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0 Prologue

Example 0.0.1. Let z ∈ C, =(z) > 0. Let q = e2πiz and define Ramanujan’s tau
function

∆(z) = q ·
∏
n∈N

(1− qn)24 .

This is one of the simplest examples of a modular form. Note that we can ”multiply
out” the product above which leads us to

∆(z) =
∑
n∈N

τ(n)qn

for some integers τ(n).

Facts 0.0.2.

(1) Known to Weierstrass, 1850:

∆(z) = z−12 ·∆
(
−1

z

)
(2) Ramanujan proved in 1916 that the integers τ(n) satisfy the equation

τ(n) =
∑
d|n

d11 mod 691.

(3) Ramanujan also conjectured τ(nm) = τ(n)τ(m) for n,m coprime. This was proved
by Mordell in 1917.

(4) In 1972 Swinnerton-Dyer proved τ(n) satisfies congruences like (2) modulo 2, 3, 5,
7, 23 and 691 but no other primes.

(5) Ramanujan conjectured in 1916 for p prime holds |τ(p)| < 2 p11/2. This was proved
in 1974 by Deligne.

(6) The quantity
τ(p)

2p11/2
∈ [−1, 1]

is distributed in the interval [−1, 1] with density function proportional to
√

1− x2.
This was conjectured by Sato and Tate (1960s) and proved by Barnet-Lamb, Ger-
aghty, Harris and Taylor in 2009 using Bau Chau Ngo’s Fundamental Lemma which
got Ngo the 2010 Fields Medal.
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Example 0.0.3. We now consider another modular form

f(z) = q

∞∏
n=1

(1− qn)2(1− q11n)2

= q − 2q2 − q3 + 2q4 + q5 + 2q6 + . . .

=
∞∑
n=1

a(n)qn ′ with a(n) ∈ N

We will later prove the following results:

Theorem.

1. We have a(mn) = a(m)(n) for all m,n ≥ 1 with (m,n) = 1.

2. We have |a(p)| ≤ 2
√
p for all primes p.

It turns out that this modular form is closely related to the elliptic curve

E : Y 2 + Y = X3 −X2 − 10X − 20.

For p prime, denote by N(p) the number of points on the elliptic curve in Fp. It is easy
to see heuristically tat N(p) ' p.

Theorem. (Hasse) We have
|p−N(p)| ≤ 2

√
p.

The theory of modular forms allows one to prove that the elliptic curve E and the
modular form f ‘correspond’ to each other in the following sense:

Theorem. For all primes p, we have

a(p) = p−N(p).

In particular, using the properties of the modular form f , we can easily calculate the
quantity N(p) for all p, so f ‘knows’ about the behaviour of the elliptic curve over Fp.
We say that the elliptic curve E is modular. It is generally not too difficult to attach
an elliptic curve to a modular form (this is called ”Eichler–Shimura”); however, it is
very difficult indeed to reverse this process, and this is the basis of Andrew Wiles’ work
on Fermat’s Last Theorem. The proof of this result was later completed by Breuil–
Conrad–Diamond–Taylor. I will talk a bit more about this when we discuss L-functions
of modular forms.
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1 The modular group

1.1 The upper half-plane

Definition 1.1.1. Let H = {z ∈ C : =(z) > 0} the upper half-plane.

Proposition 1.1.2. The special linear group SL2(R) = {A ∈ GL2(R) : det(A) = 1}
acts on H via (

a b
c d

)
.z =

az + b

cz + d
.

Proof. For z ∈ H is =(z) > 0 and either c or d is nonzero, so cz + d 6= 0. Moreover

=
(
az + b

cz + d

)
=

1

|cz + d|2
= ((az + b)(cz + d)) .

Say z = x+ iy for x, y ∈ R.

=
(
az + b

cz + d

)
=

1

|cz + d|2
=
(

(ax+ b)(cx+ d) + acy2︸ ︷︷ ︸
∈R

+i (ad− bc)︸ ︷︷ ︸
=1

y
)

=
1

|cz + d|2
=(z) > 0

Therefore az+b
cz+d
∈ H for any z ∈ H,

(
a b
c d

)
∈ SL2(R).

Also it is easy to check that
(
1 0
0 1

)
z = z and A(Bz) = (AB)z for any z ∈ H and for

any A,B ∈ SL2(R). Thus SL2(R) acts on H.

Note 1.1.3. The matrix
( −1 0

0 −1
)
∈ SL2(R) acts trivially on H, so the action of SL2(R)

on H factors through the quotient PSL2(R) = SL2(R)/(±1), the projective special
linear group.

Definition 1.1.4. The automorphy factor is the function

j : SL2(R)×H → C,

(g, z) 7→ cz + d for g =

(
a b
c d

)
Proposition 1.1.5. For any k ∈ Z, we can define a right action of SL2(R) on the set
of holomorphic functions H → C given by

(f |kg) (z) := j(g, z)−k f(gz)

where f : H → C holomorphic, g =
(
a b
c d

)
∈ SL2(R). We will call this the weight k

action.
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Proof. Firstly we need to show that f |kg is a well-defined holomorphic function H → C.
But this is obvious since cz + d 6= 0 and gz ∈ H for all z ∈ H. Clearly also the
equation f |k1 = f holds. Therefore it remains to show (f |kg)|kh = f |k(gh) for arbitrary
g, h ∈ SL2(R). The left hand side of the equation can be rewritten as

(f |kg)|kh = j(h, z)−k ((f |kg)(hz))

= j(h, z)−kj(g, hz)−kf(g(hz))

and the right hand side results in

f |k(gh) = j(gh, z)−kf((gh)z).

We already know (gh)z = g(hz). So it remains to show j(gh, z) = j(h, z)j(g, hz). This
is the so called cocycle relation and can be checked easily.

1.2 The modular group

Definition 1.2.1. The modular group is the group

SL2(Z) =

{
A =

(
a b
c d

)
; a, b, c, d ∈ Z, det(A) = 1

}
.

The projective modular group is PSL2(Z) = SL2(Z)/(±1).

Theorem 1.2.2. (a) The group SL2(Z) is generated by S =
(
0 −1
1 0

)
and T =

(
1 1
0 1

)
.

(b) Every orbit of SL2(Z) acting on H contains a point of the set D defined by

D =

{
z ∈ H : − 1

2
≤ <(z) ≤ 1

2
and |z| ≥ 1

}
.

(c) If z ∈ D and gz ∈ D for some g ∈ SL2(Z), then either g = ±1 and gz = z or z
lies on the boundary of D.

(d) The stabilizer of z ∈ H in PSL2(Z) is trivial unless z is in the orbit of i or in the
orbit of ρ = e2πi/3.

Proof. We will prove all of these statements in 4 steps using a very elegant argument of
Serre. Let G = SL2(Z) and G′ = 〈S, T 〉 ≤ G.

Step 1. Every G′ orbit in H contains a point of D.

Proof of Step 1. Let z ∈ H. Since |cz+d| ≥ |c =(z)| and |cz+d| ≥ |c <(z)+d| there exist
only finitely many (c, d) ∈ Z2 such that |cz+d| < 1. Recall =(

(
a b
c d

)
z) = |cz+d|−2 =(z).

This implies there are only finitely many g ∈ G′ such that =(gz) > =(z). So the G′

orbit of z contains a point of maximal imaginary part. Let this point be z.
We can assume <(z) ∈ [−1

2
, 1
2
] since Tz = z + 1. Moreover =(Sz) = |z|−2 =(z). But

z is a point of maximal imaginary part in the orbit of G′, so we get |z|−2 =(z) ≤ =(z)
implying |z| ≥ 1. Thus z ∈ D. Clearly this proves part (b) of the theorem.
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Step 2. If z ∈ D and gz ∈ D, where g ∈ G, then one of the following holds:

1. g = ±Id

2. g = ±S and |z| = 1

3. g = ±T and <(z) = −1
2
, or g = ±T−1 and <(z) = 1

2

4. g = ±ST = ±
(
0 −1
1 1

)
or g = ±T−1S = ±

(
−1 −1
1 0

)
or g = ±ST−1S = ±

( −1 0
−1 −1

)
and z = ρ

5. g = ±TS = ±
(
1 −1
1 0

)
or g = ±ST−1 = ±

(
0 −1
1 −1

)
or g = ±STS = ±

( −1 0
1 −1

)
and

z = ρ+ 1

Proof of Step 2. Let z ∈ D and g =
(
a b
c d

)
∈ G such that z′ = gz ∈ D. Being free

to replace g by g−1 and z by z′ we can assume that =(z′) ≥ =(z). Again recalling
=(gz) = |cz + d|−2 =(z) we gain |cz + d| ≤ 1. Furthermore we have

|cz + d| ≥ |c| =(z) ≥ |c| =(ρ) =

√
3

2
|c|.

Thus |c| ≤ 2/
√

3 < 2. As c ∈ Z we get c = 0 or c = ±1.

• Let c = 0. Since 1 ≥ |cz + d| = |d| we have d = 0 or d = ±1. But c = d = 0 is
impossible. So d = ±1 and hence a = ±1. Therefore g =

( ±1 b
0 ±1

)
is the translation

by b. But since

<(z), <(gz) ∈
[
−1

2
,

1

2

]
,

this implies that b = 0 or b = ±1. So either g = ±Id (case 1) or g = ±T and
<(z) = −1

2
or g = ±T−1 and <(z) = 1

2
.

• Let c = 1. Assuming |d| ≥ 2 leads to the following contradiction:

1 ≥ |cz + d| = |z + d| ≥ |d| − <(z) ≥ |d| − 1

2
≥ 3

2

Thus we have d = 0 or d = ±1.

Let d = 0. Then 1 ≥ |cz + d| = |z|. On the other hand |z| ≥ 1 as z ∈ D and
therefore |z| = 1 (cases 2, 4 or 5 – exercise sheet 1).

Let d = 1. Then 1 ≥ |z + 1|. This is only possible for z ∈ D if z = ρ (exercise).
Since a− b = 1, we deduce that wither (a, b) = (1, 0) or (a, b) = (0,−1) (case 4).

Analogue d = −1 implies z = ρ+ 1 (case 5).

• The case c = −1 is analogous to the case c = 1.

Since there are no further cases this shows Step 2 (it remains to check the matrices in
case 4 and 5 – see exercise sheet 1) and therefore part (c) of the theorem.
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Step 3. Let z ∈ D such that the stabilizer Gz of z is not ±Id. Then z = i, z = ρ or
z = ρ+ 1.

Proof of Step 3. This follows directly from Step 2 by checking gz = z for all possible
g’s. Step 3 proves part (d) of the theorem.

Step 4. It remains to show that SL2(Z) is generated by S and T .

Proof of Step 4. Let g ∈ G and let z be an arbitrary point of the interior of D. Then
gz ∈ H and by Step 1 exists g′ ∈ G′ such that g′(gz) ∈ D. Moreover Step 2 implies that
either g′g ∈ {± Id} or z is on the boundary of D which is by assumption not the case.
Thus either g′g = Id or g′g = − Id. Since S2 = − Id ∈ G′, we deduce that g ∈ G′, so
SL2(Z) is generated by S and T . This proves part (a) of the theorem.

Therefore the theorem is proved.

Remark 1.2.3. We have seen in the proof of Theorem 1.2.2 that SL2(Z) is generated
by the elements S and T . These satisfy the relations

S4 = Id (ST )3 = S2,

and one can show that these generate all the relations, i.e. that

〈S, T |S4, S−2(ST )3〉

is a presentation of the group SL2(Z).

Remark 1.2.4. The set D is called the fundamental domain. The figure below
represents D itself and the transforms of D by some group elements of SL2(Z). Part (c)
of the theorem shows that two sets gD and g′D where g, g′ ∈ SL2(Z) are either equal
(if g′ = ±g) or only intersect along their edges. Furthermore part (a) implies that H is
covered by the sets {gD : g ∈ SL2(Z)}: they form a tesselation of H.
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1.3 Modular forms and modular functions

Definition 1.3.1. A weakly modular function of weight k and level 1 is a mero-
morphic function H → C such that f |kα = f for all α ∈ SL2(Z), or equivalent

f

(
az + b

cz + d

)
= (cz + d)k f(z)

for all z ∈ H and for all
(
a b
c d

)
∈ SL2(Z).

Note 1.3.2. Since SL2(Z) is generated by the matrices S and T , it is sufficient to check
invariance under these two matrices, i.e. that

f(z + 1) = f(z) and f(−1/z) = zkf(z)

for all z ∈ H.

Lemma 1.3.3. There are no nonzero weakly modular functions of odd weight.

Proof. Let k be odd and let f be a weakly modular function of weight k. As shown
in (2) we have f(z) = f(z + 1) for all z ∈ H. Moreover we get f(z) = −f(z + 1) for
all z ∈ H, since f |k

( −1 −1
0 −1

)
= −f(· + 1). So f(z) = −f(z) and thus f(z) = 0 for all

z ∈ H.

Define the function

q : H → C,
z 7→ exp(2πiz).

Note 1.3.4. Now let f be weakly periodic of weight k. Then f is periodic with period
1, so it can be written in the form

f(z) = f̃(exp(2πiz)),

where f̃ is a meromorphic function on the punctured unit disk

D∗ = {q ∈ C : 0 < |q| < 1}.

Note 1.3.5. The function f̃ is defined by

f̃(q) = f

(
log q

2πi

)
.

Observe that the logarithm is multi-valued, but choosing a different value of the logar-
ithm is the same as adding an integer to log q

2πi
. The periodicity of f hence implies that

f̃(q) does not depend on the chosen value of the logarithm.
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Note 1.3.6. Any weakly modular function can be written as

f(z) =
∞∑

n=−∞

anq
n

for some an ∈ C where q = e2πiz; we call this the q-expansion of f . This is just the
Laurent series of f̃ around q = 0, which converges for 0 < |q| < ε for ε sufficiently small
(⇔ =(z)� 0)

Definition 1.3.7.

• We say that f is meromorphic at ∞ if an = 0 for n < −N and some N ∈ N.

• We say that f is holomorphic at ∞ if an = 0 for n < 0. In this case, we define the
value of f at ∞ to be f(∞) = f̃(0) = a0.

Definition 1.3.8. Let f be a weakly modular function of weight k and level 1.

1. If f is meromorphic on H ∪ {∞} we say f is a modular function (of weight k
and level 1).

2. If f is holomorphic on H ∪ {∞} we say f is a modular form (of weight k and
level 1).

3. If f is holomorphic on H ∪ {∞} and f(∞) = 0 we say f is a cuspidal modular
form or cusp form.

Note 1.3.9. If f and g are modular forms (resp. modular functions) of level 1 and
weights k and `, then the product fg is a modular form (resp. modular function) of
weight k + `.

1.4 Eisenstein series

Definition 1.4.1. Let k ≥ 4 even. Define the Eisenstein series of weight k to be
the function Gk : H → C given by

Gk(z) =
∑

(m,n)∈Z2\{0}

1

(mz + n)k
. (1.1)

Recall the following result from complex analysis:

Proposition 1.4.2. Let U be an open subset of C, and let (fn)n ≥ 0 be a sequence of
holomorphic functions on U that converges uniformly on compact subsets of U . Then
the limit function U → C is holomorphic.

Lemma 1.4.3. The series defining Gk(z) converges absolutely and uniformly on subsets
of H of the form

Rr,s = {x+ iy : |x| ≤ r, y ≥ s}.
It hence converges to a holomorphic function on H.
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