Modular Forms: Problem Sheet 2

Sarah Zerbes

4th March 2022

- 1. (a) Let a, b, c, d be integers. Show that the map $(m, n) \mapsto (ma + nc, mb + nd)$ is a bijection on $\mathbb{Z}^2 \{(0, 0)\}$ if and only if $ad bc = \pm 1$.
 - (b) Hence show that for $k \ge 4$ even, the Eisenstein series

$$G_k(z) = \sum_{(m,n) \neq (0,0)} \frac{1}{(mz+n)^k}$$

satisfies $G_k|_k \gamma = G_k$ for any $\gamma \in SL_2(\mathbb{Z})$, without using Theorem 1.2.2 (a) as we did in class. (You may assume that the sum defining $G_k(z)$ converges absolutely for any $z \in \mathcal{H}$.)

2. (a) Prove the identity

$$\pi z \frac{\cos(\pi z)}{\sin(\pi z)} = \sum_{k \ge 0, \text{ even}} (2\pi i)^k \frac{B_k}{k!} z^k \qquad \forall |z| < 1.$$

(b) Show that

$$\pi z \frac{\cos(\pi z)}{\sin(\pi z)} = 1 - 2 \sum_{k \ge 2, \text{ even}} \zeta(k) z^k \qquad \forall |z| < 1.$$

(c) Deduce that the values of the Riemann zeta function at the even integers $k \ge 2$ are given by

$$\zeta(k) = -\frac{(2\pi i)^k B_k}{2 \cdot k!}$$

- (d) Prove that B_k is non-zero if and only if k is 1 or k is even.
- 3. (a) Show that the Eisenstein series E_4 has a simple zero at $z = \rho$ and no other zeros.
 - (b) Similarly, show that E_6 has a simple zero at z = i and no other zeros.