Modular Forms: Problem Sheet 10

Sarah Zerbes

13th May 2022

1. Let $\Gamma' \subset \Gamma \subset \operatorname{SL}_2(\mathbb{Z})$ be congruence subgroups with $-I \in \Gamma'$. Suppose that $f \in \mathcal{S}_k(\Gamma) \subset \mathcal{S}_k(\Gamma')$ and that $g \in \mathcal{S}_k(\Gamma')$. Letting $\Gamma = \bigcup_i \alpha_i \Gamma'$, define the trace of g to be

trace
$$g = \sum_{i} g|_k \alpha_i \in \mathcal{S}_k(\Gamma)$$

Show that

$$\langle f, g \rangle_{\Gamma'} = \langle f, \operatorname{trace} g \rangle_{\Gamma}.$$

- 2. Let $\Gamma \subset \operatorname{SL}_2(\mathbb{Z})$ be a congruence subgroup, and let $\alpha \in \operatorname{GL}_2^+(\mathbb{Q})$. Set $\alpha' = \det(\alpha)\alpha^{-1}$. Show that if $\alpha^{-1}\Gamma\alpha = \Gamma$, then $|_k\alpha'$ is the adjoint operator of $|_k\alpha$ with respect to the Petersson inner product.
- 3. Define the normalized Petersson inner product as

$$[f,g]_{\Gamma} = \frac{1}{V_{\Gamma}} \langle f,g \rangle_{\Gamma},$$

for any two cusp forms $f, g \in \mathcal{S}_k(\Gamma)$, and with $V_{\Gamma} = \int_{D_{\Gamma}} \frac{dxdy}{y^2}$.

- i. Find a formula relating the volumes V_{Γ} and $V_{\mathrm{SL}_2(\mathbb{Z})}$ and the index $[\mathrm{PSL}_2(\mathbb{Z}):\overline{\Gamma}]$.
- ii. Show that if $\Gamma' \subset \Gamma \subset SL_2(\mathbb{Z})$ are congruence subgroups, then $[,]_{\Gamma} = [,]_{\Gamma'}$ on $\mathcal{S}_k(\Gamma)$.