Modular Forms: Problem Sheet 3

Sarah Zerbes

11th March 2022

- 1. (a) Show that the Eisenstein series E_4 has a simple zero at $z = \rho$ and no other zeros.
 - (b) Similarly, show that E_6 has a simple zero at z = i and no other zeros.
- 2. Define the modular invariant $j(z) = \frac{E_4^3}{\Delta}$. (This is an extremely important invariant, with applications to the elliptic curves and class field theory. The coefficients in its q-expansion are famous for their role in the **moonshine conjecture**, which links them to the representation theory of the monster group.)
 - (a) Prove that j is a weakly modular form of weight 0.
 - (b) Show that j is holomophic on \mathcal{H} and has a simple pole at ∞ .
 - (c) Show that j induces a bijection $PSL_2(\mathbb{Z}) \setminus \mathcal{H} \cong \mathbb{C}$.
- 3. Show that for any $k \ge 0$, we have

$$|\{(a,b) \in \mathbb{Z}_{\geq 0}^2 : 4a + 6b = k\}| = \dim M_k.$$

- 4. Let n be a positive integer.
 - (a) Show (by quoting an appropriate theorem from your notes) that the dimension of M_{4n} is 1+j, where $j = \lfloor n/3 \rfloor$. Hence show that the functions

$$E_4^n, E_4^{n-3}\Delta, \ldots, E_4^{n-3j}\Delta^j$$

are a basis of M_{4n} .

(b) Let $M_{4n}(\mathbb{Z})$ denote the \mathbb{Z} -submodule of M_{4n} consisting of modular forms whose q-expansions have integer coefficients. Show that the above functions are a \mathbb{Z} -basis of $M_{4n}(\mathbb{Z})$. (You may assume that $\Delta \in M_{12}(\mathbb{Z})$.)