Modular Forms: Problem Sheet 8

Sarah Zerbes

5th May 2022

1. Find an integer N and a Dirichlet character χ modulo N such that
(a) χ is primitive, but not injective;
(b) χ is injective, but not primitive.

Show that the situation of (b) can only occur if $N=2 \bmod 4$.
2. Let p and q be distinct primes dividing the positive integer N. Show directly that if $\alpha_{0}, \ldots, \alpha_{p-1}$ and $\beta_{0}, \ldots, \beta_{q-1}$ are the left coset representatives for the double cosets T_{p} and T_{q} constructed in Proposition 3.2.2, then $\left\{\alpha_{i} \beta_{j}: 0 \leq i \leq p-1,0 \leq j \leq q-1\right\}$ is a set of left coset representatives for the double coset $\Gamma_{1}(N)\left(\begin{array}{cc}1 & 0 \\ 0 & p q\end{array}\right) \Gamma_{1}(N)$.
Hence give a direct proof that $T_{p} T_{q}=T_{q} T_{p}$ in this case.
3. Suppose p is a prime, $\Gamma=\Gamma_{1}(p)$ and $g=\left(\begin{array}{ll}1 & 0 \\ 0 & p\end{array}\right)$. Find p matrices $\left(g_{j}\right)_{j=0, \ldots, p-1}$ in $\mathrm{GL}_{2}^{+}(\mathbf{Q})$ such that

$$
\Gamma g \Gamma=\bigsqcup_{0 \leq j<p} \Gamma g_{j}=\bigsqcup_{0 \leq j<p} g_{j} \Gamma
$$

