Modular Forms: Problem Sheet 8

Sarah Zerbes

5th May 2022

- 1. Find an integer N and a Dirichlet character χ modulo N such that
 - (a) χ is primitive, but not injective;
 - (b) χ is injective, but not primitive.

Show that the situation of (b) can only occur if $N = 2 \mod 4$.

2. Let p and q be distinct primes dividing the positive integer N. Show directly that if $\alpha_0, \ldots, \alpha_{p-1}$ and $\beta_0, \ldots, \beta_{q-1}$ are the left coset representatives for the double cosets T_p and T_q constructed in Proposition 3.2.2, then $\{\alpha_i\beta_j: 0 \le i \le p-1, 0 \le j \le q-1\}$ is a set of left coset representatives for the double coset $\Gamma_1(N) \begin{pmatrix} 1 & 0 \\ 0 & pq \end{pmatrix} \Gamma_1(N)$.

Hence give a direct proof that $T_p T_q = T_q T_p$ in this case.

3. Suppose p is a prime, $\Gamma = \Gamma_1(p)$ and $g = \begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix}$. Find p matrices $(g_j)_{j=0,\dots,p-1}$ in $\operatorname{GL}_2^+(\mathbf{Q})$ such that $\Gamma g\Gamma = \begin{bmatrix} 1 & \Gamma g_i = 1 \end{bmatrix} \quad g_j \Gamma.$

$$\Gamma g \Gamma = \bigsqcup_{0 \le j < p} \Gamma g_j = \bigsqcup_{0 \le j < p} g_j \Gamma$$