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Exercise 9.1 Let W be a Brownian motion with respect to its natural filtration. Show that
t
MY = et cos Wy, M) = tw, — / Wodu, M =W —3tw,
0

are martingales.

Remark: Prove this with a different method than the one used in Exercise 3.3.

Hint: Recall that for each ¢t > 0, the running maximum W} := supy<,<; |W,| has the same
distribution as |[W|.

Solution 9.1 We can express M) M@ M®) in the form
t
M(l) f(l (t W) Mt(Q) _ f(2) (t, Wt;/ Wudu> , Mt(g) _ f(g)(t,Wt),
0
where

fOtw) =e’?cosw,  fO(t,w,z)=tw—xz, [fOtw)=uw®—3tw
are C? functions. We note that the processes I and X defined by I, = t and X, = f(f Wdu,
respectively, are continuous and have finite variation, while (WW); = ¢. Therefore, by Itd’s formula,
t 92
2 Jo Ow?

(1)
Mt(l) = Mél) —|—/ 0f®) (s, Ws) ds+/ 2l (s, W)dW —|— (s, Ws)ds
0

ot

1t t 1 [t
=1+ 7-/ /2 cos Wyds — / /2 sin WydW, — f/ e*/? cos Wds
2 Jo 0 2 /o

t
=1 —/ e%/? sin WydWs,
0

t9f2) @)
M® :M(§2>+/ of (s, WS,XS)ds+/ aéf (s, Wy, X )dW, +/ or® (s, Wy, X, )dX,
w

82f
+2/062(5W3,X)d

t t
Wds + / sdWy — X,
0 0

t
= / sdWs,
0

t 9¢(3) (3) 2 £(3)
(3) 1 (3) of / of / o°f
M = My~ + Ws)ds + Ws)dWs 4+ = 4%
h o /0 5 (s, Ws)ds (s, Ws)d 5 ), Bu? (s, Ws)ds

t
= 73/ Weds +/ (3W32 —3s)dWs + 3/ Wds
0 0 0

t
= / (3W2 — 35)dW,,.
0

Since the integrands are continuous, hence locally bounded, we immediately get that MW M@ MG

are local martingales. To show that they are martingales, note that W* |Wt| Since all moments
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of a Gaussian distribution are finite, the same must then be true of W;*. Therefore,

E /O e® (sin W) 2d(W),
T -
82
E /O d<W>s_
E /T<3W335>2d<vv>s
0

=F

=F

=B

T
/ e*(sin Wy)?ds| < Tel < oo,
0

T
/ s2ds
0

T
/ (3W2 — 35)2ds
0

=T3/3 < 0,

< TE[(3(W3)? + 37)?] < o,

which shows that (M®)T (M@)T (MGHT € H2¢ for any T > 0. In particular, M) M?) and

M®) are martingales.
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Exercise 9.2 Let W = (W,);>0 be a 1-dimensional Brownian motion.

(a)

(b)

(d)

Let p: R — R be a polynomial. Show that the process H = p(W) is in L (W), and therefore

the stochastic integral [ p(W)dW is well defined. Moreover, show that [ p(W)dW is also a

martingale.

For what polynomials p : R? — R is the process X; = p(W;,t) a martingale? Given a fixed
A € R, for what polynomials p : R? — R is the process Y; = e *p(W;,t) a martingale?

Let W' be another Brownian motion independent of W and p a predictable process satisfying
|p| < 1. Prove that the process B = (By);>0 given by

¢ ¢
B, :/ pe W, +/ VI pZdw,
0 0
is a Brownian motion. Moreover, compute (B, W).
Remark: The pair (W, B) is sometimes called correlated Brownian motion with instantaneous
correlation p.

Define Y; = (cos Wy, sin W;) " and Z; = (—sin Wy, cos W;) . Show that Y is not a martingale,
but Z+Y is a martingale.

Solution 9.2

(a)

By linearity, it suffices to check the claim for monomials of the form p(x) = 2™, m € N. Since
H = p(W) is continuous and adapted, it is predictable and locally bounded, so H € L _(W).

Alternatively, set 7, := n for all n € N. Note that E[W2™] = E[W{™]s™ = Cs™ < oo for
s > 0, so by Fubini’s theorem,

E [/OT H§d<w>s] - F [/0 meds} - /0 E[W2™)ds < c.

Therefore, [ p(W)dW is well defined and a local martingale. The same computations also

give that, for all 7" > 0,
T
=F / W2mds| < oo.
0

T
| wemaw),
0

E [</p(W)dW>T] —E

This proves that ([ p(W)dW)T € Hﬁ*c for all T > 0 by Exercise 8.3(a), implying that
[ p(W)dW is a true martingale.

Note that the process I; := t has finite variation, and therefore (I) = (W, I) = 0. Moreover,
(W), =t for t > 0.

Since any polynomial is C2, by Itd’s formula
t t 1 [t
Xt = XO + / 8wp(Wsa S)dWs + / 8tp(Ws; S)dS + 5 / 8wwp(st S)dS
0 0 0

Note that 0.p is a polynomial, therefore by (a), fo 0:p(Ws, s)dWy is a true martingale for
any p. It follows that X is a martingale if O;p = —%&mp.

Conversely, suppose that X is a martingale. Then, by Proposition 4.1.4 from the lecture
notes,

t
[ (000705) 4 Joapvce)) ds =0, ¢z
0
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since the integral is a continuous martingale with finite variation. By continuity of the
integrand in ¢, it follows that 0;p(Wy,t) + %&mp(Wt, t) =0 a.s. for all t > 0. In particular, it
holds that

E

1 2
(@p(Wt,t) + 28mp(Wt7t)> ] =0, forallt>0.

Letting g; be the Gaussian density function of Wy, we have that

oo 2
/ (8tp(x,t) + ;&mp(x,t)) git(x)dx =0, forallt>0.

— 00

Since the integrand is nonnegative, O;p(x,t) + %@mp(:c, t) = 0 for M\-almost all © € R and all
t > 0. By continuity, O;p(x,t) = féamp(x, t) must hold for all z € R,¢ > 0. By properties of
polynomials (e.g., since polynomials are analytic), we obtain that d;p = —%Bmp.

Consider now the function f(z,t) = e’/\tp(x, t), which is C2. By It6’s formula,
t t 1t
5/;5 = Xo + / @j(Ws, S)de + / (e*ASBtp(Wm S) - )\f(Wéd 8)) ds + 5 / a.L.Lf(Wé7 S)dS
0 0 0

Since |0, f(Ws, s)| = |e=**0,p(Ws, s)| < (1Ve™2)|0,p(Ws, s)|, we find that f; On f(Ws, s)dW
is a true martingale. By a similar argument as before, Y is a martingale if and only if

(e, 1) = M (5,0~ 300a (2,1)

1
< Op(x,t) = Ap(z,t) — §8mp(ac,t) for all z,t € R.

Since p is predictable and |p| < 1, we have that p € L2 (W) and /1 —p2 € L2 _(W'). Tt

loc loc
follows that B is a local martingale. Moreover, for each ¢ > 0, using bilinearity of (-,-) and

the fact that (W, W’) = 0 due to independence of W and W',

(B), = </de>t+</WdW/>t/Otpidw/ot(lpi)dst,

and so Lévy’s characterisation of Brownian motion yields that B is a Brownian motion.
Finally,

t t t
(B,W}t:/ psd(W,W>S—|—/ \/1—p§d<W',W>s:/ oo ds.
0 0 0

By Itd’s formula, we have that

t t
1
cosW; =1 —/ sin WodW, — 5/ cos Wds,
0 0

t t
1
sin W, = / cos WydWy — 5/ sin Wds.
0 0
In vector form, we obtain that

t t
1
Yt:Y0+/ZSdWSff/ Y, ds.
0 2 0

Since the integrand is bounded, it is clear that fg ZsdWy is a martingale. But the term

1t Y. ds is nonzero, continuous and has finite variation, and therefore Y is not a martingale.
2 Jo ’ ) g
By associativity of stochastic integrals, we have that

t 1 t
(Z-Y)t:/ ijsdws—i/ ZIYids =W,
0 0

since Z] Z, =1 and Z] Y, = 0. In particular, Z+Y is a martingale.
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Exercise 9.3 Let M € Hy°. Show that b€ is dense in L2(M).

Hint: Let Q = Q x [0,00) be equipped with the predictable o-algebra P. Let C = E[MZ2] and
consider the probability measure Pyy = C™'P @ [M] on (,P). Let (II,)nen be an increasing
sequence of partitions of [0, 00) with lim,, . [II,| = 0. Use the martingale convergence theorem on
(Q,P, Pp) with respect to the discrete filtration (P, )nen defined by

Pn = U({Az X (ti7ti+1} : tz € Hn,Az S ‘th})

Solution 9.3 We first note that L?(M) = L%,M, since both are equal to the set of (equivalence
classes of) predictable processes H such that

1l =B | [ 2400, = CBwlE = ClAIE | <.

Let H € L*(M). We want to approximate H in L?(M) by elements of b€. Since H1{pj<ny — H
in L?(M), we only need to approximate each H1 i 1<ny- Thus, we assume w.l.o.g. that H is
bounded.

Define a Py/-martingale (H,,) adapted to (P,,) by H" := En[H | Py]. Since H € L3, = L*(M),
we have that (H™) is an L} -bounded martingale. Let Poo = (U, e Pn) and H* := E[H | Ps).
By the martingale convergence theorem, we have that H™ — H* Pys-a.s. and in L%M.

We claim that P,, = P and each H" € bE,n € N. If this holds, then we can approximate
H = H*> in L} = L*(M) as the limit of (H"), where each H™ € b€. Thus, the two claims imply
the result.

To show that P, = P, we first note that each P,, C P. Indeed, let H= Ta, L, 000
t; € II, and A; € Fy,. As His adapted and left-continuous, it is predictable, i.e., P-measurable.
Therefore, each P,, C P. Taking the union, P, C P.

Conversely, to show that P C P., we show that any left-continuous adapted process H is

Pso-measurable. Define
H" = Z ]l(tiati+l]Hti7

t; €I,

] for some

which is P,,-measurable, hence also P.-measurable for each n. For each ¢ € [0,00) and n € N,
we have that H(w) = ﬁt(n)(w), where t(n) = max{t; € II,, : t; < t}. We have that t(n) is
increasing in n, since (II,,) is an increasiing sequence. Moreover, t(n) t since |II,| \, 0. As H is
left-continuous, we conclude that H*(w) — Hy(w) for all t € Ry and w € Q. Therefore, as each H™
is Poo-measurable, so is H. This shows that P, = P, as we wanted.

Finally, we need to prove that H™ € b€ for each n. We give two proofs for this.

Proof 1: Note that H" = E[H | P,] is bounded, as H is. Since H" is P,-measurable, the
result follows if we show that every bounded P,-measurable process belongs to b€. We show this
using the monotone class theorem. Let

M= {lAi]l(tiyti+l] it € Hn,Ai S .7:15&}
and
H = {f{ = Z Zil(t;,t;11) ¢ Zi bounded and ]-'ti—measurable} .
t;€ll,

It is clear that M is closed under products, generates P, and is contained in H. Moreover, H is a
vector space and contains 1. To see that H is closed under bounded monotone convergence, let
‘H > H™ / H. Then, it must be the case that Z" = HY' N Hy, = Z;, where Z; is bounded
and F3,-measurable. Moreover, since

Hy = lim H" = lim HJp\ = Hyy), t>0,

m—ro0 m—r0o0
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we see that }
H= " Zily,, € H

t; €ll,

Therefore, by the monotone class theorem, H contains all bounded P,-measurable processes. Since
H C bE, we have shown that every bounded P,-measurable process belongs to b€, as we wanted.

Proof 2: We claim that H* = Ztienn Lise(ts 00y Zi for each n € N, where

E [ Sl Hd(),
E[(M)t, ., — (M),

]-"tz}

Z; = .
‘Fti}

i+1

If this holds, then H™ € b€, as Z; is bounded and F%,-measurable.

To show that H™ is the conditional expectation, note that H™ is P,-measurable. We also have
that {A; x (t;,ti11] : t; € I, A; € Fi,} is a m-system generating P,,. Therefore, it suffices to check
that EM[]lAix(ti,tH_l]Hn] = EM[]IAiX(ti,tHﬂH] for any t; € II,, and A; € F;,. Indeed,

r tit1
Enr []lAiX(tiatiﬂ]H] =C'E 14, Hud<M>u:|
L t;
tit1

=C'E |14,F { H,d{M),

gl

[ B[ Hud(M), | R
/o YWEGn, 0D, |7

—Co-'g ]l{SG(ti»ti+l]}d<M>s

tita

=FEy [ILAiX(ti,t¢+1]Hn:| )

as we wanted.
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Exercise 9.4 Let d > 2, Q = C([0,00); R?) and Y = (V3);>0 denote the coordinate process. For
each € R?, let P, be the unique probability measure on (£, Y% ) under which Y is a d-dimensional
Brownian motion started at x.

Let x € R?\ {0} and a,b such that 0 < a < |z| < b. Consider the stopping times

Ta::inf{tz():\Yt|§a}, Tb::inf{t20:|Yt|2b}.

(a) Suppose that d > 3. Show that (X;);>0 defined by X; := |V, A/~ is a bounded martingale
under P,.

(b) Suppose that d = 2. Show that (X;);>o defined by X; := —log|Y: arnt| is a bounded
martingale under P,,.

(c) Let d > 2. Show that for any = € R?\ {0},

]P’x[Yt;éOforalltZO] =1.
(d) Let d > 3. Show that for any = € R%, we have

i =] =1

Remark: The result in (d) is known as transience of Brownian motion in R?, for d > 3.

Solution 9.4
(a) For any C? function g : (0,00) — R, we can define the radial function f:R%\ {0} — R by
f(@) = g(|z)).
By straightforward calculations, we have for every z # 0 that

d—1
r

Af(z)=g"(r)+ g'(r), withr=z|.

We consider g(r) := r?~%, which is C? on (0, 00), and let f(z) := g(|]z|). For any z # 0,

Af(z) =g"(r) + ?9’(7”) =2-d)(1—dr t+@2-d)(d—1)r"?=0,

which means that f(z) = |z|>~? is harmonic on R?\ {0}. By applying Itd’s formula, as

Af =0 so that the second order term vanishes, we see that P -a.s. for all ¢ > 0

2-d Ta At
X = Yot " = f(Yrunt) = f(2) +/O VI(Y,)dYs,

which already shows that (Xt);>0 is a local martingale, since f is C? and Y is continuous, so
that V f(Ys) is locally bounded. Moreover, as d > 3, we have that

1 1

2-d
0 X =Yrmf = Yo, at]d2 = ad=2’

Thus, since X is uniformly bounded, it is a true martingale.
(b) Similarly to (a), set g(r) = —logr and f(z) = g(Jz|). We have that

/] dil/ 7i7i7
Af(@) =¢"()+ =g = 5 - 5 =0,
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therefore
Ta AT /AL
X, = —10g| Vo nmont| = FVronmnt) = f() + / VE(Y,) dY,.
0

By the same argument as in (a), X is a local martingale. Since a < |W., arat| < b, we obtain
that X is bounded by —logb < X; < —loga and therefore it is a true martingale.

For the cases d > 3 and d = 2, let g and f be as defined in (a) and (b) respectively. Consider
the martingale M; = f(Y:, arat) (which is the same as X™ in the case d > 3). Note that
limsup,_, ., |¥;| = oo; thus 7, < oo and also 7, A 7, < oo a.s. Therefore, we have that
limy oo My = f(Yr an) Where |Yr ar| € {a,b}. Since M is bounded, hence a uniformly
integrable martingale, we obtain that

gll2l) = Mo =B, [ lim M,] = gla)Pa[ra < 7] + g(0)Pulr < 7],

Rearranging, we get
9(lz]) — g(b)Pa[m < 7d]
g(a) '
Note that in both cases d = 2 and d > 3, it holds that g(a) — 0o as a N\ 0. Therefore, taking
the limit (by dominated convergence), we obtain that

P.lre < 7] =

Pylro <7 =0, b> |z

Taking the limit again as b — 0o, we obtain that
P, |:T0 < lim Tb:| =0.
b—o0

However, since Y is locally bounded we have that lim_, 7 = co. Therefore, 7p = oo a.s.
and
]P’m[Xt # 0 for alltZ()] =1

as we wanted.

By translation invariance of Brownian motion, we can assume that = # 0 without loss of
generality. For d > 3, define
My = g(|va]) = [vi*~.

This is P,-a.s. well defined for all ¢ > 0, since 79 = 0o a.s. by (c).

As in (a), M is a local martingale. In this case, while M is not bounded, it is a nonnegative
local martingale, hence a supermartingale by Exercise 8.2. Since M is a nonnegative
supermartingale, it also follows by the supermartingale convergence theorem that M; — M,
a.s. for some F,,-measurable random variable M,,. Noting that

limsup |V;| =0 Py-as.,
t—00

it follows that

My, = lim M; = liminf [V;|?~% = 0,
t—o00 t—o00

and therefore )

Vi = M?™% = 00 Pg-as.

as we wanted.
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