Modular Forms: Problem Sheet 10

Sarah Zerbes

13th May 2022

1. Let $\Gamma^{\prime} \subset \Gamma \subset \operatorname{SL}_{2}(\mathbb{Z})$ be congruence subgroups with $-I \in \Gamma^{\prime}$. Suppose that $f \in \mathcal{S}_{k}(\Gamma) \subset \mathcal{S}_{k}\left(\Gamma^{\prime}\right)$ and that $g \in \mathcal{S}_{k}\left(\Gamma^{\prime}\right)$. Letting $\Gamma=\bigcup_{i} \alpha_{i} \Gamma^{\prime}$, define the trace of g to be

$$
\operatorname{trace} g=\left.\sum_{i} g\right|_{k} \alpha_{i} \in \mathcal{S}_{k}(\Gamma)
$$

Show that

$$
\langle f, g\rangle_{\Gamma^{\prime}}=\langle f, \text { trace } g\rangle_{\Gamma} .
$$

2. Let $\Gamma \subset \mathrm{SL}_{2}(\mathbb{Z})$ be a congruence subgroup, and let $\alpha \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$. Set $\alpha^{\prime}=\operatorname{det}(\alpha) \alpha^{-1}$. Show that if $\alpha^{-1} \Gamma \alpha=\Gamma$, then $\left.\right|_{k} \alpha^{\prime}$ is the adjoint operator of $\left.\right|_{k} \alpha$ with respect to the Petersson inner product.
3. Define the normalized Petersson inner product as

$$
[f, g]_{\Gamma}=\frac{1}{V_{\Gamma}}\langle f, g\rangle_{\Gamma},
$$

for any two cusp forms $f, g \in \mathcal{S}_{k}(\Gamma)$, and with $V_{\Gamma}=\int_{D_{\Gamma}} \frac{d x d y}{y^{2}}$.
i. Find a formula relating the volumes V_{Γ} and $V_{\mathrm{SL}_{2}(\mathbb{Z})}$ and the index $\left[\mathrm{PSL}_{2}(\mathbb{Z}): \bar{\Gamma}\right]$.
ii. Show that if $\Gamma^{\prime} \subset \Gamma \subset \mathrm{SL}_{2}(\mathbb{Z})$ are congruence subgroups, then $[,]_{\Gamma}=[,]_{\Gamma^{\prime}}$ on $\mathcal{S}_{k}(\Gamma)$.

