Brownian Motion and Stochastic Calculus

Exercise sheet 7

Exercise 7.1 Let $(W_t)_{t\geq 0}$ be a 2-dimensional Brownian motion on (Ω, \mathcal{F}, P) started at 0 and $C \neq \emptyset$ an open cone in \mathbb{R}^2 , i.e. C is an open set and for every $x \in C$, we have $\lambda x \in C$ for all $\lambda > 0$. Note that 0 need not belong to C. Consider the hitting time T_C^W of C, i.e.

$$T_C^W := \inf \{t > 0 : W_t \in C\}.$$

Show that $T_C^W = 0$ *P*-a.s.

Solution 7.1 Let $\mathbb{P}_0 = P \circ W^{-1}$ be Wiener measure on $C([0,\infty);\mathbb{R})$ and $(Y_t)_{t\geq 0}$ the coordinate process. Define

$$T_C^Y := \inf\{t > 0 : Y_t \in C\}.$$

We first show that $\{T_C^Y = 0\} \in \mathcal{Y}_{0+}^0 = \mathcal{Y}_0$. Indeed, using that C is open, this follows directly from the identity

$$\left\{T_C^Y = 0\right\} = \bigcap_{n=1}^{\infty} \left(\bigcup_{r \in (0, \frac{1}{n}] \cap \mathbb{Q}} \{Y_r \in C\}\right) \in \mathcal{Y}_0,$$

since $B_n = \bigcup_{r \in (0, \frac{1}{n}] \cap \mathbb{Q}} \{Y_r \in C\} \in \mathcal{Y}_{1/n}^0$ and $B_1 \supseteq B_2 \supseteq \cdots$. Recall the scaling property of Brownian motion, i.e. that for any $t \ge 0$,

$$Y_t \stackrel{(d)}{=} \sqrt{t} Y_1$$

under \mathbb{P}_0 . Using this property and that C is a cone, we obtain for every t > 0 that

$$\mathbb{P}_0[T_C^Y \le t] \ge \mathbb{P}_0[Y_t \in C] = \mathbb{P}_0[\sqrt{t}Y_1 \in C] = \mathbb{P}_0[Y_1 \in C] > 0,$$

where the last inequality holds true since C has strictly positive Lebesgue measure and Y_1 is bivariate normally distributed. Thus we obtain that

$$\mathbb{P}_0[T_C^Y = 0] = \lim_{t \to 0} \mathbb{P}_0[T_C^Y \le t] \ge \mathbb{P}_0[Y_1 \in C] > 0$$

and therefore, by the Blumenthal 0-1 law, $\mathbb{P}_0[T_C^Y = 0] = 1$. Since T_C^W has the same law under P as T_C^Y under \mathbb{P}_0 , we conclude that

$$P[T_C^W = 0] = \mathbb{P}_0[T_C^Y = 0] = 1.$$

Exercise 7.2 Let $\Omega = C([0,\infty); \mathbb{R}^d)$ and $Y = (Y_t)_{t \ge 0}$ denote the coordinate process. For each $x \in \mathbb{R}^d$, let \mathbb{P}_x be the unique probability measure on $(\Omega, \mathcal{Y}^0_{\infty})$ under which Y is a (*d*-dimensional) Brownian motion started at x. Moreover, for any open set $A \subseteq \mathbb{R}^d$, we denote by

$$\tau_A := \inf\{t \ge 0 : Y_t \notin A\}$$

the first exit time of the Brownian motion Y from the set A.

Fix an open set $G \subseteq \mathbb{R}^d$ such that $\mathbb{E}_x[\tau_G] < \infty$ for all $x \in G$, a bounded Borel function $g : \mathbb{R}^d \to \mathbb{R}$, and define the function $u : G \to \mathbb{R}$ by

$$u(y) := \mathbb{E}_y \left[\int_0^{\tau_G} g(Y_s) \, ds \right].$$

Moreover, for any $\varepsilon > 0$ and $x \in \mathbb{R}^d$, we let $U_{\varepsilon}(x) := \{y : |y - x| < \varepsilon\}$ denote the open ε -ball around x and set $\sigma_{\varepsilon}(x) := \tau_{U_{\varepsilon}(x)}$.

Fix $\varepsilon > 0$ and $x \in G$ such that $U_{\varepsilon}(x) \subseteq G$. Show that

$$u(x) = \mathbb{E}_x \left[u\left(Y_{\sigma_{\varepsilon}(x)}\right) + \int_0^{\sigma_{\varepsilon}(x)} g(Y_s) \, ds \right].$$

Hint: First show that $\tau_G = \tau_G \circ \vartheta_{\sigma_{\varepsilon}(x)} + \sigma_{\varepsilon}(x)$. Then compute u(x) by conditioning on $\mathcal{F}_{\sigma_{\varepsilon}(x)}$ and using the strong Markov property.

Solution 7.2 We first observe that

$$\tau_G = \inf \left\{ t \ge 0 : Y_t \in G^c \right\}.$$

So if G is open, G^c is closed and thus one can show that τ_G is a \mathbb{Y} -stopping time. Fix $\varepsilon > 0$ and $x \in G$ such that $U_{\varepsilon}(x) \subseteq G$. Then $\sigma_{\varepsilon}(x) \leq \tau_G$. Hence,

$$\tau_G \circ \vartheta_{\sigma_{\varepsilon}(x)} + \sigma_{\varepsilon}(x) = \inf\{t \ge 0 : Y_t \circ \vartheta_{\sigma_{\varepsilon}(x)} \notin G\} + \sigma_{\varepsilon}(x)$$
$$= \inf\{t \ge 0 : Y_{t+\sigma_{\varepsilon}(x)} \notin G\} + \sigma_{\varepsilon}(x) = \tau_G. \tag{1}$$

Note that the process $\int_0^{\cdot} g(Y_s) ds$ is continuous and adapted. Thus, $\int_0^{\sigma_{\varepsilon}(x)} g(Y_s) ds$ is $\mathcal{Y}_{\sigma_{\varepsilon}(x)}$ -measurable. Conditioning on $\mathcal{Y}_{\sigma_{\varepsilon}(x)}$ yields

$$u(x) = \mathbb{E}_x \left[\int_0^{\tau_G} g(Y_s) \, ds \right] = \mathbb{E}_x \left[\int_0^{\sigma_\varepsilon(x)} g(Y_s) \, ds + \mathbb{E}_x \left[\int_{\sigma_\varepsilon(x)}^{\tau_G} g(Y_s) \, ds \, \Big| \, \mathcal{Y}_{\sigma_\varepsilon(x)} \right] \right].$$
(2)

To compute the conditional expectation on the right-hand side in (2), using (1) we note that

$$\int_{\sigma_{\varepsilon}(x)}^{\tau_{G}} g(Y_{s}) \, ds = \int_{0}^{\tau_{G} - \sigma_{\varepsilon}(x)} g(Y_{s + \sigma_{\varepsilon}(x)}) \, ds = \left(\int_{0}^{\tau_{G}} g(Y_{s}) \, ds\right) \circ \vartheta_{\sigma_{\varepsilon}(x)}. \tag{3}$$

The strong Markov property and (3) then give that

$$\mathbb{E}_{x}\left[\int_{\sigma_{\varepsilon}(x)}^{\tau_{G}} g(Y_{s}) ds \left| \mathcal{Y}_{\sigma_{\varepsilon}(x)} \right] = \mathbb{E}_{x}\left[\left(\int_{0}^{\tau_{G}} g(Y_{s}) ds \right) \circ \vartheta_{\sigma_{\varepsilon}(x)} \left| \mathcal{Y}_{\sigma_{\varepsilon}(x)} \right] \right]$$
$$= \mathbb{E}_{Y_{\sigma_{\varepsilon}(x)}} \left[\int_{0}^{\tau_{G}} g(Y_{s}) ds \right] = u(Y_{\sigma_{\varepsilon}(x)}), \quad \mathbb{P}_{x}\text{-a.s.}$$
(4)

Finally, inserting (4) into (2) yields the desired result.

- (a) Let $M \in \mathcal{M}_{0,\text{loc}}^c$. Prove that $M \in \mathcal{H}_0^{2,c}$ if and only if $E[\langle M \rangle_{\infty}] < \infty$, and that in this case $\|M\|_{\mathcal{H}^2}^2 = E[\langle M \rangle_{\infty}].$
- (b) An optional process X is said to be of class (DL) if for all a > 0, the family

 $\mathfrak{X}_a := \{ X_\tau : \tau \text{ stopping time, } \tau \le a \text{ } P\text{-a.s.} \}$

is uniformly integrable. Show that a local martingale null at 0 is a (true) martingale null at 0 if and only if it is of class (DL).

Remarks:

- As a consequence, we obtain that a local martingale M null at 0 and with integrable supremum, i.e. $M_t^* := \sup_{0 \le s \le t} |M_s| \in L^1(P)$ for all $t \ge 0$, is a true martingale.
- There exist local martingales null at 0 which are uniformly integrable (i.e. the family $\{M_t : t \ge 0\}$ is uniformly integrable), but are not true martingales.

Solution 7.3

(a) For $M \in \mathcal{M}_{0,\text{loc}}^c$, let $(\tau_n)_{n \in \mathbb{N}}$ be a localizing sequence of stopping times for M such that $(M^2 - \langle M \rangle)^{\tau_n} \in \mathcal{M}_0^c$. We then have that

$$E[M_{\tau_n \wedge t}^2] = E[\langle M \rangle_{\tau_n \wedge t}], \quad \text{for each } n \in \mathbb{N}, t \ge 0.$$
(5)

We show the first implication. Let $M \in \mathcal{H}_0^{2,c}$; then by the martingale convergence theorem, $M_t \to M_\infty \in L^2$ a.s. and in L^2 . Moreover, Doob's inequality gives $M_\infty^* = \sup_{t \ge 0} |M_t| \in L^2$. We can therefore apply the dominated convergence theorem on the left-hand side of (5) for $n \to \infty$. On the other hand, $\langle M \rangle$ is increasing, so that the monotone convergence theorem applied on the right-hand side of (5) for $n \to \infty$ gives

$$E[M_t^2] = E[\langle M \rangle_t] \quad \forall \ t \ge 0.$$

By applying the dominated and the monotone convergence theorem again for $t \to \infty$, we conclude that

$$E[M_{\infty}^2] = E[\langle M \rangle_{\infty}] < \infty.$$

Conversely, assume that $E[\langle M \rangle_{\infty}] < \infty$. By using (5) and the fact that $\langle M \rangle$ is increasing, we obtain that

$$E[M_{\tau_n \wedge t}^2] = E[\langle M \rangle_{\tau_n \wedge t}] \le E[\langle M \rangle_{\infty}] =: K < \infty.$$
(6)

By applying Fatou's lemma to (6), we obtain that

$$E[M_t^2] \le \liminf_{n \to \infty} E[M_{\tau_n \wedge t}^2] \le K < \infty,$$

so that M is bounded in L^2 . Moreover, by (6), $(M_{\tau_n \wedge t})_{n \in \mathbb{N}}$ is bounded in L^2 and hence uniformly integrable. Next, we want to pass to the limit in the equality

$$E[M_{\tau_n \wedge t} | \mathcal{F}_s] = M_{\tau_n \wedge s} \quad \forall \ n \in \mathbb{N}.$$

To do that, let $A \in \mathcal{F}_s$ and note that $E[M_{\tau_n \wedge s} \mathbb{1}_A] \to E[M_s \mathbb{1}_A]$ as $n \to \infty$ by the dominated convergence theorem, and likewise $E[M_{\tau_n \wedge t} \mathbb{1}_A] \to E[M_t \mathbb{1}_A]$ as $n \to \infty$. Therefore, we obtain that $E[M_t|\mathcal{F}_s] = M_s$, so that M is a martingale, and hence in $\mathcal{H}_0^{2,c}$.

(b) Let M be a true martingale and fix a > 0. Then the stopping theorem implies

$$M_{\tau} = E[M_a | \mathcal{F}_{\tau}]$$

for all stopping times τ with $\tau \leq a P$ -a.s. Since $M_a \in L^1$, we then obtain that \mathfrak{X}_a is uniformly integrable. More specifically, for any $X \in L^1$, if holds that $\{E[X \mid \mathcal{G}] : \mathcal{G} \subseteq \mathcal{F} \text{ a } \sigma$ -algebra $\}$ is uniformly integrable. One proof is as follows: by the de la Vallée–Poussin theorem, since $X \in L^1$ and so the family $\{X\}$ is uniformly integrable, there exists a non-negative increasing convex function φ with $\lim_{x\to\infty} \varphi(x)/x = \infty$ such that $E[\varphi(|X|)] = C < \infty$. By Jensen's inequality, for any σ -algebra $\mathcal{G} \subseteq \mathcal{F}$,

$$E\Big[\varphi\big(\big|E[X \mid \mathcal{G}]\big|\Big)\Big] \le E\Big[E[\varphi(|X|) \mid \mathcal{G}]\Big] = E\Big[\varphi(|X|)\Big] \le C.$$

Therefore by de la Vallée–Poussin theorem again, we have that $\{E[X \mid \mathcal{G}] : \mathcal{G} \subseteq F \text{ a } \sigma\text{-algebra}\}$ is uniformly integrable. In particular, the subfamily $\{M_{\tau} = E[M_a \mid \mathcal{F}_{\tau}] : \tau \leq a \text{ a stopping time}\}$ is uniformly integrable.

Conversely, assume we have a local martingale M of class (DL), and let $(\tau_n)_{n\in\mathbb{N}}$ be a localizing sequence. Since \mathfrak{X}_t is uniformly integrable for all $t \geq 0$, we obtain that $\{M_{\tau_n \wedge t} : n \in \mathbb{N}\}$ is also uniformly integrable. Therefore, the fact that $M_{\tau_n \wedge t} \xrightarrow{n \to \infty} M_t$ *P*-a.s. implies that

$$M_{\tau_n \wedge t} \stackrel{n \to \infty}{\longrightarrow} M_t \text{ in } L^1$$

and also $M_t \in L^1$. As in (a), we can then pass to the limit in the equality $E[M_{\tau_n \wedge t} | \mathcal{F}_s] = M_{\tau_n \wedge s}$, obtaining that $E[M_t | \mathcal{F}_s] = M_s$, so that M is a martingale.

Exercise 7.4 For any function $f : [0, \infty) \to \mathbb{R}$ with f(0) = 0, we define its total variation (or 1-variation) $|f| : [0, \infty) \to [0, \infty]$ by

$$\begin{aligned} |f|(t) &:= \sup \left\{ \sum_{t_i \in \Pi} \left| f(t_{i+1}) - f(t_i) \right| : \Pi \text{ is a partition of } [0, t] \right\} \\ &= \sup \left\{ \sum_{t_i \in \Pi} \left| f(t_{i+1} \wedge t) - f(t_i \wedge t) \right| : \Pi \text{ is a partition of } [0, \infty) \right\}. \end{aligned}$$

We say that f has finite variation (FV) if $|f|(t) < \infty$ for all $t \ge 0$.

- (a) Show that f has finite variation if and only if there exist two non-decreasing functions f₁, f₂: [0,∞) → ℝ with f₁(0) = f₂(0) = 0 such that f = f₁ f₂.
 If so, find the minimal such functions f₁ and f₂, in the sense that f₁ ≥ f₁ and f₂ ≥ f₂ for any other non-decreasing functions f₁, f₂ with f₁(0) = f₂(0) = 0 such that f = f₁ f₂. *Hint:* Start by showing that |f|(t) |f|(s) ≥ |f(t) f(s)| for 0 ≤ s ≤ t.
- (b) Show that if f is right-continuous and has finite variation, then |f| is right-continuous.

Using the Carathéodory extension theorem, one can show that for any non-decreasing rightcontinuous function \tilde{f} , there exists a unique positive measure $\mu_{\tilde{f}}$ on $(\mathbb{R}_+, \mathcal{B}(\mathbb{R}_+))$ such that $\mu_{\tilde{f}}((0,t]) = \tilde{f}(t) - \tilde{f}(0)$ for all $t \ge 0$.

(c) Let f be right-continuous with finite variation with f(0) = 0 and $g: [0, \infty) \to \mathbb{R}$ such that

$$\int_0^\infty |g(s)|\,\mu_{|f|}(ds) < \infty$$

Let f_1, f_2 be the minimal functions defined in (a). Show that

$$\int_0^\infty |g(s)| \, d\mu_{f_1}(s) < \infty, \quad \int_0^\infty |g(s)| \, d\mu_{f_2}(s) < \infty,$$

so that

$$\int g(s) \, df(s) := \int g(s) \, d\mu_{f_1}(s) - \int g(s) \, d\mu_{f_2}(s)$$

is well defined.

Remark: If f is of finite variation and right-continuous, a function g is f-integrable in the Lebesgue-Stieltjes sense if g satisfies $\int_0^\infty |g(s)| \,\mu_{|f|}(ds) < \infty$. In that case, we define the Lebesgue-Stieltjes integral to be $\int g(s) \, df(s)$.

Solution 7.4

(a) For the "if" direction, let $f = f_1 - f_2$, where f_1 and f_2 are non-decreasing. Then we have for any $t \ge 0$ and any partition Π of [0, t] that

$$\sum_{t_i \in \Pi} \left| f(t_{i+1}) - f(t_i) \right| = \sum_{t_i \in \Pi} \left| \left(f_1(t_{i+1}) - f_2(t_{i+1}) \right) - \left(f_1(t_i) - f_2(t_i) \right) \right|$$

$$\leq \sum_{t_i \in \Pi} \left| f_1(t_{i+1}) - f_1(t_i) \right| + \sum_{t_i \in \Pi} \left| f_2(t_{i+1}) - f_2(t_i) \right|$$

$$\leq f_1(t) + f_2(t).$$

Thus,

$$|f|(t) = \sup_{\Pi_{[0,t]}} \sum_{t_i \in \Pi} \left| f(t_{i+1}) - f(t_i) \right| \le f_1(t) + f_2(t) < \infty \quad \text{for every } t \ge 0.$$

For the "only if" direction, let $f:[0,\infty) \to \mathbb{R}$ have finite variation. Define

$$f_1(t) := \frac{|f|(t) + f(t)|}{2}$$
 and $f_2(t) := \frac{|f|(t) - f(t)|}{2}$

We claim that both f_1, f_2 are non-decreasing. To show that, fix $0 \le s < t$ and denote by Π_I the set of partitions of an interval I, where I can be any of [0, s], [0, t] or [s, t]. Then,

$$\begin{split} |f|(s) &= \sup_{\Pi_{[0,s]}} \sum_{t_i \in \Pi} \left| f(t_{i+1}) - f(t_i) \right| \\ &= \sup_{\Pi_{[0,s]}} \sum_{t_i \in \Pi} \left| f(t_{i+1}) - f(t_i) \right| + |f(t) - f(s)| - |f(t) - f(s)| \\ &\leq \sup_{\Pi_{[0,s]}} \sum_{t_i \in \Pi} \left| f(t_{i+1}) - f(t_i) \right| + \sup_{\Pi_{[s,t]}} \sum_{t_i \in \Pi} \left| f(t_{i+1}) - f(t_i) \right| - |f(t) - f(s)| \\ &\leq \sup_{\Pi_{[0,t]}} \sum_{t_i \in \Pi} \left| f(t_{i+1}) - f(t_i) \right| - |f(t) - f(s)| \\ &= |f|(t) - |f(t) - f(s)|. \end{split}$$

So we conclude that |f| is non-decreasing with $|f|(t) - |f|(s) \ge |f(t) - f(s)|$. It follows from this inequality that f_1 and f_2 are non-decreasing, and $f = f_1 - f_2$ holds by construction.

We now show that this choice of f_1 and f_2 is minimal. Consider any other \tilde{f}_1 and \tilde{f}_2 . Note that the bound $|f(t)| \leq \tilde{f}_1(t) + \tilde{f}_2(t)$ holds by the same argument as for the "if" statement. From the definition of f_1, f_2 and as $\tilde{f}_1(0) = \tilde{f}_2(0) = 0$,

$$f_1(t) = \frac{|f|(t) + f(t)|}{2} \le \frac{\tilde{f}_1(t) + \tilde{f}_2(t) + \tilde{f}_1(t) - \tilde{f}_2(t)|}{2} = \tilde{f}_1(t),$$

$$f_2(t) = \frac{|f|(t) - f(t)|}{2} \le \frac{\tilde{f}_1(t) + \tilde{f}_2(t) - (\tilde{f}_1(t) - \tilde{f}_2(t))|}{2} = \tilde{f}_2(t),$$

as we wanted.

(b) Define $(\Delta^+ g)(t) = g(t+) - g(t) = \lim_{u \searrow t} g(u) - g(t)$ for any function $g : [0, \infty) \to \mathbb{R}$ such that the limit exists. From the equalities $f = f_1 - f_2$ and $|f| = f_1 + f_2$, and noting that f is right-continuous while f_1, f_2, f are increasing, we obtain that

$$0 = \Delta^{+} f = \Delta^{+} f_{1} - \Delta^{+} f_{2}, \qquad \Delta^{+} |f| = \Delta^{+} f_{1} + \Delta^{+} f_{2} = 2\Delta^{+} f_{1}.$$

We want to show that $(\Delta^+|f|)(t) = 0$ for all $t \ge 0$. Fix some $t_0 \ge 0$ and consider the functions $\tilde{f}_1(t) = f_1(t) - (\Delta^+ f_1)(t_0) \mathbb{1}_{\{t > t_0\}}$ and $\tilde{f}_2(t) = f_2(t) - (\Delta^+ f_2)(t_0) \mathbb{1}_{\{t > t_0\}}$. It is clear that $\tilde{f}_1 \le f_1$ and $\tilde{f}_2 \le f_2$, with $\tilde{f}_1 + \tilde{f}_2 = f$ since $\Delta^+ f_1 = \Delta^+ f_2$. Moreover, \tilde{f}_1 is increasing: this is clear on each interval (t_0, ∞) and $[0, t_0]$, while for $0 \le s \le t_0 < t$, we have that

$$f_1(t) \ge f_1(t_0+) = f_1(t_0) + (\Delta^+ f_1)(t_0) \ge f_1(s) + (\Delta^+ f_1)(t_0)$$

so $\tilde{f}_1(t) \geq \tilde{f}_1(s)$, and likewise for \tilde{f}_2 .

However, this contradicts (a) unless $\Delta^+ f_1 \equiv \Delta^+ f_2 \equiv \Delta^+ |f| \equiv 0$, as we wanted. This shows that |f| is right-continuous.

(c) Note that f_1 and f_2 are non-decreasing and $f = f_1 - f_2$. Moreover, due to (b), both f_1 and f_2 are right-continuous. Let μ_{f_1} and μ_{f_2} be the corresponding measures. Since $\mu_{f_i}([0,t]) = f_i(t) \le |f|(t) = \mu_{|f|}([0,t])$ for every $t \ge 0$, we conclude that $\mu_{f_i} \le \mu_{|f|}$ on $\mathcal{B}([0,\infty))$ for i = 1, 2. Thus, we see by a monotone class argument that

$$\int_0^\infty |g(s)| \, \mu_{f_i}(ds) \le \int_0^\infty |g(s)| \, \mu_{|f|}(ds)$$

for all measurable functions g and i = 1, 2, and therefore $\int_0^\infty |g(s)| \mu_{f_1}(ds), \int_0^\infty |g(s)| \mu_{f_2}(ds)$ are both finite whenever $\int_0^\infty |g(s)| \mu_{|f|}(ds)$ is.

Therefore,

$$\int_0^\infty g(s)\,\mu_{f_1}(ds) - \int_0^\infty g(s)\,\mu_{f_2}(ds)$$

is well defined.

Remark: One can show that the equality

$$\int_0^\infty g(s)\,\mu_{\tilde{f}_1}(ds) - \int_0^\infty g(s)\,\mu_{\tilde{f}_2}(ds) = \int_0^\infty g(s)df(s)$$

holds independently of the choice of \tilde{f}_1, \tilde{f}_2 satisfying the conditions in (a), not just the minimal f_1, f_2 , as long as the integrability condition $\int_0^\infty g(s) \mu_{\tilde{f}_1+\tilde{f}_2}(ds) < \infty$ is satisfied. For instance, this is helpful in showing that $\int_0^\infty g(s) df(s)$ is linear in f.