Modular Forms: Problem Sheet 1

Sarah Zerbes

26th February 2022

1. Show that the action of $\operatorname{PSL}_{2}(\mathbb{R})$ on \mathcal{H} is transitive (for any $z, z^{\prime} \in \mathcal{H}$, there is $g \in \operatorname{PSL}_{2}(\mathbb{R})$ such that $g \circ z=z^{\prime}$) and faithful (no non-identity element in $\operatorname{PSL}_{2}(\mathbb{R})$ acts trivially on \mathcal{H}).
2. Let $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be an element of $\mathrm{SL}_{2}(\mathbb{Z})$. Show that if $c=1$ and $d=0$, and there is some $z \in D$ such that $\gamma z \in D$, then we must have one of the following possibilities:

- $\gamma=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$, and z is any element of D with $|z|=1$,
- $\gamma=\left(\begin{array}{cc}1 & -1 \\ 1 & 0\end{array}\right), z=\gamma z=1+\rho$,
- $\gamma=\left(\begin{array}{cc}-1 & -1 \\ 1 & 0\end{array}\right), z=\gamma z=\rho$.
(This fills in a detail of Step 2 of Theorem 1.2.2.)

3. Express the element

$$
\gamma=\left(\begin{array}{cc}
8 & 29 \\
11 & 40
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})
$$

in terms of the generators S and T.
4. Let $G=\mathrm{SL}_{2}(\mathbb{Z})$. Show that for $z \in D$, we have

$$
G_{z}= \begin{cases}C_{6}=\langle S T\rangle=\left\langle\left(\begin{array}{cc}
0 & -1 \\
1 & 1
\end{array}\right)\right\rangle & z=\rho \\
C_{6}=\langle T S\rangle=\left\langle\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right)\right\rangle & z=\rho+1 \\
C_{4}=\langle S\rangle=\left\langle\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right\rangle & z=i \\
C_{2}=\langle-\mathrm{Id}\rangle=\left\langle\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)\right\rangle & z \notin\{i, \rho, \rho+1\}\end{cases}
$$

