Modular Forms: Problem Sheet 1

Sarah Zerbes

26th February 2022

- 1. Show that the action of $PSL_2(\mathbb{R})$ on \mathcal{H} is **transitive** (for any $z, z' \in \mathcal{H}$, there is $g \in PSL_2(\mathbb{R})$ such that $g \circ z = z'$) and **faithful** (no non-identity element in $PSL_2(\mathbb{R})$ acts trivially on \mathcal{H}).
- 2. Let $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be an element of $SL_2(\mathbb{Z})$. Show that if c = 1 and d = 0, and there is some $z \in D$ such that $\gamma z \in D$, then we must have one of the following possibilities:

•
$$\gamma = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
, and z is any element of D with $|z| = 1$,
• $\gamma = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$, $z = \gamma z = 1 + \rho$,
• $\gamma = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}$, $z = \gamma z = \rho$.

(This fills in a detail of Step 2 of Theorem 1.2.2.)

3. Express the element

$$\gamma = \begin{pmatrix} 8 & 29\\ 11 & 40 \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z})$$

in terms of the generators S and T.

4. Let $G = SL_2(\mathbb{Z})$. Show that for $z \in D$, we have

$$G_{z} = \begin{cases} C_{6} = \langle ST \rangle = \left\langle \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix} \right\rangle & z = \rho \\ C_{6} = \langle TS \rangle = \left\langle \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} \right\rangle & z = \rho + 1 \\ C_{4} = \langle S \rangle = \left\langle \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right\rangle & z = i \\ C_{2} = \langle -\mathrm{Id} \rangle = \left\langle \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\rangle & z \notin \{i, \rho, \rho + 1\} \end{cases}$$