u(x) = Ex

[
u
(
Yσε(x)

)
+
∫ σε(x)

0
g(Ys) ds

]
.

Hint: First show that τG = τG ◦ ϑσε(x) + σε(x). Then compute u(x) by conditioning on Fσε(x) and
using the strong Markov property.

Solution 7.2 We first observe that

τG = inf
{
t ≥ 0 : Yt ∈ Gc}.

So if G is open, Gc is closed and thus one can show that τG is a Y-stopping time. Fix ε > 0 and
x ∈ G such that Uε(x) ⊆ G. Then σε(x) ≤ τG. Hence,

τG ◦ ϑσε(x) + σε(x) = inf{t ≥ 0 : Yt ◦ ϑσε(x) /∈ G}+ σε(x)
= inf{t ≥ 0 : Yt+σε(x) /∈ G}+ σε(x) = τG. (1)

Note that the process
∫ ·

0 g(Ys) ds is continuous and adapted. Thus,
∫ σε(x)

0 g(Ys) ds is Yσε(x)-
measurable. Conditioning on Yσε(x) yields

u(x) = Ex
[∫ τG

0
g(Ys) ds

]
= Ex

[∫ σε(x)

0
g(Ys) ds+ Ex

[ ∫ τG

σε(x)
g(Ys) ds

∣∣∣Yσε(x)

]]
. (2)

To compute the conditional expectation on the right-hand side in (2), using (1) we note that∫ τG

σε(x)
g(Ys) ds =

∫ τG−σε(x)

0
g(Ys+σε(x)) ds =

(∫ τG

0
g(Ys) ds

)
◦ ϑσε(x). (3)

The strong Markov property and (3) then give that

Ex

[∫ τG

σε(x)
g(Ys) ds

∣∣∣∣∣Yσε(x)

]
= Ex

[(∫ τG

0
g(Ys) ds

)
◦ ϑσε(x)

∣∣∣∣∣Yσε(x)

]

= EYσε(x)

[∫ τG

0
g(Ys) ds

]
= u(Yσε(x)), Px-a.s. (4)

Finally, inserting (4) into (2) yields the desired result.
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Exercise 7.3 Assume we have a filtered probability space (Ω,F ,F, P ) satisfying the usual
conditions.

(a) Let M ∈ Mc
0,loc. Prove that M ∈ H2,c

0 if and only if E[〈M〉∞] < ∞, and that in this case
‖M‖2H2 = E[〈M〉∞].

(b) An optional process X is said to be of class (DL) if for all a > 0, the family

Xa :=
{
Xτ : τ stopping time, τ ≤ a P -a.s.

}
is uniformly integrable. Show that a local martingale null at 0 is a (true) martingale null at 0
if and only if it is of class (DL).
Remarks:

• As a consequence, we obtain that a local martingale M null at 0 and with integrable
supremum, i.e. M∗t := sup0≤s≤t |Ms| ∈ L1(P ) for all t ≥ 0, is a true martingale.

• There exist local martingales null at 0 which are uniformly integrable (i.e. the family
{Mt : t ≥ 0} is uniformly integrable), but are not true martingales.

Solution 7.3

(a) For M ∈ Mc
0,loc, let (τn)n∈N be a localizing sequence of stopping times for M such that

(M2 − 〈M〉)τn ∈Mc
0. We then have that

E[M2
τn∧t] = E[〈M〉τn∧t], for each n ∈ N, t ≥ 0. (5)

We show the first implication. Let M ∈ H2,c
0 ; then by the martingale convergence theorem,

Mt →M∞ ∈ L2 a.s. and in L2. Moreover, Doob’s inequality gives M∗∞ = supt≥0 |Mt| ∈ L2.
We can therefore apply the dominated convergence theorem on the left-hand side of (5) for
n→∞. On the other hand, 〈M〉 is increasing, so that the monotone convergence theorem
applied on the right-hand side of (5) for n→∞ gives

E[M2
t ] = E[〈M〉t] ∀ t ≥ 0.

By applying the dominated and the monotone convergence theorem again for t → ∞, we
conclude that

E[M2
∞] = E[〈M〉∞] <∞.

Conversely, assume that E[〈M〉∞] <∞. By using (5) and the fact that 〈M〉 is increasing, we
obtain that

E[M2
τn∧t] = E[〈M〉τn∧t] ≤ E[〈M〉∞] =: K <∞. (6)

By applying Fatou’s lemma to (6), we obtain that

E[M2
t ] ≤ lim inf

n→∞
E[M2

τn∧t] ≤ K <∞,

so that M is bounded in L2. Moreover, by (6), (Mτn∧t)n∈N is bounded in L2 and hence
uniformly integrable. Next, we want to pass to the limit in the equality

E[Mτn∧t|Fs] = Mτn∧s ∀ n ∈ N.

To do that, let A ∈ Fs and note that E[Mτn∧s1A]→ E[Ms1A] as n→∞ by the dominated
convergence theorem, and likewise E[Mτn∧t1A]→ E[Mt1A] as n→∞. Therefore, we obtain
that E[Mt|Fs] = Ms, so that M is a martingale, and hence in H2,c

0 .
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(b) Let M be a true martingale and fix a > 0. Then the stopping theorem implies

Mτ = E[Ma|Fτ ]

for all stopping times τ with τ ≤ a P -a.s. Since Ma ∈ L1, we then obtain that Xa is uniformly
integrable. More specifically, for any X ∈ L1, if holds that {E[X | G] : G ⊆ F a σ-algebra}
is uniformly integrable. One proof is as follows: by the de la Vallée–Poussin theorem, since
X ∈ L1 and so the family {X} is uniformly integrable, there exists a non-negative increasing
convex function ϕ with limx→∞ ϕ(x)/x = ∞ such that E[ϕ(|X|)] = C < ∞. By Jensen’s
inequality, for any σ-algebra G ⊆ F ,

E
[
ϕ
(∣∣E[X | G]

∣∣)] ≤ E[E[ϕ(|X|) | G]
]

= E
[
ϕ(|X|)

]
≤ C.

Therefore by de la Vallée–Poussin theorem again, we have that {E[X | G] : G ⊆ F a σ-algebra}
is uniformly integrable. In particular, the subfamily {Mτ = E[Ma|Fτ ] : τ ≤ a a stopping time}
is uniformly integrable.
Conversely, assume we have a local martingaleM of class (DL), and let (τn)n∈N be a localizing
sequence. Since Xt is uniformly integrable for all t ≥ 0, we obtain that {Mτn∧t : n ∈ N} is
also uniformly integrable. Therefore, the fact that Mτn∧t

n→∞−→ Mt P -a.s. implies that

Mτn∧t
n→∞−→ Mt in L1

and also Mt ∈ L1. As in (a), we can then pass to the limit in the equality E[Mτn∧t|Fs] =
Mτn∧s, obtaining that E[Mt|Fs] = Ms, so that M is a martingale.
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Exercise 7.4 For any function f : [0,∞) → R with f(0) = 0, we define its total variation (or
1-variation) |f | : [0,∞)→ [0,∞] by

|f |(t) := sup
{∑
ti∈Π

∣∣f(ti+1)− f(ti)
∣∣ : Π is a partition of [0, t]

}
= sup

{∑
ti∈Π

∣∣f(ti+1 ∧ t)− f(ti ∧ t)
∣∣ : Π is a partition of [0,∞)

}
.

We say that f has finite variation (FV) if |f |(t) <∞ for all t ≥ 0.

(a) Show that f has finite variation if and only if there exist two non-decreasing functions
f1, f2 : [0,∞)→ R with f1(0) = f2(0) = 0 such that f = f1 − f2.
If so, find the minimal such functions f1 and f2, in the sense that f̃1 ≥ f1 and f̃2 ≥ f2 for
any other non-decreasing functions f̃1, f̃2 with f̃1(0) = f̃2(0) = 0 such that f = f̃1 − f̃2.
Hint: Start by showing that |f |(t)− |f |(s) ≥ |f(t)− f(s)| for 0 ≤ s ≤ t.

(b) Show that if f is right-continuous and has finite variation, then |f | is right-continuous.

Using the Carathéodory extension theorem, one can show that for any non-decreasing right-
continuous function f̃ , there exists a unique positive measure µf̃ on (R+,B(R+)) such that
µf̃ ((0, t]) = f̃(t)− f̃(0) for all t ≥ 0.

(c) Let f be right-continuous with finite variation with f(0) = 0 and g : [0,∞)→ R such that∫ ∞
0
|g(s)|µ|f |(ds) <∞.

Let f1, f2 be the minimal functions defined in (a). Show that∫ ∞
0
|g(s)| dµf1(s) <∞,

∫ ∞
0
|g(s)| dµf2(s) <∞,

so that ∫
g(s) df(s) :=

∫
g(s) dµf1(s)−

∫
g(s) dµf2(s)

is well defined.

Remark: If f is of finite variation and right-continuous, a function g is f-integrable in the
Lebesgue–Stieltjes sense if g satisfies

∫∞
0 |g(s)|µ|f |(ds) < ∞. In that case, we define the

Lebesgue–Stieltjes integral to be
∫
g(s) df(s).

Solution 7.4

(a) For the “if” direction, let f = f1 − f2, where f1 and f2 are non-decreasing. Then we have for
any t ≥ 0 and any partition Π of [0, t] that∑

ti∈Π

∣∣f(ti+1)− f(ti
)∣∣ =

∑
ti∈Π

∣∣∣(f1(ti+1)− f2(ti+1)
)
−
(
f1(ti)− f2(ti)

)∣∣∣
≤
∑
ti∈Π

∣∣f1(ti+1)− f1(ti
)∣∣+

∑
ti∈Π

∣∣f2(ti+1)− f2(ti
)∣∣

≤ f1(t) + f2(t).
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Thus,

|f |(t) = sup
Π[0,t]

∑
ti∈Π

∣∣f(ti+1)− f(ti
)∣∣ ≤ f1(t) + f2(t) <∞ for every t ≥ 0.

For the “only if” direction, let f : [0,∞)→ R have finite variation. Define

f1(t) := |f |(t) + f(t)
2 and f2(t) := |f |(t)− f(t)

2 .

We claim that both f1, f2 are non-decreasing. To show that, fix 0 ≤ s < t and denote by ΠI

the set of partitions of an interval I, where I can be any of [0, s], [0, t] or [s, t]. Then,

|f |(s) = sup
Π[0,s]

∑
ti∈Π

∣∣f(ti+1)− f(ti
)∣∣

= sup
Π[0,s]

∑
ti∈Π

∣∣f(ti+1)− f(ti
)∣∣+ |f(t)− f(s)| − |f(t)− f(s)|

≤ sup
Π[0,s]

∑
ti∈Π

∣∣f(ti+1)− f(ti
)∣∣+ sup

Π[s,t]

∑
ti∈Π

∣∣f(ti+1)− f(ti
)∣∣− |f(t)− f(s)|

≤ sup
Π[0,t]

∑
ti∈Π

∣∣f(ti+1)− f(ti
)∣∣− |f(t)− f(s)|

= |f |(t)− |f(t)− f(s)|.

So we conclude that |f | is non-decreasing with |f |(t)− |f |(s) ≥ |f(t)− f(s)|. It follows from
this inequality that f1 and f2 are non-decreasing, and f = f1 − f2 holds by construction.

We now show that this choice of f1 and f2 is minimal. Consider any other f̃1 and f̃2. Note
that the bound |f(t)| ≤ f̃1(t) + f̃2(t) holds by the same argument as for the “if” statement.
From the definition of f1, f2 and as f̃1(0) = f̃2(0) = 0,

f1(t) = |f |(t) + f(t)
2 ≤ f̃1(t) + f̃2(t) + f̃1(t)− f̃2(t)

2 = f̃1(t),

f2(t) = |f |(t)− f(t)
2 ≤ f̃1(t) + f̃2(t)− (f̃1(t)− f̃2(t))

2 = f̃2(t),

as we wanted.

(b) Define (∆+g)(t) = g(t+) − g(t) = limu↘t g(u) − g(t) for any function g : [0,∞) → R such
that the limit exists. From the equalities f = f1 − f2 and |f | = f1 + f2, and noting that f is
right-continuous while f1, f2, f are increasing, we obtain that

0 = ∆+f = ∆+f1 −∆+f2, ∆+|f | = ∆+f1 + ∆+f2 = 2∆+f1.

We want to show that (∆+|f |)(t) = 0 for all t ≥ 0. Fix some t0 ≥ 0 and consider the functions
f̃1(t) = f1(t) − (∆+f1)(t0)1{t>t0} and f̃2(t) = f2(t) − (∆+f2)(t0)1{t>t0}. It is clear that
f̃1 ≤ f1 and f̃2 ≤ f2, with f̃1 + f̃2 = f since ∆+f1 = ∆+f2. Moreover, f̃1 is increasing: this
is clear on each interval (t0,∞) and [0, t0], while for 0 ≤ s ≤ t0 < t, we have that

f1(t) ≥ f1(t0+) = f1(t0) + (∆+f1)(t0) ≥ f1(s) + (∆+f1)(t0),

so f̃1(t) ≥ f̃1(s), and likewise for f̃2.
However, this contradicts (a) unless ∆+f1 ≡ ∆+f2 ≡ ∆+|f | ≡ 0, as we wanted. This shows
that |f | is right-continuous.
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(c) Note that f1 and f2 are non-decreasing and f = f1 − f2. Moreover, due to (b), both
f1 and f2 are right-continuous. Let µf1 and µf2 be the corresponding measures. Since
µfi([0, t]) = fi(t) ≤ |f |(t) = µ|f |([0, t]) for every t ≥ 0, we conclude that µfi ≤ µ|f | on
B([0,∞)) for i = 1, 2. Thus, we see by a monotone class argument that∫ ∞

0
|g(s)|µfi(ds) ≤

∫ ∞
0
|g(s)|µ|f |(ds)

for all measurable functions g and i = 1, 2, and therefore
∫∞

0 |g(s)|µf1(ds),
∫∞

0 |g(s)|µf2(ds)
are both finite whenever

∫∞
0 |g(s)|µ|f |(ds) is.

Therefore, ∫ ∞
0

g(s)µf1(ds)−
∫ ∞

0
g(s)µf2(ds)

is well defined.
Remark: One can show that the equality∫ ∞

0
g(s)µf̃1

(ds)−
∫ ∞

0
g(s)µf̃2

(ds) =
∫ ∞

0
g(s)df(s)

holds independently of the choice of f̃1, f̃2 satisfying the conditions in (a), not just the minimal
f1, f2, as long as the integrability condition

∫∞
0 g(s)µf̃1+f̃2

(ds) <∞ is satisfied. For instance,
this is helpful in showing that

∫∞
0 g(s)df(s) is linear in f .
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