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Exercise sheet 8

Exercise 8.1 Let (IV;) be a Poisson process with rate A > 0 on (9, F,F, P).

(a)

(b)
(c)

Find a martingale M and a predictable finite variation process A both null at 0 such that
Nt:Mt+At foralltZO

Compute [M] and (M) for your choice in (a).

Check by direct calculations that M? — [M] is a martingale.

Solution 8.1

(a)

This holds with M; = N; — At and A; = At. The equality is immediate, and A is clearly
predictable and has finite variation. To show that M is a martingale, note that it is adapted
and integrable (as E[|Ny|] < co) with

E[My — Mg | Fs) = E[N;y — Ng | Fs] = A(t —s) =0,
because Ny — Ny is independent of Fy and has a Poisson distribution with parameter A(t — s).

Since A is continuous and has finite variation, we have that [A] = [A, M] = 0. As all jumps
of N are equal to 1, we obtain that

[M]; = [N]; = Z (AN)? = Z AN, = N.

0<s<t 0<s<t

Since (M) is predictable, has finite variation and is such that [M] — (M) is a martingale, it
follows by the same argument as in (a) that (M); = At for each ¢ > 0.

M? — [M] is clearly adapted and integrable (as E[N?], E[|N;]] < 0o). Moreover,
E[MtQ _Mf | ]:s] = E[(Mt —M3)2 | ]:s]
as M is a martingale. Using that M; — M, = N; — Ny — A(t — s) and [M] = N, we compute

B{(M{ — [M];) — (M — [M],) | F] = B[(M, — M) | Fs] = E[N, — N | F]
= Var[N, — N,] — E[N, — N,
=0,

again since Ny — N; is independent of F; and has a Poisson distribution with parameter
At — s).
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Exercise 8.2 Let (M;);>0 be a local martingale on (Q, F,F, P), i.e. there exists a sequence of
stopping times (7;,) such that 7, / 0o a.s. and each process M7 1. ~) is a martingale. Suppose
that I satisfies the usual conditions.

Show that if My € L' and M > 0, i.e. M; > 0 P-a.s. for all t > 0, then M is a supermartingale.

Solution 8.2 As M, € L', we have that M7 is a martingale for each n. Indeed, we have
M7 = M™1. oy + N", where (N");>0 defined by Nj* = Mol oy is a martingale (N" is
clearly adapted, integrable and satisfies the martingale property).

Since 1, /' o0 a.s., M{™ = M, n+ — M; a.s. for each ¢t > 0. In particular, M; is F;-measurable
so that M is adapted. We also obtain that M, € L' by Fatou’s lemma, since

E[|M,]] = E[M,] = E L}Lnio Mmt] < liminf E[M,, n] = E[M] < 0o

n—oo

by nonnegativity and the martingale property of M™. The supermartingale property can be
similarly shown using Fatou’s lemma. Indeed, for every A € F,

E[14M,] < liminf E[14M;, /]
n—oo

and therefore E[M; | F,] < liminf,, oo E[M; At | Fs]. Since M™ is a martingale, we have that
E[M; at | Fs] = M. rs — Ms a.s., which shows that E[M; | Fs] < Mj, as we wanted.
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Exercise 8.3

(a) For any M € M, ., define as usual M; := sup |M;| for ¢t > 0. Prove that for any ¢t > 0
’ 0<s<t

and C, K > 0, we have
4K
P[M; > C] < Yol + P[(M); > K|.

Hint: Stop (M) and use the Markov and Doob inequalities.

Remark: This result allows us to control the running supremum of M in terms of the quadratic
variation of M.

(b) Let M be a right-continuous local martingale null at 0. Show that there exists a localizing
sequence (7, )nen such that M™ is a uniformly integrable martingale for each n.

Solution 8.3

(a) For K > 0, we consider the stopping time o := inf{t > 0 : (M); > K}. Since (M) is
continuous, we have that (M); < K for t < ok, and therefore

B[ )] = E[(M)o, ] < K.

Hence, Exercise 7.3 (a) gives that Mx € ’Hg’c. We can therefore apply the Markov and
Doob inequalities (noting that the constant in Doob’s inequality is equal to (%)2 =4), so that

E[((M);)?] _ 4E[(M7<)2] _ 4B[(M7x).]

C? - C? C? =

. 4K
P[(M7*); > C] < Ik

Now observe that
{M7* # M} C{ox <t} ={(M): > K},

which finally implies that

P[M; > C] =P[M; > C,ox >t] + P[M; > C,ox <t
4K
< o2l +P[<M>t > K].

(b) Since M € My joc, there exists a localizing sequence (0, )nen such that M is a martingale
for each n. Consider the sequence of stopping times 7,, := o, An, n > 0, so that 7,, / oc.
By construction, 7, 1T oo P-a.s. and M™ = (M°")" is a martingale for each n due to
Exercise 4.2 (c). In particular, M, = MZ» € L£L'. Moreover, by the stopping theorem,
M, st = E[M,, | Fr, at] for every t > 0, which gives uniform integrability of M ™ as in Exercise
7.3(b).
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Exercise 8.4

a) Let f,g :[0,00) — e suc at ¢ is right-continuous and has finite variation an is

Let 0 R b h that g is right ti d has finit iati d fi
g-integrable in the Lebesgue—Stieltjes sense. Show that the function h(t) := fot f(s)dg(s) is
right-continuous. Moreover, show that if ¢ is continuous, then h is continuous.

(b) Let f:[0,00) — R be a function with finite variation. Show that f has left and right limits,
i.e. the limits f(t—) = lim,s » f(s) and f(t+) = lim,~ f(u) exist for ¢ > 0 and t > 0,
respectively.

(c) Let f,g : [0,00) — R be two right-continuous functions of finite variation. Show the
integration-by-parts formula, i.e. show that for each t > 0,

t
0

£09(0) = £0)9(0) = [ 1) dats)+ [ sty ar(s) = [ Fls=yaato) + [ ats)arco).
(d) Show also the formula
£(0)9(0) = £0)9(0) = [ 1=y dats)+ [ gts=) o) + 2 asean)
where Af(t) = £(t) — f(t-) and Ag(t) = g(t) — g(t-).
Solution 8.4

(a) By definition of the Lebesgue—Stieltjes integral (see Exercise 7.4) and linearity, we can without
loss of generality assume that g is non-decreasing. Let p4, be the Lebesgue—Stieltjes measure
corresponding to g. Let ¢ > 0 and ¢, \,t as n — co. By the dominated convergence theorem,

/0 F(s)dg(s) = /0 - 110.4() (5) f14(ds) = lim 001[07%](5) F(8) pg(ds) = lim [ f(s)dg(s),

which proves the right-continuity of h := f fdg. Now, assume that g is continuous. Fix any
t > 0 and let t,, /' t. Then, by the dominated convergence theorem, we have

tn %)
A [ fs)dg(s) = lim | Lo, () fs) g (s)
- /0 1o,y (5) £(5) 1 (ds)

_ / " L0 (5) £(5) g ds) — / £(5) g (ds)
0 {t}

= s)dg(s) — S) fig ds).
/Of()g() /{t}f()u( )

Thus, it remains to show that f{t} fug(ds) = 0. As p4(0,t] = g(t) — ¢(0), we have that

tg({t}) = limg ~(g(t) — g(s)) = 0 by the continuity of g, and hence f{t} f(s) pg(ds) = 0.
Therefore, we conclude that the continuity of g implies the continuity of h = f fdg.

(b) From Exercise 7.4(a), we can write f = fi — fa, where f; and f> are non-decreasing functions.
This means that the limits f;(t—) = sup,, fi(s) and f;(t+) = inf,~; f;(u) are well defined
for i = 1,2. Therefore the limits f(t—) = f1(t—) — fo(t—) and f(t+) = f1(t+) — f2(t+) are
also well defined.
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(¢) From the definition of the Lebesgue—Stieltjes integral (see Exercise 7.4), it suffices to prove

the claim for f and g non-decreasing. Let py and 4 be the corresponding Lebesgue-Stieltjes
measures of f and g, respectively. Fix ¢ > 0. From Fubini’s theorem, we obtain that

(10~ 10) (50~ 90) = [ pstan) [Fwas = [[ a0

We define the domains D; := {(r,s) : 0 <r < s <t} and Dy :={(r,5) : 0 < s <r < t}. By
definition of D1, Da, as ur((0,s]) = f(s) — f(0) and uy((0,7)) = g(r—) — ¢g(0), we get

/ / P )
// g (dr) pg(ds) // pp(dr) pg(ds)

- / (F(5) = £(0)) g (ds) + / (9(r—) — 9(0)) g (dr)
0 0
_ / £(s) dg(s) — £(0) g(t) + £(0) g(0) + / o(s—) df(s) — 9(0) £(t) + 9(0) F(0).

Thus, we obtain the result by plugging into (1). The second formula can be obtained by
Ssymietry.

For any ¢t € [0,00), we have that pg,({t}) = lims » g((s,t]) = g(t) — g(t—) = Ag(t). In
particular, p,({t}) = Ag(t) # 0 only for countably many values of ¢. Therefore, we can define
measures fig = Y, 4 Ag(s)0(sy and pg = py — fig, and then pg({t}) = 0 for all ¢ > 0. Using
that pug({s: f(s) = f(s—)}) = 0 since the set is countable, we have that

/f )dg(s /f (5)dpc (5) /f (s)d7iy(5)

- / Fsm)dus(s) + 3 (Fls=) + Af(s)Ag(s)

0<s<t

/f Jpig(s) + S Af(s)Ag(s

0<s<t

which shows the result.
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Exercise 8.5 Let (2, F,P) be a probability space and let Z be a random variable which is
symmetric around 0 and not in L', that is, Z L _Zand E[Z*] = E[Z7] = co. As an example, one
can let Z have a Cauchy distribution with density fz(x) z € R. Consider the discrete
filtration

— 1
- w(1422)>

Fo:=1{0,Q}, F1:=0(2]), Fo:=0(2)

and the stochastic process (X;);=o.1,2 defined by Xo = X; = 0 and X3 = Z. Show that X is a local
martingale with respect to IF, but not a martingale.

Solution 8.5 Since Xy = Z is not integrable, X cannot be a martingale.

To show that X is a local martingale, let 7, = 1{z|>pn} + 001y z|<pny for n € N. We claim that
each 7, is a stopping time, 7, ' oo a.s. and X™ is a martingale for each n.

We check that each 7, is a stopping time by noting that {r,, < 0} =0 € Fy, while

{rn <1} = {1, <2} ={|Z] > n} € Fy,

and moreover it is clear that 7,, " 0o since Z is a.s. finite.
Since X is adapted, so is X™. For each n, we have that X" is integrable as it is bounded by
n, noting that X, = Z1{z/<,}. The martingale property is also satisfied since

E[X;—" | .7:1] = E[Z1{|Z\§n} | ]:1] = ]l{IZ\Sn}E[Z | ]:1] = 0,

using for the last equality that E[Z | |Z|] = E[-Z | |Z]] = 0 by symmetry of the distribution of Z.
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