Brownian Motion and Stochastic Calculus

Exercise sheet 9

Exercise 9.1 Let W be a Brownian motion with respect to its natural filtration. Show that

$$
M_{t}^{(1)}=e^{t / 2} \cos W_{t}, \quad M_{t}^{(2)}=t W_{t}-\int_{0}^{t} W_{u} d u, \quad M_{t}^{(3)}=W_{t}^{3}-3 t W_{t}
$$

are martingales.
Remark: Prove this with a different method than the one used in Exercise 3.3.
Hint: Recall that for each $t \geq 0$, the running maximum $W_{t}^{*}:=\sup _{0 \leq s \leq t}\left|W_{s}\right|$ has the same distribution as $\left|W_{t}\right|$.

Solution 9.1 We can express $M^{(1)}, M^{(2)}, M^{(3)}$ in the form

$$
M_{t}^{(1)}=f^{(1)}\left(t, W_{t}\right), \quad M_{t}^{(2)}=f^{(2)}\left(t, W_{t}, \int_{0}^{t} W_{u} d u\right), \quad M_{t}^{(3)}=f^{(3)}\left(t, W_{t}\right)
$$

where

$$
f^{(1)}(t, w)=e^{t / 2} \cos w, \quad f^{(2)}(t, w, x)=t w-x, \quad f^{(3)}(t, w)=w^{3}-3 t w
$$

are C^{2} functions. We note that the processes I and X defined by $I_{t}=t$ and $X_{t}=\int_{0}^{t} W_{u} d u$, respectively, are continuous and have finite variation, while $\langle W\rangle_{t}=t$. Therefore, by Itô's formula,

$$
\begin{aligned}
M_{t}^{(1)}= & M_{0}^{(1)}+\int_{0}^{t} \frac{\partial f^{(1)}}{\partial t}\left(s, W_{s}\right) d s+\int_{0}^{t} \frac{\partial f^{(1)}}{\partial w}\left(s, W_{s}\right) d W_{s}+\frac{1}{2} \int_{0}^{t} \frac{\partial^{2} f^{(1)}}{\partial w^{2}}\left(s, W_{s}\right) d s \\
= & 1+\frac{1}{2} \int_{0}^{t} e^{s / 2} \cos W_{s} d s-\int_{0}^{t} e^{s / 2} \sin W_{s} d W_{s}-\frac{1}{2} \int_{0}^{t} e^{s / 2} \cos W_{s} d s \\
= & 1-\int_{0}^{t} e^{s / 2} \sin W_{s} d W_{s}, \\
M_{t}^{(2)}= & M_{0}^{(2)}+\int_{0}^{t} \frac{\partial f^{(2)}}{\partial t}\left(s, W_{s}, X_{s}\right) d s+\int_{0}^{t} \frac{\partial f^{(2)}}{\partial w}\left(s, W_{s}, X_{s}\right) d W_{s}+\int_{0}^{t} \frac{\partial f^{(2)}}{\partial x}\left(s, W_{s}, X_{s}\right) d X_{s} \\
& \quad+\frac{1}{2} \int_{0}^{t} \frac{\partial^{2} f^{(2)}}{\partial w^{2}}\left(s, W_{s}, X_{s}\right) d s \\
= & \int_{0}^{t} W_{s} d s+\int_{0}^{t} s d W_{s}-X_{t} \\
= & \int_{0}^{t} s d W_{s}, \\
M_{t}^{(3)}= & M_{0}^{(3)}+\int_{0}^{t} \frac{\partial f^{(3)}}{\partial t}\left(s, W_{s}\right) d s+\int_{0}^{t} \frac{\partial f^{(3)}}{\partial w}\left(s, W_{s}\right) d W_{s}+\frac{1}{2} \int_{0}^{t} \frac{\partial^{2} f^{(3)}}{\partial w^{2}}\left(s, W_{s}\right) d s \\
= & -3 \int_{0}^{t} W_{s} d s+\int_{0}^{t}\left(3 W_{s}^{2}-3 s\right) d W_{s}+3 \int_{0}^{t} W_{s} d s \\
= & \int_{0}^{t}\left(3 W_{s}^{2}-3 s\right) d W_{s} .
\end{aligned}
$$

Since the integrands are continuous, hence locally bounded, we immediately get that $M^{(1)}, M^{(2)}, M^{(3)}$ are local martingales. To show that they are martingales, note that $W_{t}^{*} \stackrel{(d)}{=}\left|W_{t}\right|$. Since all moments
of a Gaussian distribution are finite, the same must then be true of W_{t}^{*}. Therefore,

$$
\begin{aligned}
E\left[\int_{0}^{T} e^{s}\left(\sin W_{s}\right)^{2} d\langle W\rangle_{s}\right] & =E\left[\int_{0}^{T} e^{s}\left(\sin W_{s}\right)^{2} d s\right] \leq T e^{T}<\infty \\
E\left[\int_{0}^{T} s^{2} d\langle W\rangle_{s}\right] & =E\left[\int_{0}^{T} s^{2} d s\right]=T^{3} / 3<\infty \\
E\left[\int_{0}^{T}\left(3 W_{s}^{2}-3 s\right)^{2} d\langle W\rangle_{s}\right] & =E\left[\int_{0}^{T}\left(3 W_{s}^{2}-3 s\right)^{2} d s\right] \leq T E\left[\left(3\left(W_{T}^{*}\right)^{2}+3 T\right)^{2}\right]<\infty
\end{aligned}
$$

which shows that $\left(M^{(1)}\right)^{T},\left(M^{(2)}\right)^{T},\left(M^{(3)}\right)^{T} \in \mathcal{H}^{2, c}$ for any $T>0$. In particular, $M^{(1)}, M^{(2)}$ and $M^{(3)}$ are martingales.

Exercise 9.2 Let $W=\left(W_{t}\right)_{t \geq 0}$ be a 1-dimensional Brownian motion.
(a) Let $p: \mathbb{R} \rightarrow \mathbb{R}$ be a polynomial. Show that the process $H=p(W)$ is in $L_{\mathrm{loc}}^{2}(W)$, and therefore the stochastic integral $\int p(W) d W$ is well defined. Moreover, show that $\int p(W) d W$ is also a martingale.
(b) For what polynomials $p: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is the process $X_{t}=p\left(W_{t}, t\right)$ a martingale? Given a fixed $\lambda \in \mathbb{R}$, for what polynomials $p: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is the process $Y_{t}=e^{-\lambda t} p\left(W_{t}, t\right)$ a martingale?
(c) Let W^{\prime} be another Brownian motion independent of W and ρ a predictable process satisfying $|\rho| \leq 1$. Prove that the process $B=\left(B_{t}\right)_{t \geq 0}$ given by

$$
B_{t}=\int_{0}^{t} \rho_{s} d W_{s}+\int_{0}^{t} \sqrt{1-\rho_{s}^{2}} d W_{s}^{\prime}
$$

is a Brownian motion. Moreover, compute $\langle B, W\rangle$.

Remark: The pair (W, B) is sometimes called correlated Brownian motion with instantaneous correlation ρ.
(d) Define $Y_{t}=\left(\cos W_{t}, \sin W_{t}\right)^{\top}$ and $Z_{t}=\left(-\sin W_{t}, \cos W_{t}\right)^{\top}$. Show that Y is not a martingale, but $Z \cdot Y$ is a martingale.

Solution 9.2

(a) By linearity, it suffices to check the claim for monomials of the form $p(x)=x^{m}, m \in \mathbb{N}$. Since $H=p(W)$ is continuous and adapted, it is predictable and locally bounded, so $H \in L_{\mathrm{loc}}^{2}(W)$. Alternatively, set $\tau_{n}:=n$ for all $n \in \mathbb{N}$. Note that $E\left[W_{s}^{2 m}\right]=E\left[W_{1}^{2 m}\right] s^{m}=C s^{m}<\infty$ for $s \geq 0$, so by Fubini's theorem,

$$
E\left[\int_{0}^{\tau_{n}} H_{s}^{2} d\langle W\rangle_{s}\right]=E\left[\int_{0}^{n} W_{s}^{2 m} d s\right]=\int_{0}^{n} E\left[W_{s}^{2 m}\right] d s<\infty
$$

Therefore, $\int p(W) d W$ is well defined and a local martingale. The same computations also give that, for all $T \geq 0$,

$$
E\left[\left\langle\int p(W) d W\right\rangle_{T}\right]=E\left[\int_{0}^{T} W_{s}^{2 m} d\langle W\rangle_{s}\right]=E\left[\int_{0}^{T} W_{s}^{2 m} d s\right]<\infty
$$

This proves that $\left(\int p(W) d W\right)^{T} \in \mathcal{H}_{0}^{2, c}$ for all $T \geq 0$ by Exercise 8.3(a), implying that $\int p(W) d W$ is a true martingale.
(b) Note that the process $I_{t}:=t$ has finite variation, and therefore $\langle I\rangle \equiv\langle W, I\rangle \equiv 0$. Moreover, $\langle W\rangle_{t}=t$ for $t \geq 0$.
Since any polynomial is C^{2}, by Itô's formula

$$
X_{t}=X_{0}+\int_{0}^{t} \partial_{x} p\left(W_{s}, s\right) d W_{s}+\int_{0}^{t} \partial_{t} p\left(W_{s}, s\right) d s+\frac{1}{2} \int_{0}^{t} \partial_{x x} p\left(W_{s}, s\right) d s
$$

Note that $\partial_{x} p$ is a polynomial, therefore by (a), $\int_{0}^{*} \partial_{x} p\left(W_{s}, s\right) d W_{s}$ is a true martingale for any p. It follows that X is a martingale if $\partial_{t} p=-\frac{1}{2} \partial_{x x} p$.
Conversely, suppose that X is a martingale. Then, by Proposition 4.1.4 from the lecture notes,

$$
\int_{0}^{t}\left(\partial_{t} p\left(W_{s}, s\right)+\frac{1}{2} \partial_{x x} p\left(W_{s}, s\right)\right) d s=0, \quad t \geq 0
$$

since the integral is a continuous martingale with finite variation. By continuity of the integrand in t, it follows that $\partial_{t} p\left(W_{t}, t\right)+\frac{1}{2} \partial_{x x} p\left(W_{t}, t\right)=0$ a.s. for all $t \geq 0$. In particular, it holds that

$$
E\left[\left(\partial_{t} p\left(W_{t}, t\right)+\frac{1}{2} \partial_{x x} p\left(W_{t}, t\right)\right)^{2}\right]=0, \quad \text { for all } t \geq 0
$$

Letting g_{t} be the Gaussian density function of W_{t}, we have that

$$
\int_{-\infty}^{\infty}\left(\partial_{t} p(x, t)+\frac{1}{2} \partial_{x x} p(x, t)\right)^{2} g_{t}(x) d x=0, \quad \text { for all } t \geq 0
$$

Since the integrand is nonnegative, $\partial_{t} p(x, t)+\frac{1}{2} \partial_{x x} p(x, t)=0$ for λ-almost all $x \in \mathbb{R}$ and all $t \geq 0$. By continuity, $\partial_{t} p(x, t)=-\frac{1}{2} \partial_{x x} p(x, t)$ must hold for all $x \in \mathbb{R}, t \geq 0$. By properties of polynomials (e.g., since polynomials are analytic), we obtain that $\partial_{t} p \equiv-\frac{1}{2} \partial_{x x} p$.
Consider now the function $f(x, t)=e^{-\lambda t} p(x, t)$, which is C^{2}. By Itô's formula,

$$
Y_{t}=X_{0}+\int_{0}^{t} \partial_{x} f\left(W_{s}, s\right) d W_{s}+\int_{0}^{t}\left(e^{-\lambda s} \partial_{t} p\left(W_{s}, s\right)-\lambda f\left(W_{s}, s\right)\right) d s+\frac{1}{2} \int_{0}^{t} \partial_{x x} f\left(W_{s}, s\right) d s
$$

Since $\left|\partial_{x} f\left(W_{s}, s\right)\right|=\left|e^{-\lambda s} \partial_{x} p\left(W_{s}, s\right)\right| \leq\left(1 \vee e^{-\lambda t}\right)\left|\partial_{x} p\left(W_{s}, s\right)\right|$, we find that $\int_{0}^{t} \partial_{x} f\left(W_{s}, s\right) d W_{s}$ is a true martingale. By a similar argument as before, Y is a martingale if and only if

$$
\begin{aligned}
e^{-\lambda t} \partial_{t} p(x, t) & =\lambda f(x, t)-\frac{1}{2} \partial_{x x} f(x, t) \\
\Leftrightarrow \partial_{t} p(x, t) & =\lambda p(x, t)-\frac{1}{2} \partial_{x x} p(x, t) \quad \text { for all } x, t \in \mathbb{R}
\end{aligned}
$$

(c) Since ρ is predictable and $|\rho| \leq 1$, we have that $\rho \in L_{\text {loc }}^{2}(W)$ and $\sqrt{1-\rho^{2}} \in L_{\text {loc }}^{2}\left(W^{\prime}\right)$. It follows that B is a local martingale. Moreover, for each $t \geq 0$, using bilinearity of $\langle\cdot, \cdot\rangle$ and the fact that $\left\langle W, W^{\prime}\right\rangle=0$ due to independence of W and W^{\prime},

$$
\langle B\rangle_{t}=\left\langle\int \rho d W\right\rangle_{t}+\left\langle\int \sqrt{1-\rho^{2}} d W^{\prime}\right\rangle_{t}=\int_{0}^{t} \rho_{s}^{2} d s+\int_{0}^{t}\left(1-\rho_{s}^{2}\right) d s=t
$$

and so Lévy's characterisation of Brownian motion yields that B is a Brownian motion. Finally,

$$
\langle B, W\rangle_{t}=\int_{0}^{t} \rho_{s} d\langle W, W\rangle_{s}+\int_{0}^{t} \sqrt{1-\rho_{s}^{2}} d\left\langle W^{\prime}, W\right\rangle_{s}=\int_{0}^{t} \rho_{s} d s
$$

(d) By Itô's formula, we have that

$$
\begin{aligned}
& \cos W_{t}=1-\int_{0}^{t} \sin W_{s} d W_{s}-\frac{1}{2} \int_{0}^{t} \cos W_{s} d s \\
& \sin W_{t}=\int_{0}^{t} \cos W_{s} d W_{s}-\frac{1}{2} \int_{0}^{t} \sin W_{s} d s
\end{aligned}
$$

In vector form, we obtain that

$$
Y_{t}=Y_{0}+\int_{0}^{t} Z_{s} d W_{s}-\frac{1}{2} \int_{0}^{t} Y_{s} d s
$$

Since the integrand is bounded, it is clear that $\int_{0}^{t} Z_{s} d W_{s}$ is a martingale. But the term $\frac{1}{2} \int_{0}^{t} Y_{s} d s$ is nonzero, continuous and has finite variation, and therefore Y is not a martingale. By associativity of stochastic integrals, we have that

$$
(Z \cdot Y)_{t}=\int_{0}^{t} Z_{s}^{\top} Z_{s} d W_{s}-\frac{1}{2} \int_{0}^{t} Z_{s}^{\top} Y_{s} d s=W_{t}
$$

since $Z_{s}^{\top} Z_{s} \equiv 1$ and $Z_{s}^{\top} Y_{s} \equiv 0$. In particular, $Z \bullet Y$ is a martingale.

Exercise 9.3 Let $M \in \mathcal{H}_{0}^{2, c}$. Show that $b \mathcal{E}$ is dense in $L^{2}(M)$.
Hint: Let $\bar{\Omega}=\Omega \times[0, \infty)$ be equipped with the predictable σ-algebra \mathcal{P}. Let $C=E\left[M_{\infty}^{2}\right]$ and consider the probability measure $P_{M}=C^{-1} P \otimes[M]$ on $(\bar{\Omega}, \mathcal{P})$. Let $\left(\Pi_{n}\right)_{n \in \mathbb{N}}$ be an increasing sequence of partitions of $[0, \infty)$ with $\lim _{n \rightarrow \infty}\left|\Pi_{n}\right|=0$. Use the martingale convergence theorem on $\left(\bar{\Omega}, \mathcal{P}, P_{M}\right)$ with respect to the discrete filtration $\left(\mathcal{P}_{n}\right)_{n \in \mathbb{N}}$ defined by

$$
\mathcal{P}_{n}=\sigma\left(\left\{A_{i} \times\left(t_{i}, t_{i+1}\right]: t_{i} \in \Pi_{n}, A_{i} \in \mathcal{F}_{t_{i}}\right\}\right)
$$

Solution 9.3 We first note that $L^{2}(M)=L_{P_{M}}^{2}$, since both are equal to the set of (equivalence classes of) predictable processes \tilde{H} such that

$$
\|\tilde{H}\|_{L^{2}(M)}^{2}=E\left[\int_{0}^{\infty} \tilde{H}_{s}^{2} d\langle M\rangle_{s}\right]=C E_{M}\left[\tilde{H}^{2}\right]=C\|\tilde{H}\|_{L_{P_{M}}^{2}}^{2}<\infty
$$

Let $H \in L^{2}(M)$. We want to approximate H in $L^{2}(M)$ by elements of $b \mathcal{E}$. Since $H \mathbb{1}_{\{|H| \leq n\}} \rightarrow H$ in $L^{2}(M)$, we only need to approximate each $H \mathbb{1}_{\{|H| \leq n\}}$. Thus, we assume w.l.o.g. that H is bounded.

Define a P_{M}-martingale $\left(H_{n}\right)$ adapted to $\left(\mathcal{P}_{n}\right)$ by $H^{n}:=E_{M}\left[H \mid \mathcal{P}_{n}\right]$. Since $H \in L_{P_{M}}^{2}=L^{2}(M)$, we have that $\left(H^{n}\right)$ is an $L_{P_{M}}^{2}$-bounded martingale. Let $\mathcal{P}_{\infty}=\sigma\left(\bigcup_{n \in \mathbb{N}} \mathcal{P}_{n}\right)$ and $H^{\infty}:=E\left[H \mid \mathcal{P}_{\infty}\right]$. By the martingale convergence theorem, we have that $H^{n} \rightarrow H^{\infty} P_{M^{-}}$-a.s. and in $L_{P_{M}}^{2}$.

We claim that $\mathcal{P}_{\infty}=\mathcal{P}$ and each $H^{n} \in b \mathcal{E}, n \in \mathbb{N}$. If this holds, then we can approximate $H=H^{\infty}$ in $L_{P_{M}}^{2}=L^{2}(M)$ as the limit of $\left(H^{n}\right)$, where each $H^{n} \in b \mathcal{E}$. Thus, the two claims imply the result.

To show that $\mathcal{P}_{\infty}=\mathcal{P}$, we first note that each $\mathcal{P}_{n} \subseteq \mathcal{P}$. Indeed, let $\tilde{H}=\mathbb{1}_{A_{i}} \mathbb{1}_{\left(t_{i}, t_{i+1}\right]}$ for some $t_{i} \in \Pi_{n}$ and $A_{i} \in \mathcal{F}_{t_{i}}$. As \tilde{H} is adapted and left-continuous, it is predictable, i.e., \mathcal{P}-measurable. Therefore, each $\mathcal{P}_{n} \subseteq \mathcal{P}$. Taking the union, $\mathcal{P}_{\infty} \subseteq \mathcal{P}$.

Conversely, to show that $\mathcal{P} \subseteq \mathcal{P}_{\infty}$, we show that any left-continuous adapted process \tilde{H} is \mathcal{P}_{∞}-measurable. Define

$$
\tilde{H}^{n}:=\sum_{t_{i} \in \Pi_{n}} \mathbb{1}_{\left(t_{i}, t_{i+1}\right]} \tilde{H}_{t_{i}}
$$

which is \mathcal{P}_{n}-measurable, hence also \mathcal{P}_{∞}-measurable for each n. For each $t \in[0, \infty)$ and $n \in \mathbb{N}$, we have that $\tilde{H}_{t}^{n}(\omega)=\tilde{H}_{t(n)}(\omega)$, where $t(n)=\max \left\{t_{i} \in \Pi_{n}: t_{i}<t\right\}$. We have that $t(n)$ is increasing in n, since $\left(\Pi_{n}\right)$ is an increasiing sequence. Moreover, $t(n) \nearrow t$ since $\left|\Pi_{n}\right| \searrow 0$. As \tilde{H} is left-continuous, we conclude that $\tilde{H}_{t}^{n}(\omega) \rightarrow \tilde{H}_{t}(\omega)$ for all $t \in \mathbb{R}_{+}$and $\omega \in \Omega$. Therefore, as each \tilde{H}^{n} is \mathcal{P}_{∞}-measurable, so is \tilde{H}. This shows that $\mathcal{P}_{\infty}=\mathcal{P}$, as we wanted.

Finally, we need to prove that $H^{n} \in b \mathcal{E}$ for each n. We give two proofs for this.
Proof 1: Note that $H^{n}=E\left[H \mid \mathcal{P}_{n}\right]$ is bounded, as H is. Since H^{n} is \mathcal{P}_{n}-measurable, the result follows if we show that every bounded \mathcal{P}_{n}-measurable process belongs to $b \mathcal{E}$. We show this using the monotone class theorem. Let

$$
\mathcal{M}=\left\{\mathbb{1}_{A_{i}} \mathbb{1}_{\left(t_{i}, t_{i+1}\right]}: t_{i} \in \Pi_{n}, A_{i} \in \mathcal{F}_{t_{i}}\right\}
$$

and

$$
\mathcal{H}=\left\{\tilde{H}=\sum_{t_{i} \in \Pi_{n}} Z_{i} \mathbb{1}_{\left(t_{i}, t_{i+1}\right]}: Z_{i} \text { bounded and } \mathcal{F}_{t_{i}} \text {-measurable }\right\}
$$

It is clear that \mathcal{M} is closed under products, generates \mathcal{P}_{n} and is contained in \mathcal{H}. Moreover, \mathcal{H} is a vector space and contains 1 . To see that \mathcal{H} is closed under bounded monotone convergence, let $\mathcal{H} \ni \tilde{H}^{m} \nearrow \tilde{H}$. Then, it must be the case that $Z_{i}^{m}=\tilde{H}_{t_{i+1}}^{m} \nearrow \tilde{H}_{t_{i+1}}=: Z_{i}$, where Z_{i} is bounded and $\mathcal{F}_{t_{i}}$-measurable. Moreover, since

$$
\tilde{H}_{t}=\lim _{m \rightarrow \infty} \tilde{H}_{t}^{m}=\lim _{m \rightarrow \infty} \tilde{H}_{t(n)}^{m}=\tilde{H}_{t(n)}, \quad t \geq 0
$$

we see that

$$
\tilde{H}=\sum_{t_{i} \in \Pi_{n}} Z_{i} \mathbb{1}_{\left(t_{i}, t_{i+1}\right]} \in \mathcal{H}
$$

Therefore, by the monotone class theorem, \mathcal{H} contains all bounded \mathcal{P}_{n}-measurable processes. Since $\mathcal{H} \subseteq b \mathcal{E}$, we have shown that every bounded \mathcal{P}_{n}-measurable process belongs to $b \mathcal{E}$, as we wanted.

Proof 2: We claim that $H_{t}^{n}=\sum_{t_{i} \in \Pi_{n}} \mathbb{1}_{\left\{t \in\left(t_{i}, t_{i+1}\right]\right\}} Z_{i}$ for each $n \in \mathbb{N}$, where

$$
Z_{i}=\frac{E\left[\int_{t_{i}}^{t_{i+1}} H_{u} d\langle M\rangle_{u} \mid \mathcal{F}_{t_{i}}\right]}{E\left[\langle M\rangle_{t_{i+1}}-\langle M\rangle_{t_{i}} \mid \mathcal{F}_{t_{i}}\right]} .
$$

If this holds, then $H^{n} \in b \mathcal{E}$, as Z_{i} is bounded and $\mathcal{F}_{t_{i}}$-measurable.
To show that H^{n} is the conditional expectation, note that H^{n} is \mathcal{P}_{n}-measurable. We also have that $\left\{A_{i} \times\left(t_{i}, t_{i+1}\right]: t_{i} \in \Pi_{n}, A_{i} \in \mathcal{F}_{t_{i}}\right\}$ is a π-system generating \mathcal{P}_{n}. Therefore, it suffices to check that $E_{M}\left[\mathbb{1}_{A_{i} \times\left(t_{i}, t_{i+1}\right]} H^{n}\right]=E_{M}\left[\mathbb{1}_{A_{i} \times\left(t_{i}, t_{i+1}\right]} H\right]$ for any $t_{i} \in \Pi_{n}$ and $A_{i} \in \mathcal{F}_{t_{i}}$. Indeed,

$$
\begin{aligned}
E_{M}\left[\mathbb{1}_{A_{i} \times\left(t_{i}, t_{i+1}\right]} H\right] & =C^{-1} E\left[\mathbb{1}_{A_{i}} \int_{t_{i}}^{t_{i+1}} H_{u} d\langle M\rangle_{u}\right] \\
& =C^{-1} E\left[\mathbb{1}_{A_{i}} E\left[\int_{t_{i}}^{t_{i+1}} H_{u} d\langle M\rangle_{u} \mid \mathcal{F}_{t_{i}}\right]\right] \\
& =C^{-1} E\left[\int_{0}^{\infty} \mathbb{1}_{A_{i}} \frac{E\left[\int_{t_{i}}^{t_{i+1}} H_{u} d\langle M\rangle_{u} \mid \mathcal{F}_{t_{i}}\right]}{E\left[\langle M\rangle_{t_{i+1}}-\langle M\rangle_{t_{i}} \mid \mathcal{F}_{t_{i}}\right]} \mathbb{1}_{\left\{s \in\left(t_{i}, t_{i+1}\right]\right\}} d\langle M\rangle_{s}\right] \\
& =E_{M}\left[\mathbb{1}_{A_{i} \times\left(t_{i}, t_{i+1}\right]} H^{n}\right]
\end{aligned}
$$

as we wanted.

Exercise 9.4 Let $d \geq 2, \Omega=C\left([0, \infty) ; \mathbb{R}^{d}\right)$ and $Y=\left(Y_{t}\right)_{t \geq 0}$ denote the coordinate process. For each $x \in \mathbb{R}^{d}$, let \mathbb{P}_{x} be the unique probability measure on $\left(\Omega, \mathcal{Y}_{\infty}^{0}\right)$ under which Y is a d-dimensional Brownian motion started at x.

Let $x \in \mathbb{R}^{d} \backslash\{0\}$ and a, b such that $0<a<|x|<b$. Consider the stopping times

$$
\tau_{a}:=\inf \left\{t \geq 0:\left|Y_{t}\right| \leq a\right\}, \quad \tau_{b}:=\inf \left\{t \geq 0:\left|Y_{t}\right| \geq b\right\}
$$

(a) Suppose that $d \geq 3$. Show that $\left(X_{t}\right)_{t \geq 0}$ defined by $X_{t}:=\left|Y_{\tau_{a} \wedge t}\right|^{2-d}$ is a bounded martingale under \mathbb{P}_{x}.
(b) Suppose that $d=2$. Show that $\left(X_{t}\right)_{t \geq 0}$ defined by $X_{t}:=-\log \left|Y_{\tau_{a} \wedge \tau_{b} \wedge t}\right|$ is a bounded martingale under \mathbb{P}_{x}.
(c) Let $d \geq 2$. Show that for any $x \in \mathbb{R}^{d} \backslash\{0\}$,

$$
\mathbb{P}_{x}\left[Y_{t} \neq 0 \text { for all } t \geq 0\right]=1
$$

(d) Let $d \geq 3$. Show that for any $x \in \mathbb{R}^{d}$, we have

$$
\mathbb{P}_{x}\left[\lim _{t \rightarrow \infty}\left|Y_{t}\right|=\infty\right]=1
$$

Remark: The result in (d) is known as transience of Brownian motion in \mathbb{R}^{d}, for $d \geq 3$.

Solution 9.4

(a) For any C^{2} function $g:(0, \infty) \rightarrow \mathbb{R}$, we can define the radial function $f: \mathbb{R}^{d} \backslash\{0\} \rightarrow \mathbb{R}$ by

$$
f(x):=g(|x|) .
$$

By straightforward calculations, we have for every $x \neq 0$ that

$$
\Delta f(x)=g^{\prime \prime}(r)+\frac{d-1}{r} g^{\prime}(r), \quad \text { with } r=|x| .
$$

We consider $g(r):=r^{2-d}$, which is C^{2} on $(0, \infty)$, and let $f(x):=g(|x|)$. For any $x \neq 0$,

$$
\Delta f(x)=g^{\prime \prime}(r)+\frac{d-1}{r} g^{\prime}(r)=(2-d)(1-d) r^{-d}+(2-d)(d-1) r^{-d}=0
$$

which means that $f(x)=|x|^{2-d}$ is harmonic on $\mathbb{R}^{d} \backslash\{0\}$. By applying Itô's formula, as $\Delta f=0$ so that the second order term vanishes, we see that \mathbb{P}_{x}-a.s. for all $t \geq 0$

$$
X_{t}=\left|Y_{\tau_{a} \wedge t}\right|^{2-d}=f\left(Y_{\tau_{a} \wedge t}\right)=f(x)+\int_{0}^{\tau_{a} \wedge t} \nabla f\left(Y_{s}\right) d Y_{s}
$$

which already shows that $\left(X_{t}\right)_{t \geq 0}$ is a local martingale, since f is C^{2} and Y is continuous, so that $\nabla f\left(Y_{s}\right)$ is locally bounded. Moreover, as $d \geq 3$, we have that

$$
0 \leq X_{t}=\left|Y_{\tau_{a} \wedge t}\right|^{2-d}=\frac{1}{\left|Y_{\tau_{a} \wedge t}\right|^{d-2}} \leq \frac{1}{a^{d-2}}
$$

Thus, since X is uniformly bounded, it is a true martingale.
(b) Similarly to (a), set $g(r)=-\log r$ and $f(x)=g(|x|)$. We have that

$$
\Delta f(x)=g^{\prime \prime}(r)+\frac{d-1}{r} g^{\prime}(r)=\frac{1}{r^{2}}-\frac{1}{r^{2}}=0
$$

therefore

$$
X_{t}=-\log \left|Y_{\tau_{a} \wedge \tau_{b} \wedge t}\right|=f\left(Y_{\tau_{a} \wedge \tau_{b} \wedge t}\right)=f(x)+\int_{0}^{\tau_{a} \wedge \tau_{b} \wedge t} \nabla f\left(Y_{s}\right) d Y_{s}
$$

By the same argument as in (a), X is a local martingale. Since $a \leq\left|W_{\tau_{a} \wedge \tau_{b} \wedge t}\right| \leq b$, we obtain that X is bounded by $-\log b \leq X_{t} \leq-\log a$ and therefore it is a true martingale.
(c) For the cases $d \geq 3$ and $d=2$, let g and f be as defined in (a) and (b) respectively. Consider the martingale $M_{t}=f\left(Y_{\tau_{a} \wedge \tau_{b} \wedge t}\right)$ (which is the same as $X^{\tau_{b}}$ in the case $d \geq 3$). Note that $\limsup _{t \rightarrow \infty}\left|Y_{t}\right|=\infty$; thus $\tau_{b}<\infty$ and also $\tau_{a} \wedge \tau_{b}<\infty$ a.s. Therefore, we have that $\lim _{t \rightarrow \infty} M_{t}=f\left(Y_{\tau_{a} \wedge \tau_{b}}\right)$ where $\left|Y_{\tau_{a} \wedge \tau_{b}}\right| \in\{a, b\}$. Since M is bounded, hence a uniformly integrable martingale, we obtain that

$$
g(|x|)=M_{0}=\mathbb{E}_{x}\left[\lim _{t \rightarrow \infty} M_{t}\right]=g(a) \mathbb{P}_{x}\left[\tau_{a}<\tau_{b}\right]+g(b) \mathbb{P}_{x}\left[\tau_{b}<\tau_{a}\right]
$$

Rearranging, we get

$$
\mathbb{P}_{x}\left[\tau_{a}<\tau_{b}\right]=\frac{g(|x|)-g(b) \mathbb{P}_{x}\left[\tau_{b}<\tau_{a}\right]}{g(a)}
$$

Note that in both cases $d=2$ and $d \geq 3$, it holds that $g(a) \rightarrow \infty$ as $a \searrow 0$. Therefore, taking the limit (by dominated convergence), we obtain that

$$
\mathbb{P}_{x}\left[\tau_{0}<\tau_{b}\right]=0, \quad b>|x| .
$$

Taking the limit again as $b \rightarrow \infty$, we obtain that

$$
\mathbb{P}_{x}\left[\tau_{0}<\lim _{b \rightarrow \infty} \tau_{b}\right]=0
$$

However, since Y is locally bounded we have that $\lim _{b \rightarrow \infty} \tau_{b}=\infty$. Therefore, $\tau_{0}=\infty$ a.s. and

$$
\mathbb{P}_{x}\left[X_{t} \neq 0 \text { for all } t \geq 0\right]=1
$$

as we wanted.
(d) By translation invariance of Brownian motion, we can assume that $x \neq 0$ without loss of generality. For $d \geq 3$, define

$$
M_{t}=g\left(\left|Y_{t}\right|\right)=\left|Y_{t}\right|^{2-d}
$$

This is \mathbb{P}_{x}-a.s. well defined for all $t \geq 0$, since $\tau_{0}=\infty$ a.s. by (c).
As in (a), M is a local martingale. In this case, while M is not bounded, it is a nonnegative local martingale, hence a supermartingale by Exercise 8.2. Since M is a nonnegative supermartingale, it also follows by the supermartingale convergence theorem that $M_{t} \rightarrow M_{\infty}$ a.s. for some \mathcal{F}_{∞}-measurable random variable M_{∞}. Noting that

$$
\limsup _{t \rightarrow \infty}\left|Y_{t}\right|=\infty \quad \mathbb{P}_{x} \text {-a.s. }
$$

it follows that

$$
M_{\infty}=\lim _{t \rightarrow \infty} M_{t}=\liminf _{t \rightarrow \infty}\left|Y_{t}\right|^{2-d}=0
$$

and therefore

$$
\left|Y_{t}\right|=M_{t}^{\frac{1}{2-d}} \rightarrow \infty \quad \mathbb{P}_{x} \text {-a.s. }
$$

as we wanted.

