Modular Forms: Problem Sheet 3

Sarah Zerbes

11th March 2022

1. (a) Show that the Eisenstein series E_{4} has a simple zero at $z=\rho$ and no other zeros.
(b) Similarly, show that E_{6} has a simple zero at $z=i$ and no other zeros.
2. Define the modular invariant $j(z)=\frac{E_{4}^{3}}{\Delta}$. (This is an extremely important invariant, with applications to the elliptic curves and class field theory. The coefficients in its q-expansion are famous for their role in the moonshine conjecture, which links them to the representation theory of the monster group.)
(a) Prove that j is a weakly modular form of weight 0 .
(b) Show that j is holomophic on \mathcal{H} and has a simple pole at ∞.
(c) Show that j induces a bijection $\operatorname{PSL}_{2}(\mathbb{Z}) \backslash \mathcal{H} \cong \mathbb{C}$.
3. Show that for any $k \geq 0$, we have

$$
\left|\left\{(a, b) \in \mathbb{Z}_{\geq 0}^{2}: 4 a+6 b=k\right\}\right|=\operatorname{dim} M_{k} .
$$

4. Let n be a positive integer.
(a) Show (by quoting an appropriate theorem from your notes) that the dimension of $M_{4 n}$ is $1+j$, where $j=\lfloor n / 3\rfloor$. Hence show that the functions

$$
E_{4}^{n}, E_{4}^{n-3} \Delta, \ldots, E_{4}^{n-3 j} \Delta^{j}
$$

are a basis of $M_{4 n}$.
(b) Let $M_{4 n}(\mathbb{Z})$ denote the \mathbb{Z}-submodule of $M_{4 n}$ consisting of modular forms whose q-expansions have integer coefficients. Show that the above functions are a \mathbb{Z}-basis of $M_{4 n}(\mathbb{Z})$. (You may assume that $\Delta \in M_{12}(\mathbb{Z})$.)

