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Exercise 8.1 Let (Nt) be a Poisson process with rate λ > 0 on (Ω,F ,F, P ).

(a) Find a martingale M and a predictable finite variation process A both null at 0 such that
Nt = Mt +At for all t ≥ 0.

(b) Compute [M ] and 〈M〉 for your choice in (a).

(c) Check by direct calculations that M2 − [M ] is a martingale.

Solution 8.1

(a) This holds with Mt = Nt − λt and At = λt. The equality is immediate, and A is clearly
predictable and has finite variation. To show that M is a martingale, note that it is adapted
and integrable (as E[|Nt|] <∞) with

E[Mt −Ms | Fs] = E[Nt −Ns | Fs]− λ(t− s) = 0,

because Nt −Ns is independent of Fs and has a Poisson distribution with parameter λ(t− s).

(b) Since A is continuous and has finite variation, we have that [A] ≡ [A,M ] ≡ 0. As all jumps
of N are equal to 1, we obtain that

[M ]t = [N ]t =
∑

0<s≤t
(∆Ns)2 =

∑
0<s≤t

∆Ns = Nt.

Since 〈M〉 is predictable, has finite variation and is such that [M ]− 〈M〉 is a martingale, it
follows by the same argument as in (a) that 〈M〉t = λt for each t ≥ 0.

(c) M2 − [M ] is clearly adapted and integrable (as E[N2
t ], E[|Nt|] <∞). Moreover,

E[M2
t −M2

s | Fs] = E[(Mt −Ms)2 | Fs]

as M is a martingale. Using that Mt −Ms = Nt −Ns − λ(t− s) and [M ] = N , we compute

E[(M2
t − [M ]t)− (M2

s − [M ]s) | Fs] = E[(Mt −Ms)2 | Fs]− E[Nt −Ns | Fs]
= Var[Nt −Ns]− E[Nt −Ns]
= 0,

again since Nt − Ns is independent of Fs and has a Poisson distribution with parameter
λ(t− s).
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Exercise 8.2 Let (Mt)t≥0 be a local martingale on (Ω,F ,F, P ), i.e. there exists a sequence of
stopping times (τn) such that τn ↗∞ a.s. and each process Mτn1{τn>0} is a martingale. Suppose
that F satisfies the usual conditions.

Show that ifM0 ∈ L1 andM ≥ 0, i.e. Mt ≥ 0 P -a.s. for all t ≥ 0, thenM is a supermartingale.

Solution 8.2 As M0 ∈ L1, we have that Mτn is a martingale for each n. Indeed, we have
Mτn = Mτn1{τn>0} + Nn, where (Nn

t )t≥0 defined by Nn
t = M01{τn=0} is a martingale (Nn is

clearly adapted, integrable and satisfies the martingale property).
Since τn ↗∞ a.s., Mτn

t = Mτn∧t →Mt a.s. for each t ≥ 0. In particular, Mt is Ft-measurable
so that M is adapted. We also obtain that Mt ∈ L1 by Fatou’s lemma, since

E[|Mt|] = E[Mt] = E
[

lim
n→∞

Mτn∧t

]
≤ lim inf

n→∞
E[Mτn∧t] = E[M0] <∞

by nonnegativity and the martingale property of Mτn . The supermartingale property can be
similarly shown using Fatou’s lemma. Indeed, for every A ∈ Fs,

E[1AMt] ≤ lim inf
n→∞

E[1AMτn∧t]

and therefore E[Mt | Fs] ≤ lim infn→∞E[Mτn∧t | Fs]. Since Mτn is a martingale, we have that
E[Mτn∧t | Fs] = Mτn∧s →Ms a.s., which shows that E[Mt | Fs] ≤Ms, as we wanted.
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Exercise 8.3

(a) For any M ∈ Mc
0,loc, define as usual M∗t := sup

0≤s≤t
|Ms| for t ≥ 0. Prove that for any t ≥ 0

and C,K > 0, we have
P
[
M∗t > C

]
≤ 4K
C2 + P

[
〈M〉t > K

]
.

Hint: Stop 〈M〉 and use the Markov and Doob inequalities.
Remark: This result allows us to control the running supremum ofM in terms of the quadratic
variation of M .

(b) Let M be a right-continuous local martingale null at 0. Show that there exists a localizing
sequence (τn)n∈N such that Mτn is a uniformly integrable martingale for each n.

Solution 8.3

(a) For K > 0, we consider the stopping time σK := inf{t > 0 : 〈M〉t > K}. Since 〈M〉 is
continuous, we have that 〈M〉t ≤ K for t ≤ σK , and therefore

E
[
〈MσK 〉∞

]
= E

[
〈M〉σK

]
≤ K.

Hence, Exercise 7.3 (a) gives that MσK ∈ H2,c
0 . We can therefore apply the Markov and

Doob inequalities (noting that the constant in Doob’s inequality is equal to
( 2

1
)2 = 4), so that

P
[
(MσK )∗t > C

]
≤
E
[
((MσK )∗t )2]

C2 ≤
4E
[
(MσK )2

t

]
C2 =

4E
[
〈MσK 〉t

]
C2 ≤ 4K

C2 .

Now observe that
{MσK

t 6= Mt} ⊆ {σK < t} = {〈M〉t > K},

which finally implies that

P
[
M∗t > C

]
= P

[
M∗t > C, σK ≥ t

]
+ P

[
M∗t > C, σK < t

]
≤ 4K
C2 + P

[
〈M〉t > K

]
.

(b) Since M ∈M0,loc, there exists a localizing sequence (σn)n∈N such that Mσn is a martingale
for each n. Consider the sequence of stopping times τn := σn ∧ n, n ≥ 0, so that τn ↗ ∞.
By construction, τn ↑ ∞ P -a.s. and Mτn = (Mσn)n is a martingale for each n due to
Exercise 4.2 (c). In particular, Mτn

= Mσn
n ∈ L1. Moreover, by the stopping theorem,

Mτn∧t = E[Mτn |Fτn∧t] for every t ≥ 0, which gives uniform integrability ofMτn as in Exercise
7.3(b).
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Exercise 8.4

(a) Let f, g : [0,∞) → R be such that g is right-continuous and has finite variation and f is
g-integrable in the Lebesgue–Stieltjes sense. Show that the function h(t) :=

∫ t
0 f(s) dg(s) is

right-continuous. Moreover, show that if g is continuous, then h is continuous.

(b) Let f : [0,∞)→ R be a function with finite variation. Show that f has left and right limits,
i.e. the limits f(t−) = lims↗t f(s) and f(t+) = limu↘t f(u) exist for t > 0 and t ≥ 0,
respectively.

(c) Let f, g : [0,∞) → R be two right-continuous functions of finite variation. Show the
integration-by-parts formula, i.e. show that for each t > 0,

f(t) g(t)− f(0) g(0) =
∫ t

0
f(s) dg(s) +

∫ t

0
g(s−) df(s) =

∫ t

0
f(s−) dg(s) +

∫ t

0
g(s) df(s).

(d) Show also the formula

f(t) g(t)− f(0) g(0) =
∫ t

0
f(s−) dg(s) +

∫ t

0
g(s−) df(s) +

∑
0<s≤t

∆f(s)∆g(s),

where ∆f(t) = f(t)− f(t−) and ∆g(t) = g(t)− g(t−).

Solution 8.4

(a) By definition of the Lebesgue–Stieltjes integral (see Exercise 7.4) and linearity, we can without
loss of generality assume that g is non-decreasing. Let µg be the Lebesgue–Stieltjes measure
corresponding to g. Let t ≥ 0 and tn ↘ t as n→∞. By the dominated convergence theorem,∫ t

0
f(s) dg(s) =

∫ ∞
0

1[0,t](s) f(s)µg(ds) = lim
n→∞

∫ ∞
0

1[0,tn](s) f(s)µg(ds) = lim
n→∞

∫ tn

0
f(s) dg(s),

which proves the right-continuity of h :=
∫
f dg. Now, assume that g is continuous. Fix any

t > 0 and let tn ↗ t. Then, by the dominated convergence theorem, we have

lim
n→∞

∫ tn

0
f(s) dg(s) = lim

n→∞

∫ ∞
0

1[0,tn](s) f(s)µg(ds)

=
∫ ∞

0
1[0,t)(s) f(s)µg(ds)

=
∫ ∞

0
1[0,t](s) f(s)µg(ds)−

∫
{t}

f(s)µg(ds)

=
∫ t

0
f(s) dg(s)−

∫
{t}

f(s)µg(ds).

Thus, it remains to show that
∫
{t} f µg(ds) = 0. As µg(0, t] = g(t) − g(0), we have that

µg
(
{t}
)

= lims↗t(g(t) − g(s)) = 0 by the continuity of g, and hence
∫
{t} f(s)µg(ds) = 0.

Therefore, we conclude that the continuity of g implies the continuity of h =
∫
f dg.

(b) From Exercise 7.4(a), we can write f = f1− f2, where f1 and f2 are non-decreasing functions.
This means that the limits fi(t−) = sups<t fi(s) and fi(t+) = infu>t fi(u) are well defined
for i = 1, 2. Therefore the limits f(t−) = f1(t−)− f2(t−) and f(t+) = f1(t+)− f2(t+) are
also well defined.
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(c) From the definition of the Lebesgue–Stieltjes integral (see Exercise 7.4), it suffices to prove
the claim for f and g non-decreasing. Let µf and µg be the corresponding Lebesgue–Stieltjes
measures of f and g, respectively. Fix t ≥ 0. From Fubini’s theorem, we obtain that

(
f(t)− f(0)

) (
g(t)− g(0)

)
=
∫ t

0
µf (dr)

∫ t

0
µg(ds) =

∫∫
(0,t]×(0,t]

µf (dr)µg(ds). (1)

We define the domains D1 := {(r, s) : 0 < r ≤ s ≤ t} and D2 := {(r, s) : 0 < s < r ≤ t}. By
definition of D1, D2, as µf ((0, s]) = f(s)− f(0) and µg((0, r)) = g(r−)− g(0), we get∫∫

(0,t]×(0,t]
µf (dr)µg(ds)

=
∫∫

D1

µf (dr)µg(ds) +
∫∫

D2

µf (dr)µg(ds)

=
∫ t

0

(
f(s)− f(0)

)
µg(ds) +

∫ t

0

(
g(r−)− g(0)

)
µf (dr)

=
∫ t

0
f(s) dg(s)− f(0) g(t) + f(0) g(0) +

∫ t

0
g(s−) df(s)− g(0) f(t) + g(0) f(0).

Thus, we obtain the result by plugging into (1). The second formula can be obtained by
symmetry.

(d) For any t ∈ [0,∞), we have that µg({t}) = lims↗t g((s, t]) = g(t) − g(t−) = ∆g(t). In
particular, µg({t}) = ∆g(t) 6= 0 only for countably many values of t. Therefore, we can define
measures µ̃g =

∑
s>0 ∆g(s)δ{s} and µcg = µg − µ̃g, and then µcg({t}) = 0 for all t ≥ 0. Using

that µcg({s : f(s) = f(s−)}) = 0 since the set is countable, we have that∫ t

0
f(s)dg(s) =

∫ t

0
f(s)dµcg(s) +

∫ t

0
f(s)dµ̃g(s)

=
∫ t

0
f(s−)dµcg(s) +

∑
0<s≤t

(f(s−) + ∆f(s))∆g(s)

=
∫ t

0
f(s−)dµg(s) +

∑
0<s≤t

∆f(s)∆g(s),

which shows the result.
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Exercise 8.5 Let (Ω,F , P ) be a probability space and let Z be a random variable which is
symmetric around 0 and not in L1, that is, Z d= −Z and E[Z+] = E[Z−] =∞. As an example, one
can let Z have a Cauchy distribution with density fZ(x) = 1

π(1+x2) , x ∈ R. Consider the discrete
filtration

F0 := {∅,Ω}, F1 := σ(|Z|), F2 := σ(Z)

and the stochastic process (Xi)i=0,1,2 defined by X0 = X1 = 0 and X2 = Z. Show that X is a local
martingale with respect to F, but not a martingale.

Solution 8.5 Since X2 = Z is not integrable, X cannot be a martingale.
To show that X is a local martingale, let τn = 1{|Z|>n} +∞1{|Z|≤n} for n ∈ N. We claim that

each τn is a stopping time, τn ↗∞ a.s. and Xτn is a martingale for each n.
We check that each τn is a stopping time by noting that {τn ≤ 0} = ∅ ∈ F0, while

{τn ≤ 1} = {τn ≤ 2} = {|Z| > n} ∈ F1,

and moreover it is clear that τn ↗∞ since Z is a.s. finite.
Since X is adapted, so is Xτn . For each n, we have that Xτn is integrable as it is bounded by

n, noting that Xτn
2 = Z1{|Z|≤n}. The martingale property is also satisfied since

E[Xτn
2 | F1] = E[Z1{|Z|≤n} | F1] = 1{|Z|≤n}E[Z | F1] = 0,

using for the last equality that E[Z | |Z|] = E[−Z | |Z|] = 0 by symmetry of the distribution of Z.
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