Modular Forms: Problem Sheet 7

Sarah Zerbes

8th April 2022

1. Let $E_{2}(z)$ be as defined in Definition 1.7.1.
(a) Show that for all $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$, we have

$$
(c z+d)^{-2} E_{2}\left(\frac{a z+b}{c z+d}\right)=E_{2}(z)-\frac{6 i c}{\pi(c z+d)}
$$

(b) For $N \geq 2$, define

$$
E_{2}^{(N)}(z)=E_{2}(z)-N E_{2}(N z)
$$

Show that the function $E_{2}^{(N)}(z)$ is a modular form of weight 2 and level $\Gamma_{0}(N)$, and determine its values at the cusps.
2. Let Γ be a finite-index even subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$ and c a cusp of Γ. Assume that k is an even integer ≥ 4. Show that we have

$$
G_{k, \Gamma, c}(z)=\sum_{(m, n) \in S(c)} \frac{1}{(m z-n)^{k}}
$$

where $S(c)$ is the set of pairs $(m, n) \in \mathbb{Z}^{2}$ such that $\operatorname{HCF}(m, n)=1$ and the element $\frac{n}{m} \in \mathbb{P}^{1}(\mathbb{Q})$ lies in the Γ-orbit c. Describe the sets $S(c)$ for each of the three cusps $\left\{\infty, 0, \frac{1}{2}\right\}$ of $\Gamma_{1}(4)$.
3. Let $\Gamma=\mathrm{SL}_{2}(\mathbb{Z})$, and let $g=\left(\begin{array}{ll}1 & 0 \\ 0 & p\end{array}\right)$.. Decompose $\Gamma g \Gamma$ into left Γ-cosets, i.e. find $\left\{\alpha_{i} \in \mathrm{GL}_{2}(\mathbb{Q})^{+}\right\}$ such that

$$
\Gamma\left(\begin{array}{ll}
1 & 0 \\
0 & p
\end{array}\right) \Gamma=\bigcup_{i} \Gamma \alpha_{i} .
$$

Hence show that if f is a modular form of weight k and leverl Γ, we have

$$
\left.f\right|_{k}[\Gamma g \Gamma]=\frac{1}{p} \sum_{j=0}^{p-1} f\left(\frac{z+j}{p}\right)+p^{k-1} f(p z)
$$

