Modular Forms: Problem Sheet 11

Sarah Zerbes

23rd May 2022

1. (a) Let $\gamma=\left(\begin{array}{cc}0 & -1 \\ N & 0\end{array}\right)$. Show that $\gamma^{-1} \Gamma_{1}(N) \gamma=\Gamma_{1}(N)$, and so the operator $w_{N}=\left.\right|_{k} \gamma$ is the double coset operator $\left[\Gamma_{1}(N) \gamma \Gamma_{1}(N)\right]_{k}$ on $\mathcal{S}_{k}\left(\Gamma_{1}(N)\right)$. Show that $w_{N}\langle n\rangle w_{N}^{-1}=\langle n\rangle^{*}$ for all n such that $(n, N)=1$, and thus for all n.
(b) Let $\Gamma_{1}(N)\left(\begin{array}{cc}1 & 0 \\ 0 & p\end{array}\right) \Gamma_{1}(N)=\cup_{j} \Gamma_{1}(N) \beta_{j}$ be a distinct union. From part (a), $\gamma \Gamma_{1}(N)=\Gamma_{1}(N) \gamma$ and similarly for γ^{-1}. Use this and the formula

$$
\left(\begin{array}{ll}
p & 0 \\
0 & 1
\end{array}\right)=\gamma^{-1}\left(\begin{array}{ll}
1 & 0 \\
0 & p
\end{array}\right) \gamma
$$

to find coset representatives for $\Gamma_{1}(N)\left(\begin{array}{ll}p & 0 \\ 0 & 1\end{array}\right) \Gamma_{1}(N)$. Use the formula for the adjoint computed in Theorem 3.4.6 and the coset representatives to show that

$$
T_{p}^{*}=w_{N} T_{p} w_{N}^{-1} \text { and so } T_{n}^{*}=w_{N} T_{n} w_{N}^{-1} \text { for all } n
$$

(c) Show that $w_{N}^{*}=(-1)^{k} w_{N}$ and that $i^{k} w_{N} T_{n}$ is self-adjoint.
2. Let l be a prime and let $N \in \mathbb{Z}_{\geq 1}$. Recall the U_{l} and V_{l} operators and their action on the q-expansion of $f=\sum_{n} a_{n} q^{n} \in \mathcal{M}_{k}\left(\Gamma_{1}(N)\right)$:

$$
\begin{aligned}
U_{l} f & =\sum_{n} a_{n l} q^{n} \\
V_{l} f & =\sum_{n} a_{n} q^{n l}
\end{aligned}
$$

Compute the composition $V_{l} \circ U_{l}$.
3. Recall that a lattice in \mathbb{C} is a subgroup $\Lambda \subset \mathbb{C}$ of the form

$$
\Lambda=\omega_{1} \mathbb{Z}+\omega_{2} \mathbb{Z}
$$

for two \mathbb{R}-linearly independent complex numbers ω_{1}, ω_{2}. We make the normalizing convention that $\omega_{1} / \omega_{2} \in \mathcal{H}$ and denote \mathcal{L} the set of such lattices. Note that two lattices of \mathcal{L}, say $\Lambda=\omega_{1} \mathbb{Z}+\omega_{2} \mathbb{Z}$ and $\Lambda^{\prime}=\omega_{1}^{\prime} \mathbb{Z}+\omega_{2}^{\prime} \mathbb{Z}$, are equal if and only if there exists a matrix $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$ such that

$$
\binom{\omega_{1}}{\omega_{2}}=\gamma\binom{\omega_{1}^{\prime}}{\omega_{2}^{\prime}} .
$$

For an arbitrary $\Lambda=\omega_{1} \mathbb{Z}+\omega_{2} \mathbb{Z}$, we let $\tau=\omega_{1} / \omega_{2} \in \mathcal{H}$ and $\Lambda_{\tau}:=\tau \mathbb{Z}+\mathbb{Z}$. Then, the map

$$
\begin{array}{cccc}
\varphi_{\tau}: & \mathbb{C} / \Lambda & \rightarrow & \mathbb{C} / \Lambda_{\tau} \\
z+\Lambda & \mapsto & b / \omega_{2}+\Lambda_{\tau}
\end{array}
$$

is an isomorphism. Moreover, $\tau \in \mathcal{H}$ is uniquely determined up to the action of $\mathrm{SL}_{2}(\mathbb{Z})$ on \mathcal{H}.
Finally, we say that a map

$$
\mathcal{F}: \mathcal{L} \rightarrow \mathbb{C}
$$

is homogeneous of weight $k \in \mathbb{Z}$ if it satisfies

$$
\mathcal{F}(\lambda \Lambda)=\lambda^{-k} \mathcal{F}(\Lambda) \text { for all } \lambda \in \mathbb{C}^{*} \text { and } \Lambda \in \mathcal{L}
$$

Note that the value of F at any $\Lambda \in \mathcal{L}$ is completely determined by its value at Λ_{τ}. To a homogeneous map, we associate a function $f: \mathcal{H} \rightarrow \mathbb{C}$ by letting $f(\tau)=\mathcal{F}\left(\Lambda_{\tau}\right)$ for all $\Lambda \in \mathcal{L}$. This function is then well-defined by the above paragraph.
(a) Show that such an f is modular, i.e. prove that $f(\gamma \tau)=\mathcal{F}\left(\Lambda_{\gamma \tau}\right)=j(\gamma, \tau)^{k} f(\tau)$ for all $\gamma \in$ $\mathrm{SL}_{2}(\mathbb{Z})$ and $\tau \in \mathcal{H}$.
(b) For a prime number p, define the Hecke operator T_{p} by letting $T_{p} \mathcal{F}$ be the homogeneous function of weight k corresponding to $T_{p} f$ (where the second occurence of T_{p} is our usual Hecke operator on $\mathcal{M}_{k}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$). Show that

$$
T_{p} \mathcal{F}(\Lambda)=\frac{1}{p} \sum_{\substack{\Lambda^{\prime} \supset \Lambda \\\left[\Lambda^{\prime}: \Lambda\right]=p}} \mathcal{F}\left(\Lambda^{\prime}\right), \forall \Lambda \in \mathcal{L} .
$$

