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0 Prologue

Example 0.0.1. Let z € C, $(z) > 0. Let ¢ = €™ and define Ramanujan’s tau

function
Alz)=q- [J-qgH*.
neN

This is one of the simplest examples of a modular form. Note that we can "multiply
out” the product above which leads us to

for some integers 7(n).
Facts 0.0.2.
(1) Known to Weierstrass, 1850:

A(z) =212 A <_1>

z

(2) Ramanujan proved in 1916 that the integers 7(n) satisfy the equation

T(n) = Zd“ mod 691.

din

(3) Ramanujan also conjectured 7(nm) = 7(n)7(m) for n, m coprime. This was proved
by Mordell in 1917.

(4) In 1972 Swinnerton-Dyer proved 7(n) satisfies congruences like (2) modulo 2, 3, 5,
7, 23 and 691 but no other primes.

(5) Ramanujan conjectured in 1916 for p prime holds |7(p)| < 2 p'*/2. This was proved
in 1974 by Deligne.

(6) The quantity
7(p)
oplL/2

is distributed in the interval [—1, 1] with density function proportional to /1 — z2.
This was conjectured by Sato and Tate (1960s) and proved by Barnet-Lamb, Ger-

aghty, Harris and Taylor in 2009 using Bau Chau Ngo’s Fundamental Lemma which
got Ngo the 2010 Fields Medal.

€ [-1,1]



Example 0.0.3. We now consider another modular form

f) =q]J—q")’@—g")

=q—2¢" —*+2¢" +¢" +2¢° + ...

o0

= Z a(n)q" ! with a(n) € N

n=1
We will later prove the following results:
Theorem.
1. We have a(mn) = a(m)(n) for all m,n > 1 with (m,n) = 1.
2. We have |a(p)| < 2,/p for all primes p.

It turns out that this modular form is closely related to the elliptic curve
E:Y?+Y =X%-X*-10X — 20.

For p prime, denote by N(p) the number of points on the elliptic curve in F,,. It is easy
to see heuristically tat N(p) ~ p.

Theorem. (Hasse) We have
p = N(p)| < 2v/p.

The theory of modular forms allows one to prove that the elliptic curve E and the
modular form f ‘correspond’ to each other in the following sense:

Theorem. For all primes p, we have

a(p) =p— N(p).

In particular, using the properties of the modular form f, we can easily calculate the
quantity N(p) for all p, so f ‘knows’ about the behaviour of the elliptic curve over F,,.
We say that the elliptic curve F is modular. It is generally not too difficult to attach
an elliptic curve to a modular form (this is called ”Eichler—Shimura”); however, it is
very difficult indeed to reverse this process, and this is the basis of Andrew Wiles’ work
on Fermat’s Last Theorem. The proof of this result was later completed by Breuil—-
Conrad-Diamond—Taylor. I will talk a bit more about this when we discuss L-functions
of modular forms.



1 The modular group

1.1 The upper half-plane

Definition 1.1.1. Let # = {z € C: ¥(2) > 0} the upper half-plane.
Proposition 1.1.2. The special linear group SLy(R) = {A € GLy(R): det(A4) =1}

acts on H via
a b Z_az+b
c d]7  cz+d

Proof. For z € H is §(2z) > 0 and either ¢ or d is nonzero, so cz + d # 0. Moreover

o [az+b _ 1 N Dz 4 d
\9<02+d> i dp S ((az+b)(cz+4d)).
Say z = x + 1y for x,y € R.
CZZ"‘b 1 2 .
Q) (cz " d) - o1 dP %(Saw + b)(cxj— d) + acy® +i (ad — be) y)
R =1
L 3(») > 0
= —7: 3z
lcz + d|?
Therefore ‘Cfig € H for any z € H, (¢}) € SLy(R).
Also it is easy to check that (§9)z = z and A(Bz) = (AB)z for any z € H and for
any A, B € SLy(R). Thus SLy(R) acts on H. O

Note 1.1.3. The matrix (' °;) € SLy(R) acts trivially on H, so the action of SLy(RR)
on H factors through the quotient PSLy(R) = SLy(R)/(£1), the projective special
linear group.

Definition 1.1.4. The automorphy factor is the function
7 SLQ(R) X H — C,

a b
(9,2) —»cz+d forg(c d)

Proposition 1.1.5. For any k € Z, we can define a right action of SLo(R) on the set
of holomorphic functions H — C given by

(fleg) (z) :== (g, 2)7" f(g2)

where f: H — C holomorphic, g = (‘; fl) € SLy(R). We will call this the weight k
action.



Proof. Firstly we need to show that f|rg is a well-defined holomorphic function # — C.
But this is obvious since cz + d # 0 and gz € H for all z € H. Clearly also the
equation f|x1 = f holds. Therefore it remains to show (f|rg)|xh = f|x(gh) for arbitrary
g, h € SLy(R). The left hand side of the equation can be rewritten as

(flrg)leh = 5(h, 2)™ ((flrg)(h2))
= j(h,2)*j(g,h2) " f(g(h2))
and the right hand side results in

fli(gh) = j(gh, 2) ™ f((gh)z).

We already know (gh)z = g(hz). So it remains to show j(gh, z) = j(h, 2)j(g, hz). This
is the so called cocycle relation and can be checked easily. O]

1.2 The modular group

Definition 1.2.1. The modular group is the group

SLQ(Z> - {A — (Cé Z) ; a, b7 C,d € Z7 det(A> - ]‘} :

The projective modular group is PSLy(Z) = SLy(Z)/(£1).
Theorem 1.2.2.  (a) The group SLy(Z) is generated by S = (9 ') and T = ({1).
(b) Every orbit of SLa(7Z) acting on H contains a point of the set D defined by

1 1

D:{ZG’H: —Egﬂ(z)gﬁ and|z|21}.

(c) If z € D and gz € D for some g € SLy(Z), then either g = £1 and gz = z or z
lies on the boundary of D.

(d) The stabilizer of z € H in PSLy(Z) is trivial unless z is in the orbit of i or in the
orbit of p = e*m/3.

Proof. We will prove all of these statements in 4 steps using a very elegant argument of
Serre. Let G = SLy(Z) and G' = (S,T) < G.

Step 1. Every G’ orbit in H contains a point of D.

Proof of Step 1. Let z € H. Since |cz+d| > |c S(2)] and |cz+d| > |¢ R(z)+d| there exist
only finitely many (¢, d) € Z* such that |cz+d| < 1. Recall S((254)z) = |cz+d| 72 S(2).
This implies there are only finitely many g € G’ such that 3(gz) > 3(z). So the G
orbit of z contains a point of maximal imaginary part. Let this point be z.

We can assume R(z) € [—3, 1] since Tz = z + 1. Moreover I(Sz) = |z[72 (z). But
z is a point of maximal imaginary part in the orbit of G’, so we get |2|72 3(z) < $(2)
implying |z| > 1. Thus z € D. Clearly this proves part (b) of the theorem. O



Step 2. If z € D and gz € D, where g € GG, then one of the following holds:
1. g==Id
2. g==+Sand |z| =1
3. g=+T and R(z) = —3, or g =T ' and R(z) =1

4. g=+ST =+ ) or g =TS = (P ) org=+5T7"1S =£(1 %)
and z = p

ot

.g=4TS5 = j:(l_ol) or g =+8T1 = :l:(?j) or g ==£8TS = :l:(jl _01) and
z=p+1

Proof of Step 2. Let z € D and g = (ZZ) € G such that 2/ = gz € D. Being free
to replace g by ¢! and z by 2’ we can assume that J(z') > $(z). Again recalling
S(g2) = |ez +d| 72 3(z) we gain |cz + d| < 1. Furthermore we have

3
2 +d] 2 | 3(2) 2 Id 3(0) = el

Thus |¢] <2/v3<2. Asc€ Z we get c=0or c = £1.

e Let c=0. Since 1 > |cz+d| = |d| we have d =0 ord =+1. Butc=d =01is
impossible. So d = +1 and hence a = 1. Therefore g = (%' ) is the translation
by b. But since

11
R(z), N -, =
() Rgz) € -5 3]
this implies that b = 0 or b = £1. So either ¢ = +Id (case 1) or ¢ = £7T and
R(z) = —3 or g=4T"' and R(z) = 1.

e Let ¢ = 1. Assuming |d| > 2 leads to the following contradiction:

1>z +d|=|z+d| > |d —R(z) > |d — = >

DN | —
DO W

Thus we have d =0 or d = £1.

Let d = 0. Then 1 > |cz + d| = |z|. On the other hand |z| > 1 as z € D and
therefore |z| =1 (cases 2, 4 or 5 — exercise sheet 1).

Let d = 1. Then 1 > |z + 1|. This is only possible for z € D if z = p (exercise).
Since a — b = 1, we deduce that wither (a,b) = (1,0) or (a,b) = (0,—1) (case 4).

Analogue d = —1 implies z = p + 1 (case 5).
e The case ¢ = —1 is analogous to the case ¢ = 1.

Since there are no further cases this shows Step 2 (it remains to check the matrices in
case 4 and 5 — see exercise sheet 1) and therefore part (c) of the theorem. O



Step 3. Let z € D such that the stabilizer G, of z is not +Id. Then z =4, 2z = p or
z=p+ 1

Proof of Step 3. This follows directly from Step 2 by checking gz = z for all possible
g’s. Step 3 proves part (d) of the theorem. ]

Step 4. It remains to show that SLy(Z) is generated by S and 7.

Proof of Step 4. Let g € GG and let z be an arbitrary point of the interior of D. Then
gz € H and by Step 1 exists ¢’ € G’ such that ¢'(gz) € D. Moreover Step 2 implies that
either ¢'g € {£1d} or z is on the boundary of D which is by assumption not the case.
Thus either ¢'g = Id or ¢'g = —Id. Since S? = —Id € G’, we deduce that g € G, so
SLy(Z) is generated by S and 7. This proves part (a) of the theorem. O

Therefore the theorem is proved. O

Remark 1.2.3. We have seen in the proof of Theorem 1.2.2 that SLy(Z) is generated
by the elements S and T'. These satisfy the relations

St=1d (ST)° =52

and one can show that these generate all the relations, i.e. that
(S,T|S* S*(ST)?)

is a presentation of the group SLy(Z).

Remark 1.2.4. The set D is called the fundamental domain. The figure below
represents D itself and the transforms of D by some group elements of SLy(Z). Part (c)
of the theorem shows that two sets gD and ¢’D where g,¢g" € SLy(Z) are either equal
(if ¢ = +g) or only intersect along their edges. Furthermore part (a) implies that H is
covered by the sets {gD: g € SLy(Z)}: they form a tesselation of H.

ST-'S

+1



1.3 Modular forms and modular functions

Definition 1.3.1. A weakly modular function of weight k£ and level 1 is a mero-
morphic function H — C such that f|ya = f for all & € SLy(Z), or equivalent

P = 1)

for all z € H and for all (24) € SLy(Z).

Note 1.3.2. Since SLy(Z) is generated by the matrices S and T, it is sufficient to check
invariance under these two matrices, i.e. that

flz+1) = f(z) and f(=1/2) = 2" f(2)
for all z € H.

Lemma 1.3.3. There are no nonzero weakly modular functions of odd weight.

Proof. Let k be odd and let f be a weakly modular function of weight k. As shown
in (2) we have f(z) = f(z+ 1) for all z € H. Moreover we get f(z) = —f(z + 1) for
all z € H, since fli( o' Z1) = —f(-+1). So f(z) = —f(2) and thus f(z) = 0 for all
z e H. O

Define the function

q: H—C,
z > exp(2miz).

Note 1.3.4. Now let f be weakly periodic of weight k. Then f is periodic with period
1, so it can be written in the form

f(z) = flexp(2miz)),
where f is a meromorphic function on the punctured unit disk
D*={qeC:0<|q <1}.

Note 1.3.5. The function f is defined by

Fla)= f (logq) |

27

Observe that the logarithm is multi-valued, but choosing a different value of the logar-

ithm is the same as adding an integer to 1‘2)%. The periodicity of f hence implies that

f(g) does not depend on the chosen value of the logarithm.



Note 1.3.6. Any weakly modular function can be written as

[e.o]

f(Z) = Z ang"

n=—oo

for some a, € C where ¢ = ¢*™; we call this the g-expansion of f. This is just the

Laurent series of f around ¢ = 0, which converges for 0 < || < ¢ for ¢ sufficiently small
(& S(z) > 0)

Definition 1.3.7.

e We say that f is meromorphic at oo if a, = 0 for n < —N and some N € N.

e We say that f is holomorphic at oo if a, = 0 for n < 0. In this case, we define the
value of f at oo to be f(00) = f(0) = ay.

Definition 1.3.8. Let f be a weakly modular function of weight k& and level 1.

1. If f is meromorphic on H U {oo} we say f is a modular function (of weight k
and level 1).

2. If f is holomorphic on H U {co} we say f is a modular form (of weight & and
level 1).

3. If f is holomorphic on H U {oc} and f(oco) = 0 we say f is a cuspidal modular
form or cusp form.

Note 1.3.9. If f and g are modular forms (resp. modular functions) of level 1 and
weights k£ and ¢, then the product fg is a modular form (resp. modular function) of
weight & + /.

1.4 Eisenstein series

Definition 1.4.1. Let k£ > 4 even. Define the Eisenstein series of weight k to be
the function G: H — C given by

SN0 PRI g —— (1.1)

-
(m,n)eZ2\{0} (mz T TL)
Recall the following result from complex analysis:

Proposition 1.4.2. Let U be an open subset of C, and let (f,)n > 0 be a sequence of
holomorphic functions on U that converges uniformly on compact subsets of U. Then
the limit function U — C s holomorphic.

Lemma 1.4.3. The series defining Gy(z) converges absolutely and uniformly on subsets
of H of the form
Rr,s = {I+Zy |£L'| <ry= S}'

It hence converges to a holomorphic function on H.
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