Modular Forms

Sarah Zerbes

Spring semester 2021/22

Contents

0	Prologue	3
1	The modular group	5
	1.1 The upper half-plane	5
	1.2 The modular group	6

0 Prologue

Example 0.0.1. Let $z \in \mathbb{C}$, $\Im(z) > 0$. Let $q = e^{2\pi i z}$ and define Ramanujan's tau function

$$\Delta(z) = q \cdot \prod_{n \in \mathbb{N}} (1 - q^n)^{24}.$$

This is one of the simplest examples of a modular form. Note that we can "multiply out" the product above which leads us to

$$\Delta(z) = \sum_{n \in \mathbb{N}} \tau(n) q^n$$

for some integers $\tau(n)$.

Facts 0.0.2.

(1) Known to Weierstrass, 1850:

$$\Delta(z) = z^{-12} \cdot \Delta\left(-\frac{1}{z}\right)$$

(2) Ramanujan proved in 1916 that the integers $\tau(n)$ satisfy the equation

$$\tau(n) = \sum_{d|n} d^{11} \mod 691.$$

- (3) Ramanujan also conjectured $\tau(nm) = \tau(n)\tau(m)$ for n, m coprime. This was proved by Mordell in 1917.
- (4) In 1972 Swinnerton-Dyer proved $\tau(n)$ satisfies congruences like (2) modulo 2, 3, 5, 7, 23 and 691 but no other primes.
- (5) Ramanujan conjectured in 1916 for p prime holds $|\tau(p)| < 2 p^{11/2}$. This was proved in 1974 by Deligne.
- (6) The quantity

$$\frac{\tau(p)}{2p^{11/2}} \in [-1, 1]$$

is distributed in the interval [-1,1] with density function proportional to $\sqrt{1-x^2}$. This was conjectured by Sato and Tate (1960s) and proved by Barnet-Lamb, Geraghty, Harris and Taylor in 2009 using Bau Chau Ngo's Fundamental Lemma which got Ngo the 2010 Fields Medal.

Example 0.0.3. We now consider another modular form

$$f(z) = q \prod_{n=1}^{\infty} (1 - q^n)^2 (1 - q^{11n})^2$$

= $q - 2q^2 - q^3 + 2q^4 + q^5 + 2q^6 + \dots$
= $\sum_{n=1}^{\infty} a(n)q^n$ with $a(n) \in \mathbb{N}$

We will later prove the following results:

Theorem.

- 1. We have a(mn) = a(m)(n) for all $m, n \ge 1$ with (m, n) = 1.
- 2. We have $|a(p)| \leq 2\sqrt{p}$ for all primes p.

It turns out that this modular form is closely related to the elliptic curve

$$E: Y^2 + Y = X^3 - X^2 - 10X - 20.$$

For p prime, denote by N(p) the number of points on the elliptic curve in \mathbb{F}_p . It is easy to see heuristically tat $N(p) \simeq p$.

Theorem. (Hasse) We have

$$|p - N(p)| \le 2\sqrt{p}$$
.

The theory of modular forms allows one to prove that the elliptic curve E and the modular form f 'correspond' to each other in the following sense:

Theorem. For all primes p, we have

$$a(p) = p - N(p)$$
.

In particular, using the properties of the modular form f, we can easily calculate the quantity N(p) for all p, so f 'knows' about the behaviour of the elliptic curve over \mathbb{F}_p . We say that the elliptic curve E is **modular**. It is generally not too difficult to attach an elliptic curve to a modular form (this is called "Eichler-Shimura"); however, it is very difficult indeed to reverse this process, and this is the basis of Andrew Wiles' work on Fermat's Last Theorem. The proof of this result was later completed by Breuil-Conrad-Diamond-Taylor. I will talk a bit more about this when we discuss L-functions of modular forms.

1 The modular group

1.1 The upper half-plane

Definition 1.1.1. Let $\mathcal{H} = \{z \in \mathbb{C} : \Im(z) > 0\}$ the upper half-plane.

Proposition 1.1.2. The special linear group $SL_2(\mathbb{R}) = \{A \in GL_2(\mathbb{R}) : \det(A) = 1\}$ acts on \mathcal{H} via

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} . z = \frac{az+b}{cz+d}.$$

Proof. For $z \in \mathcal{H}$ is $\Im(z) > 0$ and either c or d is nonzero, so $cz + d \neq 0$. Moreover

$$\Im\left(\frac{az+b}{cz+d}\right) = \frac{1}{|cz+d|^2} \Im\left((az+b)(c\overline{z}+d)\right).$$

Say z = x + iy for $x, y \in \mathbb{R}$.

$$\Im\left(\frac{az+b}{cz+d}\right) = \frac{1}{|cz+d|^2} \Im\left(\underbrace{(ax+b)(cx+d) + acy^2}_{\in \mathbb{R}} + i\underbrace{(ad-bc)}_{=1} y\right)$$
$$= \frac{1}{|cz+d|^2} \Im(z) > 0$$

Therefore $\frac{az+b}{cz+d} \in \mathcal{H}$ for any $z \in \mathcal{H}$, $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{R})$.

Also it is easy to check that $\binom{1\ 0}{0\ 1}z = z$ and A(Bz) = (AB)z for any $z \in \mathcal{H}$ and for any $A, B \in \mathrm{SL}_2(\mathbb{R})$. Thus $\mathrm{SL}_2(\mathbb{R})$ acts on \mathcal{H} .

Note 1.1.3. The matrix $\binom{-1}{0} \binom{0}{-1} \in SL_2(\mathbb{R})$ acts trivially on \mathcal{H} , so the action of $SL_2(\mathbb{R})$ on \mathcal{H} factors through the quotient $PSL_2(\mathbb{R}) = SL_2(\mathbb{R})/(\pm 1)$, the **projective special** linear group.

Definition 1.1.4. The automorphy factor is the function

$$j: \operatorname{SL}_2(\mathbb{R}) \times \mathcal{H} \to \mathbb{C},$$

$$(g, z) \mapsto cz + d \qquad \text{for } g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Proposition 1.1.5. For any $k \in \mathbb{Z}$, we can define a right action of $SL_2(\mathbb{R})$ on the set of holomorphic functions $\mathcal{H} \to \mathbb{C}$ given by

$$(f|_k g)(z) := j(g,z)^{-k} f(gz)$$

where $f: \mathcal{H} \to \mathbb{C}$ holomorphic, $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{R})$. We will call this the **weight k** action.

Proof. Firstly we need to show that $f|_k g$ is a well-defined holomorphic function $\mathcal{H} \to \mathbb{C}$. But this is obvious since $cz + d \neq 0$ and $gz \in \mathcal{H}$ for all $z \in \mathcal{H}$. Clearly also the equation $f|_k 1 = f$ holds. Therefore it remains to show $(f|_k g)|_k h = f|_k (gh)$ for arbitrary $g, h \in \mathrm{SL}_2(\mathbb{R})$. The left hand side of the equation can be rewritten as

$$(f|_k g)|_k h = j(h, z)^{-k} ((f|_k g)(hz))$$

= $j(h, z)^{-k} j(g, hz)^{-k} f(g(hz))$

and the right hand side results in

$$f|_k(gh) = j(gh, z)^{-k} f((gh)z).$$

We already know (gh)z = g(hz). So it remains to show j(gh, z) = j(h, z)j(g, hz). This is the so called **cocycle relation** and can be checked easily.

1.2 The modular group

Definition 1.2.1. The modular group is the group

$$\operatorname{SL}_2(\mathbb{Z}) = \left\{ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}; a, b, c, d \in \mathbb{Z}, \det(A) = 1 \right\}.$$

The projective modular group is $PSL_2(\mathbb{Z}) = SL_2(\mathbb{Z})/(\pm 1)$.

Theorem 1.2.2. (a) The group $SL_2(\mathbb{Z})$ is generated by $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

(b) Every orbit of $\mathrm{SL}_2(\mathbb{Z})$ acting on $\mathcal H$ contains a point of the set D defined by

$$D = \left\{ z \in \mathcal{H} \colon -\frac{1}{2} \le \Re(z) \le \frac{1}{2} \text{ and } |z| \ge 1 \right\}.$$

- (c) If $z \in D$ and $gz \in D$ for some $g \in SL_2(\mathbb{Z})$, then either $g = \pm 1$ and gz = z or z lies on the boundary of D.
- (d) The stabilizer of $z \in \mathcal{H}$ in $\mathrm{PSL}_2(\mathbb{Z})$ is trivial unless z is in the orbit of i or in the orbit of $\rho = e^{2\pi i/3}$.

Proof. We will prove all of these statements in 4 steps using a very elegant argument of Serre. Let $G = \operatorname{SL}_2(\mathbb{Z})$ and $G' = \langle S, T \rangle \leq G$.

Step 1. Every G' orbit in \mathcal{H} contains a point of D.

Proof of Step 1. Let $z \in \mathcal{H}$. Since $|cz+d| \ge |c \Im(z)|$ and $|cz+d| \ge |c \Re(z)+d|$ there exist only finitely many $(c,d) \in \mathbb{Z}^2$ such that |cz+d| < 1. Recall $\Im(\binom{a \ b}{c \ d}z) = |cz+d|^{-2} \Im(z)$. This implies there are only finitely many $g \in G'$ such that $\Im(gz) > \Im(z)$. So the G' orbit of z contains a point of maximal imaginary part. Let this point be z.

We can assume $\Re(z) \in [-\frac{1}{2}, \frac{1}{2}]$ since Tz = z + 1. Moreover $\Im(Sz) = |z|^{-2} \Im(z)$. But z is a point of maximal imaginary part in the orbit of G', so we get $|z|^{-2} \Im(z) \leq \Im(z)$ implying $|z| \geq 1$. Thus $z \in D$. Clearly this proves part (b) of the theorem.

Step 2. If $z \in D$ and $gz \in D$, where $g \in G$, then one of the following holds:

- 1. $g = \pm Id$
- 2. $g = \pm S$ and |z| = 1
- 3. $g = \pm T$ and $\Re(z) = -\frac{1}{2}$, or $g = \pm T^{-1}$ and $\Re(z) = \frac{1}{2}$
- 4. $g = \pm ST = \pm \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$ or $g = \pm T^{-1}S = \pm \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}$ or $g = \pm ST^{-1}S = \pm \begin{pmatrix} -1 & 0 \\ -1 & -1 \end{pmatrix}$ and $z = \rho$
- 5. $g = \pm TS = \pm \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$ or $g = \pm ST^{-1} = \pm \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$ or $g = \pm STS = \pm \begin{pmatrix} -1 & 0 \\ 1 & -1 \end{pmatrix}$ and $z = \rho + 1$

Proof of Step 2. Let $z \in D$ and $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$ such that $z' = gz \in D$. Being free to replace g by g^{-1} and z by z' we can assume that $\Im(z') \geq \Im(z)$. Again recalling $\Im(gz) = |cz + d|^{-2} \Im(z)$ we gain $|cz + d| \leq 1$. Furthermore we have

$$|cz + d| \ge |c| \Im(z) \ge |c| \Im(\rho) = \frac{\sqrt{3}}{2} |c|.$$

Thus $|c| \le 2/\sqrt{3} < 2$. As $c \in \mathbb{Z}$ we get c = 0 or $c = \pm 1$.

• Let c=0. Since $1 \ge |cz+d| = |d|$ we have d=0 or $d=\pm 1$. But c=d=0 is impossible. So $d=\pm 1$ and hence $a=\pm 1$. Therefore $g=\left(\begin{smallmatrix} \pm 1 & b \\ 0 & \pm 1\end{smallmatrix}\right)$ is the translation by b. But since

$$\Re(z),\,\Re(gz)\in\left[-\frac{1}{2},\,\frac{1}{2}\right],$$

this implies that b=0 or $b=\pm 1$. So either $g=\pm \mathrm{Id}$ (case 1) or $g=\pm T$ and $\Re(z)=-\frac{1}{2}$ or $g=\pm T^{-1}$ and $\Re(z)=\frac{1}{2}$.

• Let c=1. Assuming $|d| \geq 2$ leads to the following contradiction:

$$1 \ge |cz + d| = |z + d| \ge |d| - \Re(z) \ge |d| - \frac{1}{2} \ge \frac{3}{2}$$

Thus we have d=0 or $d=\pm 1$.

Let d = 0. Then $1 \ge |cz + d| = |z|$. On the other hand $|z| \ge 1$ as $z \in D$ and therefore |z| = 1 (cases 2, 4 or 5 – exercise sheet 1).

Let d = 1. Then $1 \ge |z + 1|$. This is only possible for $z \in D$ if $z = \rho$ (exercise). Since a - b = 1, we deduce that wither (a, b) = (1, 0) or (a, b) = (0, -1) (case 4).

Analogue d = -1 implies $z = \rho + 1$ (case 5).

• The case c = -1 is analogous to the case c = 1.

Since there are no further cases this shows Step 2 (it remains to check the matrices in case 4 and 5 – see exercise sheet 1) and therefore part (c) of the theorem. \Box

Step 3. Let $z \in D$ such that the stabilizer G_z of z is not $\pm \mathrm{Id}$. Then $z = i, z = \rho$ or $z = \rho + 1$.

Proof of Step 3. This follows directly from Step 2 by checking gz = z for all possible g's. Step 3 proves part (d) of the theorem.

Step 4. It remains to show that $SL_2(\mathbb{Z})$ is generated by S and T.

Proof of Step 4. Let $g \in G$ and let z be an arbitrary point of the interior of D. Then $gz \in \mathcal{H}$ and by Step 1 exists $g' \in G'$ such that $g'(gz) \in D$. Moreover Step 2 implies that either $g'g \in \{\pm \mathrm{Id}\}$ or z is on the boundary of D which is by assumption not the case. Thus either $g'g = \mathrm{Id}$ or $g'g = -\mathrm{Id}$. Since $S^2 = -\mathrm{Id} \in G'$, we deduce that $g \in G'$, so $SL_2(\mathbb{Z})$ is generated by S and T. This proves part (a) of the theorem.

Therefore the theorem is proved.