Modular Forms: Problem Sheet 6

Sarah Zerbes

1st April 2022

1. Show that if f is a non-zero weakly modular function of weight k, level Γ , and $g \in SL_2(\mathbb{Z})$, we have

$$v_P(f|_k g) = v_{gP}(f)$$

for all $P \in \text{Cusps}(\Gamma)$.

2. Show that for the function $F(z) = \prod_{i=1}^{d} (f|_{k}g_{i})(z)$ defined in the proof of Theorem 2.6.3, we have

$$V_{\Gamma'}(F) = \sum_{i=1}^d V_{\Gamma'}(f|_k g_i).$$

- 3. Let $F(z) = E_4(2z)$, so $F \in M_4(\Gamma_0(2))$.
 - (a) Show that $F(\infty) = 1$ and $F(0) = \frac{1}{16}$.
 - (b) Hence show that the subspace of $M_8(\Gamma_0(2))$ spanned by E_4^2 , E_4F and F^2 is 3-dimensional, and contains a unique cusp form f with $a_1(f) = 1$. Calculate the q-expansion of this form as far as the q^3 term.
 - (c) Use the valence formula and its corollaries to show that i. the functions $\{E_4^2, E_4F, F^2\}$ are a basis of $M_8(\Gamma_0(2))$, ii. $f(z) = \frac{\Delta(z) + 256\Delta(2z)}{E_4(z)}$.