Modular Forms: Problem Sheet 5

Sarah Zerbes

25th March 2022

- 1. Let Γ and Γ' be congruence subgroups such that $\Gamma' \trianglelefteq \Gamma$.
 - 1. Show that if $c, d \in C(\Gamma')$ are equivalent in $C(\Gamma)$, then $h_{\Gamma'}(c) = h_{\Gamma'}(d)$.
 - 2. Let $c \in \text{Cusps}(\Gamma')$. Show that

$$\sum_{\substack{d \in C(\Gamma') \\ d=c \text{ in } \operatorname{Cusps}(\Gamma)}} h_{\Gamma'}(d) = [\overline{\Gamma} : \overline{\Gamma'}] h_{\Gamma}(c).$$

- 3. Hence show that for p odd, $\Gamma_1(p)$ has exactly p-1 cusps.
- 2. (a) Show that $SL_2(\mathbb{Z})$ contains an index 2 subgroup Γ which is congruence of level 2.
 - (b) Show that the only cusp of Γ is $[\infty]$. What is its width?
- 3. Show that the cusp c = [1/2] of $\Gamma_1(4)$ is irregular, and find a generator of the corresponding subgroup H_c .
- 4. Let Γ and Γ' be congruence subgroups such that $\Gamma' \trianglelefteq \Gamma$. Let f be a meromorphic function on \mathcal{H} that is weakly modular of weight k for Γ . Let $P' \in \text{Cusps}(\Gamma')$, and let P be its image in $\text{Cusps}(\Gamma)$. Then f is homomorphic at P if and only f (viewed as a weakly modular function of weight k for Γ') is holomorphic at P'. Also show that f vanishes at P if and only if f vanishes at P'.