Modular Forms: Problem Sheet 4

Sarah Zerbes

18th March 2022

- 1. If f is a modular form (of any weight), write $a_i(f)$ for the coefficient of q^i in its q-expansion.
 - (a) Find constants c_1 and c_2 such that $f = c_1 E_4^3 + c_2 E_6^2$ has $a_1(f) = 1$ and $a_2(f) = \sigma_{11}(2)$. Hence show that the constant γ_{12} such that

$$E_{12} = 1 + \gamma_{12} \sum_{n \ge 1} \sigma_{11}(n) q^n$$

is equal to $\frac{65520}{691}$.

(b) Deduce that

$$\zeta(12) = \frac{691}{638512875} \,\pi^{12}.$$

(c) Find constants d_1, d_2 such that

$$\Delta = d_1 E_{12} + d_2 E_4^3$$

Hence prove Ramanujan's congruence for the coefficients of Δ modulo 691, namely that

$$\tau(n) = \sigma_{11}(n) \pmod{691}.$$

- 2. Let $N \ge 2$ and let $c, d \in \mathbb{Z}/N\mathbb{Z}$. We say that c and d are **coprime modulo** N if there is no $f \ne 0$ in $\mathbb{Z}/N\mathbb{Z}$ such that fc = fd = 0.
 - (a) Show that if $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z}/N\mathbb{Z})$, then c and d are coprime modulo N.
 - (b) Show that for any pair (c, d) that are coprime modulo N, there exist $c', d' \in \mathbb{Z}$ such that c' = c and $d' = d \pmod{N}$ and $\operatorname{HCF}(c', d') = 1$.
 - (c) Hence (or otherwise) show that the natural reduction map $\operatorname{SL}_2(\mathbb{Z}) \to \operatorname{SL}_2(\mathbb{Z}/N\mathbb{Z})$ is surjective for any $n \ge 2$.
 - (d) Give an example of an integer N and an element of $\operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z})$ which is not the reduction of any element of $\operatorname{GL}_2(\mathbb{Z})$.
- 3. (a) Let D and N be positive integers, and let β be a (2x2) matrix with integral entries and determinant D. Prove that $\Gamma(DN) \subseteq \Gamma(N) \cap \beta^{-1} \Gamma(N) \beta$
 - (b) Let Γ be any congruence subgroup, and let $\alpha \in \{A \in \operatorname{GL}_2(\mathbb{Q}) : \det(A) > 0\}$. Prove that the group $\Gamma' = \Gamma \cap \alpha^{-1}\Gamma\alpha$ is again a congruence subgroup.