Modular Forms: Problem Sheet 4

Sarah Zerbes

18th March 2022

1. If f is a modular form (of any weight), write $a_{i}(f)$ for the coefficient of q^{i} in its q-expansion.
(a) Find constants c_{1} and c_{2} such that $f=c_{1} E_{4}^{3}+c_{2} E_{6}^{2}$ has $a_{1}(f)=1$ and $a_{2}(f)=\sigma_{11}(2)$. Hence show that the constant γ_{12} such that

$$
E_{12}=1+\gamma_{12} \sum_{n \geq 1} \sigma_{11}(n) q^{n}
$$

is equal to $\frac{65520}{691}$.
(b) Deduce that

$$
\zeta(12)=\frac{691}{638512875} \pi^{12}
$$

(c) Find constants d_{1}, d_{2} such that

$$
\Delta=d_{1} E_{12}+d_{2} E_{4}^{3}
$$

Hence prove Ramanujan's congruence for the coefficients of Δ modulo 691, namely that

$$
\tau(n)=\sigma_{11}(n) \quad(\bmod 691)
$$

2. Let $N \geq 2$ and let $c, d \in \mathbb{Z} / N \mathbb{Z}$. We say that c and d are coprime modulo N if there is no $f \neq 0$ in $\mathbb{Z} / N \mathbb{Z}$ such that $f c=f d=0$.
(a) Show that if $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})$, then c and d are coprime modulo N.
(b) Show that for any pair (c, d) that are coprime modulo N, there exist $c^{\prime}, d^{\prime} \in \mathbb{Z}$ such that $c^{\prime}=c$ and $d^{\prime}=d(\bmod N)$ and $\operatorname{HCF}\left(c^{\prime}, d^{\prime}\right)=1$.
(c) Hence (or otherwise) show that the natural reduction map $\mathrm{SL}_{2}(\mathbb{Z}) \rightarrow \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})$ is surjective for any $n \geq 2$.
(d) Give an example of an integer N and an element of $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$ which is not the reduction of any element of $\mathrm{GL}_{2}(\mathbb{Z})$.
3. (a) Let D and N be positive integers, and let β be a (2x2) matrix with integral entries and determinant D. Prove that $\Gamma(D N) \subseteq \Gamma(N) \cap \beta^{-1} \Gamma(N) \beta$
(b) Let Γ be any congruence subgroup, and let $\alpha \in\left\{A \in \mathrm{GL}_{2}(\mathbb{Q}): \operatorname{det}(A)>0\right\}$. Prove that the group $\Gamma^{\prime}=\Gamma \cap \alpha^{-1} \Gamma \alpha$ is again a congruence subgroup.
