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Exercise 11.1 (American Option) We consider discrete price process S = (S0, S1) consisting of
a risk-free bond S0

t = (1 + r)t and a risky asset (S1
t )Tt=1. Assume the market is complete and no

arbitrage, and let Q be the equivalent martingale measure. Let θ be the self-financing strategy and
V (θ) be the corresponding value process:

Vt(θ) = V0(θ) +
t∑

u=1
θu ·∆u. (1)

Consider the American option with payoff ft = (K − S1
t )+ and fair price V ∗(0) = x

(a) Assume that there exist θ∗ and stopping time τ∗ s.t. Vτ∗(θ∗) = fτ∗ , prove that

x = sup
τ∈T

EQ[(1 + r)−τfτ ]. (2)

by optional stopping theorem. (We don’t know if such θ∗ and τ∗ exist for now but we prove
they do exist in (b)(c)(d))

(b) Let V ∗ be the fair price process of the American option, prove that

V ∗t−1 = max{ft−1, (1 + r)−1EQ[V ∗t |Ft−1]}, t = 1, . . . , T. (3)

(c) (Snell Envelope) If Z and X satisfies that

ZT = XT , Zt−1 = max{Xt−1,EQ[Zt|Ft−1]}, t = 1, . . . , T, (4)

then prove that Z is a supermartingale and

Z0 = sup
τ∈T

E[Xτ ]. (5)

(d) Use (c) (with Xt = (1 + r)−tft and Zt = (1 + r)−tV ∗t ) and the martingale representation
theorem to prove that there exist θ∗ and stopping time τ∗ s.t. Vτ∗(θ∗) = fτ∗ .

(e) Use (3) and write conditional expectation as a function of random variable to replicate the
Longstaff and Schwartz method.

Exercise 11.2 (Reinforcement Learning)

(a) Assume a time discrete finite time horizon setting and prove the Dynamic Programming
Principle:

V ∗(t, x) = sup
π∈Π

Et,x
[
V ∗(t+ 1, xπ(t)) + c(t, xπ(t), πt)

]
(6)

(b) Consider the following optimal stopping problem:

sup
τ∈T

E
[
c(τ, xτ )

]
(7)

and formulate it as a reinforcement learning problem.
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(c) Prove that under policy iteration

V π
(n+1)

≤ T V π
(n)

(8)

where T is the Bellman operator (see lecture note) and use (8) to further prove the linear
convergence of policy iteration:

‖V π
(n)
− V ∗‖ ≤ Cγn (9)

(d) Does value iteration/ policy iteration/ Q iteration need the knowledge of the underlying
dynamic (the transition probability)? What can we do if we can only draw samples from
doing experiment under this dynamic? What is the difference between Monte Carlo method
and Temporal Difference method in reinforcement learning? What is the difference between
SARSA and Q-learning?
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