Brownian Motion and Stochastic Calculus

Exercise sheet 7

Exercise 7.1 Let $\left(W_{t}\right)_{t \geq 0}$ be a 2-dimensional Brownian motion on (Ω, \mathcal{F}, P) started at 0 and $C \neq \emptyset$ an open cone in \mathbb{R}^{2}, i.e. C is an open set and for every $x \in C$, we have $\lambda x \in C$ for all $\lambda>0$. Note that 0 need not belong to C. Consider the hitting time T_{C}^{W} of C, i.e.

$$
T_{C}^{W}:=\inf \left\{t>0: W_{t} \in C\right\}
$$

Show that $T_{C}^{W}=0 P$-a.s.
Solution 7.1 Let $\mathbb{P}_{0}=P \circ W^{-1}$ be Wiener measure on $C([0, \infty) ; \mathbb{R})$ and $\left(Y_{t}\right)_{t \geq 0}$ the coordinate process. Define

$$
T_{C}^{Y}:=\inf \left\{t>0: Y_{t} \in C\right\}
$$

We first show that $\left\{T_{C}^{Y}=0\right\} \in \mathcal{Y}_{0+}^{0}=\mathcal{Y}_{0}$. Indeed, using that C is open, this follows directly from the identity

$$
\left\{T_{C}^{Y}=0\right\}=\bigcap_{n=1}^{\infty}\left(\bigcup_{r \in\left(0, \frac{1}{n}\right] \cap \mathbb{Q}}\left\{Y_{r} \in C\right\}\right) \in \mathcal{Y}_{0}
$$

since $B_{n}=\bigcup_{r \in\left(0, \frac{1}{n} \cap \cap \mathbb{Q}\right.}\left\{Y_{r} \in C\right\} \in \mathcal{Y}_{1 / n}^{0}$ and $B_{1} \supseteq B_{2} \supseteq \cdots$. Recall the scaling property of Brownian motion, i.e. that for any $t \geq 0$,

$$
Y_{t} \stackrel{(d)}{=} \sqrt{t} Y_{1}
$$

under \mathbb{P}_{0}. Using this property and that C is a cone, we obtain for every $t>0$ that

$$
\mathbb{P}_{0}\left[T_{C}^{Y} \leq t\right] \geq \mathbb{P}_{0}\left[Y_{t} \in C\right]=\mathbb{P}_{0}\left[\sqrt{t} Y_{1} \in C\right]=\mathbb{P}_{0}\left[Y_{1} \in C\right]>0
$$

where the last inequality holds true since C has strictly positive Lebesgue measure and Y_{1} is bivariate normally distributed. Thus we obtain that

$$
\mathbb{P}_{0}\left[T_{C}^{Y}=0\right]=\lim _{t \rightarrow 0} \mathbb{P}_{0}\left[T_{C}^{Y} \leq t\right] \geq \mathbb{P}_{0}\left[Y_{1} \in C\right]>0
$$

and therefore, by the Blumenthal 0-1 law, $\mathbb{P}_{0}\left[T_{C}^{Y}=0\right]=1$. Since T_{C}^{W} has the same law under P as T_{C}^{Y} under \mathbb{P}_{0}, we conclude that

$$
P\left[T_{C}^{W}=0\right]=\mathbb{P}_{0}\left[T_{C}^{Y}=0\right]=1
$$

Exercise 7.2 Let $\Omega=C\left([0, \infty) ; \mathbb{R}^{d}\right)$ and $Y=\left(Y_{t}\right)_{t \geq 0}$ denote the coordinate process. For each $x \in \mathbb{R}^{d}$, let \mathbb{P}_{x} be the unique probability measure on $\left(\Omega, \mathcal{Y}_{\infty}^{0}\right)$ under which Y is a (d-dimensional) Brownian motion started at x. Moreover, for any open set $A \subseteq \mathbb{R}^{d}$, we denote by

$$
\tau_{A}:=\inf \left\{t \geq 0: Y_{t} \notin A\right\}
$$

the first exit time of the Brownian motion Y from the set A.
Fix an open set $G \subseteq \mathbb{R}^{d}$ such that $\mathbb{E}_{x}\left[\tau_{G}\right]<\infty$ for all $x \in G$, a bounded Borel function $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$, and define the function $u: G \rightarrow \mathbb{R}$ by

$$
u(y):=\mathbb{E}_{y}\left[\int_{0}^{\tau_{G}} g\left(Y_{s}\right) d s\right]
$$

Moreover, for any $\varepsilon>0$ and $x \in \mathbb{R}^{d}$, we let $U_{\varepsilon}(x):=\{y:|y-x|<\varepsilon\}$ denote the open ε-ball around x and set $\sigma_{\varepsilon}(x):=\tau_{U_{\varepsilon}(x)}$.

Fix $\varepsilon>0$ and $x \in G$ such that $U_{\varepsilon}(x) \subseteq G$. Show that

$$
u(x)=\mathbb{E}_{x}\left[u\left(Y_{\sigma_{\varepsilon}(x)}\right)+\int_{0}^{\sigma_{\varepsilon}(x)} g\left(Y_{s}\right) d s\right]
$$

Hint: First show that $\tau_{G}=\tau_{G} \circ \vartheta_{\sigma_{\varepsilon}(x)}+\sigma_{\varepsilon}(x)$. Then compute $u(x)$ by conditioning on $\mathcal{F}_{\sigma_{\varepsilon}(x)}$ and using the strong Markov property.

Solution 7.2 We first observe that

$$
\tau_{G}=\inf \left\{t \geq 0: Y_{t} \in G^{c}\right\}
$$

So if G is open, G^{c} is closed and thus one can show that τ_{G} is a \mathbb{Y}-stopping time. Fix $\varepsilon>0$ and $x \in G$ such that $U_{\varepsilon}(x) \subseteq G$. Then $\sigma_{\varepsilon}(x) \leq \tau_{G}$. Hence,

$$
\begin{align*}
\tau_{G} \circ \vartheta_{\sigma_{\varepsilon}(x)}+\sigma_{\varepsilon}(x) & =\inf \left\{t \geq 0: Y_{t} \circ \vartheta_{\sigma_{\varepsilon}(x)} \notin G\right\}+\sigma_{\varepsilon}(x) \\
& =\inf \left\{t \geq 0: Y_{t+\sigma_{\varepsilon}(x)} \notin G\right\}+\sigma_{\varepsilon}(x)=\tau_{G} . \tag{1}
\end{align*}
$$

Note that the process $\int_{0}^{*} g\left(Y_{s}\right) d s$ is continuous and adapted. Thus, $\int_{0}^{\sigma_{\varepsilon}(x)} g\left(Y_{s}\right) d s$ is $\mathcal{Y}_{\sigma_{\varepsilon}(x)^{-}}$ measurable. Conditioning on $\mathcal{Y}_{\sigma_{\varepsilon}(x)}$ yields

$$
\begin{equation*}
u(x)=\mathbb{E}_{x}\left[\int_{0}^{\tau_{G}} g\left(Y_{s}\right) d s\right]=\mathbb{E}_{x}\left[\int_{0}^{\sigma_{\varepsilon}(x)} g\left(Y_{s}\right) d s+\mathbb{E}_{x}\left[\int_{\sigma_{\varepsilon}(x)}^{\tau_{G}} g\left(Y_{s}\right) d s \mid \mathcal{Y}_{\sigma_{\varepsilon}(x)}\right]\right] \tag{2}
\end{equation*}
$$

To compute the conditional expectation on the right-hand side in (2), using (1) we note that

$$
\begin{equation*}
\int_{\sigma_{\varepsilon}(x)}^{\tau_{G}} g\left(Y_{s}\right) d s=\int_{0}^{\tau_{G}-\sigma_{\varepsilon}(x)} g\left(Y_{s+\sigma_{\varepsilon}(x)}\right) d s=\left(\int_{0}^{\tau_{G}} g\left(Y_{s}\right) d s\right) \circ \vartheta_{\sigma_{\varepsilon}(x)} \tag{3}
\end{equation*}
$$

The strong Markov property and (3) then give that

$$
\begin{align*}
\mathbb{E}_{x}\left[\int_{\sigma_{\varepsilon}(x)}^{\tau_{G}} g\left(Y_{s}\right) d s \mid \mathcal{Y}_{\sigma_{\varepsilon}(x)}\right] & =\mathbb{E}_{x}\left[\left(\int_{0}^{\tau_{G}} g\left(Y_{s}\right) d s\right) \circ \vartheta_{\sigma_{\varepsilon}(x)} \mid \mathcal{Y}_{\sigma_{\varepsilon}(x)}\right] \\
& =\mathbb{E}_{Y_{\sigma_{\varepsilon}(x)}}\left[\int_{0}^{\tau_{G}} g\left(Y_{s}\right) d s\right]=u\left(Y_{\sigma_{\varepsilon}(x)}\right), \quad \mathbb{P}_{x} \text {-a.s. } \tag{4}
\end{align*}
$$

Finally, inserting (4) into (2) yields the desired result.

Exercise 7.3 Assume we have a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$ satisfying the usual conditions.
(a) Let $M \in \mathcal{M}_{0, \text { loc }}^{c}$. Prove that $M \in \mathcal{H}_{0}^{2, c}$ if and only if $E\left[\langle M\rangle_{\infty}\right]<\infty$, and that in this case $\|M\|_{\mathcal{H}^{2}}^{2}=E\left[\langle M\rangle_{\infty}\right]$.
(b) An optional process X is said to be of class (DL) if for all $a>0$, the family

$$
\mathfrak{X}_{a}:=\left\{X_{\tau}: \tau \text { stopping time, } \tau \leq a P \text {-a.s. }\right\}
$$

is uniformly integrable. Show that a local martingale null at 0 is a (true) martingale null at 0 if and only if it is of class (DL).
Remarks:

- As a consequence, we obtain that a local martingale M null at 0 and with integrable supremum, i.e. $M_{t}^{*}:=\sup _{0 \leq s \leq t}\left|M_{s}\right| \in L^{1}(P)$ for all $t \geq 0$, is a true martingale.
- There exist local martingales null at 0 which are uniformly integrable (i.e. the family $\left\{M_{t}: t \geq 0\right\}$ is uniformly integrable), but are not true martingales.

Solution 7.3

(a) For $M \in \mathcal{M}_{0, \text { loc }}^{c}$, let $\left(\tau_{n}\right)_{n \in \mathbb{N}}$ be a localizing sequence of stopping times for M such that $\left(M^{2}-\langle M\rangle\right)^{\tau_{n}} \in \mathcal{M}_{0}^{c}$. We then have that

$$
\begin{equation*}
E\left[M_{\tau_{n} \wedge t}^{2}\right]=E\left[\langle M\rangle_{\tau_{n} \wedge t}\right], \quad \text { for each } n \in \mathbb{N}, t \geq 0 \tag{5}
\end{equation*}
$$

We show the first implication. Let $M \in \mathcal{H}_{0}^{2, c}$; then by the martingale convergence theorem, $M_{t} \rightarrow M_{\infty} \in L^{2}$ a.s. and in L^{2}. Moreover, Doob's inequality gives $M_{\infty}^{*}=\sup _{t \geq 0}\left|M_{t}\right| \in L^{2}$. We can therefore apply the dominated convergence theorem on the left-hand side of (5) for $n \rightarrow \infty$. On the other hand, $\langle M\rangle$ is increasing, so that the monotone convergence theorem applied on the right-hand side of (5) for $n \rightarrow \infty$ gives

$$
E\left[M_{t}^{2}\right]=E\left[\langle M\rangle_{t}\right] \quad \forall t \geq 0
$$

By applying the dominated and the monotone convergence theorem again for $t \rightarrow \infty$, we conclude that

$$
E\left[M_{\infty}^{2}\right]=E\left[\langle M\rangle_{\infty}\right]<\infty
$$

Conversely, assume that $E\left[\langle M\rangle_{\infty}\right]<\infty$. By using (5) and the fact that $\langle M\rangle$ is increasing, we obtain that

$$
\begin{equation*}
E\left[M_{\tau_{n} \wedge t}^{2}\right]=E\left[\langle M\rangle_{\tau_{n} \wedge t}\right] \leq E\left[\langle M\rangle_{\infty}\right]=: K<\infty \tag{6}
\end{equation*}
$$

By applying Fatou's lemma to (6), we obtain that

$$
E\left[M_{t}^{2}\right] \leq \liminf _{n \rightarrow \infty} E\left[M_{\tau_{n} \wedge t}^{2}\right] \leq K<\infty
$$

so that M is bounded in L^{2}. Moreover, by $(6),\left(M_{\tau_{n} \wedge t}\right)_{n \in \mathbb{N}}$ is bounded in L^{2} and hence uniformly integrable. Next, we want to pass to the limit in the equality

$$
E\left[M_{\tau_{n} \wedge t} \mid \mathcal{F}_{s}\right]=M_{\tau_{n} \wedge s} \quad \forall n \in \mathbb{N}
$$

To do that, let $A \in \mathcal{F}_{s}$ and note that $E\left[M_{\tau_{n} \wedge s} \mathbb{1}_{A}\right] \rightarrow E\left[M_{s} \mathbb{1}_{A}\right]$ as $n \rightarrow \infty$ by the dominated convergence theorem, and likewise $E\left[M_{\tau_{n} \wedge t} \mathbb{1}_{A}\right] \rightarrow E\left[M_{t} \mathbb{1}_{A}\right]$ as $n \rightarrow \infty$. Therefore, we obtain that $E\left[M_{t} \mid \mathcal{F}_{s}\right]=M_{s}$, so that M is a martingale, and hence in $\mathcal{H}_{0}^{2, c}$.
(b) Let M be a true martingale and fix $a>0$. Then the stopping theorem implies

$$
M_{\tau}=E\left[M_{a} \mid \mathcal{F}_{\tau}\right]
$$

for all stopping times τ with $\tau \leq a P$-a.s. Since $M_{a} \in L^{1}$, we then obtain that \mathfrak{X}_{a} is uniformly integrable. More specifically, for any $X \in L^{1}$, if holds that $\{E[X \mid \mathcal{G}]: \mathcal{G} \subseteq \mathcal{F}$ a σ-algebra $\}$ is uniformly integrable. One proof is as follows: by the de la Vallée-Poussin theorem, since $X \in L^{1}$ and so the family $\{X\}$ is uniformly integrable, there exists a non-negative increasing convex function φ with $\lim _{x \rightarrow \infty} \varphi(x) / x=\infty$ such that $E[\varphi(|X|)]=C<\infty$. By Jensen's inequality, for any σ-algebra $\mathcal{G} \subseteq \mathcal{F}$,

$$
E[\varphi(|E[X \mid \mathcal{G}]|)] \leq E[E[\varphi(|X|) \mid \mathcal{G}]]=E[\varphi(|X|)] \leq C
$$

Therefore by de la Vallée-Poussin theorem again, we have that $\{E[X \mid \mathcal{G}]: \mathcal{G} \subseteq F$ a σ-algebra $\}$ is uniformly integrable. In particular, the subfamily $\left\{M_{\tau}=E\left[M_{a} \mid \mathcal{F}_{\tau}\right]: \tau \leq a\right.$ a stopping time $\}$ is uniformly integrable.
Conversely, assume we have a local martingale M of class (DL), and let $\left(\tau_{n}\right)_{n \in \mathbb{N}}$ be a localizing sequence. Since \mathfrak{X}_{t} is uniformly integrable for all $t \geq 0$, we obtain that $\left\{M_{\tau_{n} \wedge t}: n \in \mathbb{N}\right\}$ is also uniformly integrable. Therefore, the fact that $M_{\tau_{n} \wedge t} \xrightarrow{n \rightarrow \infty} M_{t} P$-a.s. implies that

$$
M_{\tau_{n} \wedge t} \xrightarrow{n \rightarrow \infty} M_{t} \text { in } L^{1}
$$

and also $M_{t} \in L^{1}$. As in (a), we can then pass to the limit in the equality $E\left[M_{\tau_{n} \wedge t} \mid \mathcal{F}_{s}\right]=$ $M_{\tau_{n} \wedge s}$, obtaining that $E\left[M_{t} \mid \mathcal{F}_{s}\right]=M_{s}$, so that M is a martingale.

Exercise 7.4 For any function $f:[0, \infty) \rightarrow \mathbb{R}$ with $f(0)=0$, we define its total variation (or 1 -variation) $|f|:[0, \infty) \rightarrow[0, \infty]$ by

$$
\begin{aligned}
|f|(t) & :=\sup \left\{\sum_{t_{i} \in \Pi}\left|f\left(t_{i+1}\right)-f\left(t_{i}\right)\right|: \Pi \text { is a partition of }[0, t]\right\} \\
& =\sup \left\{\sum_{t_{i} \in \Pi}\left|f\left(t_{i+1} \wedge t\right)-f\left(t_{i} \wedge t\right)\right|: \Pi \text { is a partition of }[0, \infty)\right\}
\end{aligned}
$$

We say that f has finite variation (FV) if $|f|(t)<\infty$ for all $t \geq 0$.
(a) Show that f has finite variation if and only if there exist two non-decreasing functions $f_{1}, f_{2}:[0, \infty) \rightarrow \mathbb{R}$ with $f_{1}(0)=f_{2}(0)=0$ such that $f=f_{1}-f_{2}$.
If so, find the minimal such functions f_{1} and f_{2}, in the sense that $\tilde{f}_{1} \geq f_{1}$ and $\tilde{f}_{2} \geq f_{2}$ for any other non-decreasing functions $\tilde{f}_{1}, \tilde{f}_{2}$ with $\tilde{f}_{1}(0)=\tilde{f}_{2}(0)=0$ such that $f=\tilde{f}_{1}-\tilde{f}_{2}$.
Hint: Start by showing that $|f|(t)-|f|(s) \geq|f(t)-f(s)|$ for $0 \leq s \leq t$.
(b) Show that if f is right-continuous and has finite variation, then $|f|$ is right-continuous.

Using the Carathéodory extension theorem, one can show that for any non-decreasing rightcontinuous function \tilde{f}, there exists a unique positive measure $\mu_{\tilde{f}}$ on $\left(\mathbb{R}_{+}, \mathcal{B}\left(\mathbb{R}_{+}\right)\right)$such that $\mu_{\tilde{f}}((0, t])=\tilde{f}(t)-\tilde{f}(0)$ for all $t \geq 0$.
(c) Let f be right-continuous with finite variation with $f(0)=0$ and $g:[0, \infty) \rightarrow \mathbb{R}$ such that

$$
\int_{0}^{\infty}|g(s)| \mu_{|f|}(d s)<\infty
$$

Let f_{1}, f_{2} be the minimal functions defined in (a). Show that

$$
\int_{0}^{\infty}|g(s)| d \mu_{f_{1}}(s)<\infty, \quad \int_{0}^{\infty}|g(s)| d \mu_{f_{2}}(s)<\infty
$$

so that

$$
\int g(s) d f(s):=\int g(s) d \mu_{f_{1}}(s)-\int g(s) d \mu_{f_{2}}(s)
$$

is well defined.

Remark: If f is of finite variation and right-continuous, a function g is f-integrable in the Lebesgue-Stieltjes sense if g satisfies $\int_{0}^{\infty}|g(s)| \mu_{|f|}(d s)<\infty$. In that case, we define the Lebesgue-Stieltjes integral to be $\int g(s) d f(s)$.

Solution 7.4

(a) For the "if" direction, let $f=f_{1}-f_{2}$, where f_{1} and f_{2} are non-decreasing. Then we have for any $t \geq 0$ and any partition Π of $[0, t]$ that

$$
\begin{aligned}
\sum_{t_{i} \in \Pi}\left|f\left(t_{i+1}\right)-f\left(t_{i}\right)\right| & =\sum_{t_{i} \in \Pi}\left|\left(f_{1}\left(t_{i+1}\right)-f_{2}\left(t_{i+1}\right)\right)-\left(f_{1}\left(t_{i}\right)-f_{2}\left(t_{i}\right)\right)\right| \\
& \leq \sum_{t_{i} \in \Pi}\left|f_{1}\left(t_{i+1}\right)-f_{1}\left(t_{i}\right)\right|+\sum_{t_{i} \in \Pi}\left|f_{2}\left(t_{i+1}\right)-f_{2}\left(t_{i}\right)\right| \\
& \leq f_{1}(t)+f_{2}(t)
\end{aligned}
$$

Thus,

$$
|f|(t)=\sup _{\Pi_{[0, t]}} \sum_{t_{i} \in \Pi}\left|f\left(t_{i+1}\right)-f\left(t_{i}\right)\right| \leq f_{1}(t)+f_{2}(t)<\infty \quad \text { for every } t \geq 0
$$

For the "only if" direction, let $f:[0, \infty) \rightarrow \mathbb{R}$ have finite variation. Define

$$
f_{1}(t):=\frac{|f|(t)+f(t)}{2} \quad \text { and } \quad f_{2}(t):=\frac{|f|(t)-f(t)}{2}
$$

We claim that both f_{1}, f_{2} are non-decreasing. To show that, fix $0 \leq s<t$ and denote by Π_{I} the set of partitions of an interval I, where I can be any of $[0, s],[0, t]$ or $[s, t]$. Then,

$$
\begin{aligned}
|f|(s) & =\sup _{\Pi_{[0, s]}} \sum_{t_{i} \in \Pi}\left|f\left(t_{i+1}\right)-f\left(t_{i}\right)\right| \\
& =\sup _{\Pi_{[0, s]}} \sum_{t_{i} \in \Pi}\left|f\left(t_{i+1}\right)-f\left(t_{i}\right)\right|+|f(t)-f(s)|-|f(t)-f(s)| \\
& \leq \sup _{\Pi_{[0, s]}} \sum_{t_{i} \in \Pi}\left|f\left(t_{i+1}\right)-f\left(t_{i}\right)\right|+\sup _{\Pi_{[s, t]}} \sum_{t_{i} \in \Pi}\left|f\left(t_{i+1}\right)-f\left(t_{i}\right)\right|-|f(t)-f(s)| \\
& \leq \sup _{\Pi_{[0, t]}} \sum_{t_{i} \in \Pi}\left|f\left(t_{i+1}\right)-f\left(t_{i}\right)\right|-|f(t)-f(s)| \\
& =|f|(t)-|f(t)-f(s)| .
\end{aligned}
$$

So we conclude that $|f|$ is non-decreasing with $|f|(t)-|f|(s) \geq|f(t)-f(s)|$. It follows from this inequality that f_{1} and f_{2} are non-decreasing, and $f=f_{1}-f_{2}$ holds by construction.

We now show that this choice of f_{1} and f_{2} is minimal. Consider any other \tilde{f}_{1} and \tilde{f}_{2}. Note that the bound $|f(t)| \leq \tilde{f}_{1}(t)+\tilde{f}_{2}(t)$ holds by the same argument as for the "if" statement. From the definition of f_{1}, f_{2} and as $\tilde{f}_{1}(0)=\tilde{f}_{2}(0)=0$,

$$
\begin{aligned}
& f_{1}(t)=\frac{|f|(t)+f(t)}{2} \leq \frac{\tilde{f}_{1}(t)+\tilde{f}_{2}(t)+\tilde{f}_{1}(t)-\tilde{f}_{2}(t)}{2}=\tilde{f}_{1}(t) \\
& f_{2}(t)=\frac{|f|(t)-f(t)}{2} \leq \frac{\tilde{f}_{1}(t)+\tilde{f}_{2}(t)-\left(\tilde{f}_{1}(t)-\tilde{f}_{2}(t)\right)}{2}=\tilde{f}_{2}(t)
\end{aligned}
$$

as we wanted.
(b) Define $\left(\Delta^{+} g\right)(t)=g(t+)-g(t)=\lim _{u \searrow t} g(u)-g(t)$ for any function $g:[0, \infty) \rightarrow \mathbb{R}$ such that the limit exists. From the equalities $f=f_{1}-f_{2}$ and $|f|=f_{1}+f_{2}$, and noting that f is right-continuous while f_{1}, f_{2}, f are increasing, we obtain that

$$
0=\Delta^{+} f=\Delta^{+} f_{1}-\Delta^{+} f_{2}, \quad \Delta^{+}|f|=\Delta^{+} f_{1}+\Delta^{+} f_{2}=2 \Delta^{+} f_{1}
$$

We want to show that $\left(\Delta^{+}|f|\right)(t)=0$ for all $t \geq 0$. Fix some $t_{0} \geq 0$ and consider the functions $\tilde{f}_{1}(t)=f_{1}(t)-\left(\Delta^{+} f_{1}\right)\left(t_{0}\right) \mathbb{1}_{\left\{t>t_{0}\right\}}$ and $\tilde{f}_{2}(t)=f_{2}(t)-\left(\Delta^{+} f_{2}\right)\left(t_{0}\right) \mathbb{1}_{\left\{t>t_{0}\right\}}$. It is clear that $\tilde{f}_{1} \leq f_{1}$ and $\tilde{f}_{2} \leq f_{2}$, with $\tilde{f}_{1}+\tilde{f}_{2}=f$ since $\Delta^{+} f_{1}=\Delta^{+} f_{2}$. Moreover, \tilde{f}_{1} is increasing: this is clear on each interval $\left(t_{0}, \infty\right)$ and $\left[0, t_{0}\right]$, while for $0 \leq s \leq t_{0}<t$, we have that

$$
f_{1}(t) \geq f_{1}\left(t_{0}+\right)=f_{1}\left(t_{0}\right)+\left(\Delta^{+} f_{1}\right)\left(t_{0}\right) \geq f_{1}(s)+\left(\Delta^{+} f_{1}\right)\left(t_{0}\right)
$$

so $\tilde{f}_{1}(t) \geq \tilde{f}_{1}(s)$, and likewise for \tilde{f}_{2}.
However, this contradicts (a) unless $\Delta^{+} f_{1} \equiv \Delta^{+} f_{2} \equiv \Delta^{+}|f| \equiv 0$, as we wanted. This shows that $|f|$ is right-continuous.
(c) Note that f_{1} and f_{2} are non-decreasing and $f=f_{1}-f_{2}$. Moreover, due to (b), both f_{1} and f_{2} are right-continuous. Let $\mu_{f_{1}}$ and $\mu_{f_{2}}$ be the corresponding measures. Since $\mu_{f_{i}}([0, t])=f_{i}(t) \leq|f|(t)=\mu_{|f|}([0, t])$ for every $t \geq 0$, we conclude that $\mu_{f_{i}} \leq \mu_{|f|}$ on $\mathcal{B}([0, \infty))$ for $i=1,2$. Thus, we see by a monotone class argument that

$$
\int_{0}^{\infty}|g(s)| \mu_{f_{i}}(d s) \leq \int_{0}^{\infty}|g(s)| \mu_{|f|}(d s)
$$

for all measurable functions g and $i=1,2$, and therefore $\int_{0}^{\infty}|g(s)| \mu_{f_{1}}(d s), \int_{0}^{\infty}|g(s)| \mu_{f_{2}}(d s)$ are both finite whenever $\int_{0}^{\infty}|g(s)| \mu_{|f|}(d s)$ is.
Therefore,

$$
\int_{0}^{\infty} g(s) \mu_{f_{1}}(d s)-\int_{0}^{\infty} g(s) \mu_{f_{2}}(d s)
$$

is well defined.
Remark: One can show that the equality

$$
\int_{0}^{\infty} g(s) \mu_{\tilde{f}_{1}}(d s)-\int_{0}^{\infty} g(s) \mu_{\tilde{f}_{2}}(d s)=\int_{0}^{\infty} g(s) d f(s)
$$

holds independently of the choice of $\tilde{f}_{1}, \tilde{f}_{2}$ satisfying the conditions in (a), not just the minimal f_{1}, f_{2}, as long as the integrability condition $\int_{0}^{\infty} g(s) \mu_{\tilde{f}_{1}+\tilde{f}_{2}}(d s)<\infty$ is satisfied. For instance, this is helpful in showing that $\int_{0}^{\infty} g(s) d f(s)$ is linear in f.

