Modular Forms: Problem Sheet 5

Sarah Zerbes

25th March 2022

1. Let Γ and Γ^{\prime} be congruence subgroups such that $\Gamma^{\prime} \unlhd \Gamma$.
2. Show that if $c, d \in C\left(\Gamma^{\prime}\right)$ are equivalent in $C(\Gamma)$, then $h_{\Gamma^{\prime}}(c)=h_{\Gamma^{\prime}}(d)$.
3. Let $c \in \operatorname{Cusps}\left(\Gamma^{\prime}\right)$. Show that

$$
\sum_{\substack{d \in C\left(\Gamma^{\prime}\right) \\=c \text { in } \operatorname{Cusps}(\Gamma)}} h_{\Gamma^{\prime}}(d)=\left[\bar{\Gamma}: \overline{\Gamma^{\prime}}\right] h_{\Gamma}(c) .
$$

3. Hence show that for p odd, $\Gamma_{1}(p)$ has exactly $p-1$ cusps.
4. (a) Show that $\mathrm{SL}_{2}(\mathbb{Z})$ contains an index 2 subgroup Γ which is congruence of level 2 .
(b) Show that the only cusp of Γ is $[\infty]$. What is its width?
5. Show that the cusp $c=[1 / 2]$ of $\Gamma_{1}(4)$ is irregular, and find a generator of the corresponding subgroup H_{c}.
6. Let Γ and Γ^{\prime} be congruence subgroups such that $\Gamma^{\prime} \unlhd \Gamma$. Let f be a meromorphic function on \mathcal{H} that is weakly modular of weight k for Γ. Let $P^{\prime} \in \operatorname{Cusps}\left(\Gamma^{\prime}\right)$, and let P be its image in $\operatorname{Cusps}(\Gamma)$. Then f is homomorphic at P if and only f (viewed as a weakly modular function of weight k for Γ^{\prime}) is holomorphic at P^{\prime}. Also show that f vanishes at P if and only if f vanishes at P^{\prime}.
