
ETH Zürich, FS 2022
Prof. Josef Teichmann Coordinator: Songyan Hou

Machine Learning in Finance

Solution sheet 4

Exercise 4.1 (Bayesian optimization)

(a) Recall the definition of prior, likelihood, posterior, and evidence distributions in bayesian
statistics.

(b) Consider linear model on R: Y ∼ θX +Z, θ ∼ N (0, 1), Z ∼ N (0, 1), and θ independent with
X. Compute pθ(y|x) and p(θ|x, y). Prove that maximizing the posterior p(θ|x, y) is exactly
doing Ridge regression (fix λ here).

(c) Consider Lasso regression, what is the prior under Bayesian perspective? Please calculate the
posterior under this prior.

(d) Would you expect a sparser weight or denser weight using Lasso regression instead of Ridge
regression.

Solution 4.1

(a) See wiki.

(b) See the proof here.

(c) Sparser for Lasso.

Exercise 4.2 (Stochastic gradient descent)

(a) Assume that we aim to find the θ∗ to maximize the posterior:

p(θ|x1, · · · , xn) =
p(θ)

∏n
i=1 p(xi|θ)

p(x1, · · · , xn) (1)

with stochastic gradient descent method in practice. In each step, do we calculate∇p(θ|x1, · · · , xn)?
do we calculate ∇ log p(θ|x1, · · · , xn)? do we calculate ∇ log p(θ) or ∇ log p(xi|θ)?

(b) If p(x1, · · · , xn) has no closed formula, does it cause a trouble when we do stochastic gradient
descent?

(c) Construct a stochastic differential equation with invariant measure to be the posterior
distribution p(θ|x1, · · · , xn).

Solution 4.2

(a) We calculate ∇ log p(θ) and ∇ log p(xi|θ).

(b) No, because this is a scaling term

(c) See lecture notebook 3

Exercise 4.3 (Backpropogation) Code the backpropogation by hand. See the notebook of
lecture 2.

Solution 4.3
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https://statisticaloddsandends.wordpress.com/2018/12/29/bayesian-interpretation-of-ridge-regression/

