Modular Forms: Problem Sheet 11

Sarah Zerbes

23rd May 2022

- 1. (a) Let $\gamma = \begin{pmatrix} 0 & -1 \\ N & 0 \end{pmatrix}$. Show that $\gamma^{-1}\Gamma_1(N)\gamma = \Gamma_1(N)$, and so the operator $w_N = |_k \gamma$ is the double coset operator $[\Gamma_1(N)\gamma\Gamma_1(N)]_k$ on $\mathcal{S}_k(\Gamma_1(N))$. Show that $w_N \langle n \rangle w_N^{-1} = \langle n \rangle^*$ for all n such that (n, N) = 1, and thus for all n.
 - (b) Let $\Gamma_1(N) \begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix} \Gamma_1(N) = \bigcup_j \Gamma_1(N) \beta_j$ be a distinct union. From part (a), $\gamma \Gamma_1(N) = \Gamma_1(N) \gamma$ and similarly for γ^{-1} . Use this and the formula

$$\begin{pmatrix} p & 0\\ 0 & 1 \end{pmatrix} = \gamma^{-1} \begin{pmatrix} 1 & 0\\ 0 & p \end{pmatrix} \gamma$$

to find coset representatives for $\Gamma_1(N) \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix} \Gamma_1(N)$. Use the formula for the adjoint computed in Theorem 3.4.6 and the coset representatives to show that

$$T_p^* = w_N T_p w_N^{-1}$$
 and so $T_n^* = w_N T_n w_N^{-1}$ for all n .

- (c) Show that $w_N^* = (-1)^k w_N$ and that $i^k w_N T_n$ is self-adjoint.
- 2. Let *l* be a prime and let $N \in \mathbb{Z}_{\geq 1}$. Recall the U_l and V_l operators and their action on the *q*-expansion of $f = \sum_n a_n q^n \in \mathcal{M}_k(\Gamma_1(N))$:

$$U_l f = \sum_n a_{nl} q^n,$$
$$V_l f = \sum_n a_n q^{nl}.$$

Compute the composition $V_l \circ U_l$.

3. Recall that a lattice in $\mathbb C$ is a subgroup $\Lambda \subset \mathbb C$ of the form

$$\Lambda = \omega_1 \mathbb{Z} + \omega_2 \mathbb{Z}$$

for two \mathbb{R} -linearly independent complex numbers ω_1, ω_2 . We make the normalizing convention that $\omega_1/\omega_2 \in \mathcal{H}$ and denote \mathcal{L} the set of such lattices. Note that two lattices of \mathcal{L} , say $\Lambda = \omega_1 \mathbb{Z} + \omega_2 \mathbb{Z}$ and $\Lambda' = \omega'_1 \mathbb{Z} + \omega'_2 \mathbb{Z}$, are equal if and only if there exists a matrix $\gamma \in SL_2(\mathbb{Z})$ such that

$$\begin{pmatrix} \omega_1 \\ \omega_2 \end{pmatrix} = \gamma \begin{pmatrix} \omega_1' \\ \omega_2' \end{pmatrix}.$$

For an arbitrary $\Lambda = \omega_1 \mathbb{Z} + \omega_2 \mathbb{Z}$, we let $\tau = \omega_1 / \omega_2 \in \mathcal{H}$ and $\Lambda_\tau := \tau \mathbb{Z} + \mathbb{Z}$. Then, the map

$$\begin{array}{rcl} \varphi_{\tau}: & \mathbb{C}/\Lambda & \to & \mathbb{C}/\Lambda_{\tau} \\ & z + \Lambda & \mapsto & z/\omega_2 + \Lambda_{\tau} \end{array}$$

is an isomorphism. Moreover, $\tau \in \mathcal{H}$ is uniquely determined up to the action of $SL_2(\mathbb{Z})$ on \mathcal{H} . Finally, we say that a map

$$\mathcal{F}:\mathcal{L}\to\mathbb{C}$$

is homogeneous of weight $k \in \mathbb{Z}$ if it satisfies

$$\mathcal{F}(\lambda\Lambda) = \lambda^{-k} \mathcal{F}(\Lambda)$$
 for all $\lambda \in \mathbb{C}^*$ and $\Lambda \in \mathcal{L}$.

Note that the value of F at any $\Lambda \in \mathcal{L}$ is completely determined by its value at Λ_{τ} . To a homogeneous map, we associate a function $f : \mathcal{H} \to \mathbb{C}$ by letting $f(\tau) = \mathcal{F}(\Lambda_{\tau})$ for all $\Lambda \in \mathcal{L}$. This function is then well-defined by the above paragraph.

- (a) Show that such an f is modular, i.e. prove that $f(\gamma \tau) = \mathcal{F}(\Lambda_{\gamma \tau}) = j(\gamma, \tau)^k f(\tau)$ for all $\gamma \in SL_2(\mathbb{Z})$ and $\tau \in \mathcal{H}$.
- (b) For a prime number p, define the Hecke operator T_p by letting $T_p\mathcal{F}$ be the homogeneous function of weight k corresponding to T_pf (where the second occurrence of T_p is our usual Hecke operator on $\mathcal{M}_k(\mathrm{SL}_2(\mathbb{Z}))$). Show that

$$T_p \mathcal{F}(\Lambda) = \frac{1}{p} \sum_{\substack{\Lambda' \supset \Lambda \\ [\Lambda':\Lambda] = p}} \mathcal{F}(\Lambda'), \ \forall \Lambda \in \mathcal{L}.$$