Modular Forms

Sarah Zerbes

Spring semester 2021 /22



Contents

0 Prologue 3
1 The modular group 5
1.1 The upper half-plane . . . . . .. .. .. ... L 5
1.2 The modular group . . . . . . . . . . .. 6
1.3 Modular forms and modular functions . . . . . .. ... ... ... ... 9
1.4 Eisenstein series . . . . . . . . . . . 10
1.5 The valence formula . . . . . . .. ... L 14
1.6  Applications to modular forms . . . . . . .. ... 18



0 Prologue

Example 0.0.1. Let z € C, S(z) > 0. Let ¢ = > and define Ramanujan’s tau
function
A(z)=q- [J1=gm*.

This is one of the simplest examples of a modular form. Note that we can "multiply
out” the product above which leads us to

for some integers 7(n).
Facts 0.0.2.
(1) Known to Weierstrass, 1850:

Az) = 212 A (—1>

z

(2) Ramanujan proved in 1916 that the integers 7(n) satisfy the equation

7(n) =) _d" mod 691.

din

(3) Ramanujan also conjectured 7(nm) = 7(n)7(m) for n, m coprime. This was proved
by Mordell in 1917.

(4) In 1972 Swinnerton-Dyer proved 7(n) satisfies congruences like (2) modulo 2, 3, 5,
7, 23 and 691 but no other primes.

(5) Ramanujan conjectured in 1916 for p prime holds |7(p)| < 2 p''/2. This was proved
in 1974 by Deligne.

(6) The quantity
7(p)

oplil/2

is distributed in the interval [—1, 1] with density function proportional to v/1 — z2.
This was conjectured by Sato and Tate (1960s) and proved by Barnet-Lamb, Ger-
aghty, Harris and Taylor in 2009 using Bau Chau Ngo’s Fundamental Lemma which
got Ngo the 2010 Fields Medal.

€ [-1,1]



Example 0.0.3. We now consider another modular form

o0
H 1 _ q 1 _ qlln)
n=1

-2 - +2¢" +¢@ + 25+ ...

Z a(n)q” " witha(n) eN

n=1
We will later prove the following results:
Theorem.
1. We have a(mn) = a(m)(n) for all m,n > 1 with (m,n) = 1.
2. We have |a(p)| < 2./p for all primes p.

It turns out that this modular form is closely related to the elliptic curve
E:Y?+Y =X°-X?-10X — 20.

For p prime, denote by N(p) the number of points on the elliptic curve in F,,. It is easy
to see heuristically tat N(p) ~ p.

Theorem. (Hasse) We have
Ip = N(p)| < 2vp.

The theory of modular forms allows one to prove that the elliptic curve E and the
modular form f ‘correspond’ to each other in the following sense:

Theorem. For all primes p, we have

a(p) =p— N(p).

In particular, using the properties of the modular form f, we can easily calculate the
quantity N(p) for all p, so f ‘knows’ about the behaviour of the elliptic curve over F,,.
We say that the elliptic curve E is modular. It is generally not too difficult to attach
an elliptic curve to a modular form (this is called ”Eichler-Shimura”); however, it is
very difficult indeed to reverse this process, and this is the basis of Andrew Wiles’ work
on Fermat’s Last Theorem. The proof of this result was later completed by Breuil—-
Conrad—Diamond-Taylor. I will talk a bit more about this when we discuss L-functions
of modular forms.



1 The modular group

1.1 The upper half-plane

Definition 1.1.1. Let H = {z € C: &(z) > 0} the upper half-plane.
Proposition 1.1.2. The special linear group SLy(R) = {A € GLy(R): det(A) = 1}

acts on H via
a b Z_az—f—b
c d)7  cz+d

Proof. For z € H is ¥(z) > 0 and either ¢ or d is nonzero, so cz + d # 0. Moreover

o [az+b _ 1 N D(eE - d
\S<cz+d) lcz + d|? Sllaz +b)(ez+d)).
Say z = x + iy for x,y € R.
az+b 1 9 .
S (cz — d) R 3( (az + b)(cxv—i— d) + acy® +i (ad — be) y)
R =1
ez +dJ? s
Therefore 2% € H for any z € M, (¢4) € SLy(R).
Also it is easy to check that (§9)z = z and A(Bz) = (AB)z for any z € H and for
any A, B € SLy(R). Thus SLy(R) acts on H. O

Note 1.1.3. The matrix (' ° ) € SLy(R) acts trivially on H, so the action of SLy(R)
on H factors through the quotient PSLy(R) = SLy(R)/(£1), the projective special
linear group.

Definition 1.1.4. The automorphy factor is the function
j: SLe(R) x H — C,

a b
(g,2) = cz+d forg—<c d)

Proposition 1.1.5. For any k € Z, we can define a right action of SLa(R) on the set
of holomorphic functions H — C given by

(flrg) () = j(g,2)" f(gz)

where f: H — C holomorphic, g = (24) € SLy(R). We will call this the weight k
action.



Proof. Firstly we need to show that f|g is a well-defined holomorphic function H — C.
But this is obvious since cz +d # 0 and gz € H for all z € H. Clearly also the
equation f|x1 = f holds. Therefore it remains to show (f|xg)|xh = f|x(gh) for arbitrary
g, h € SLy(R). The left hand side of the equation can be rewritten as

(Flrg)leh = 5(h, 2) 7" ((flrg) (h2))
= j(h,2)™"j(g, hz) " f(g(hz))

and the right hand side results in

Fli(gh) = j(gh, 2)7* f((gh)2).

We already know (gh)z = g(hz). So it remains to show j(gh, z) = j(h, 2)j(g, hz). This
is the so called cocycle relation and can be checked easily. ]

1.2 The modular group

Definition 1.2.1. The modular group is the group

SLQ(Z) - {A = (Z/ Z) ) a7b7 C7d € Z’7 det(A) = ]‘} :

The projective modular group is PSLy(Z) = SLo(Z)/(£1).
Theorem 1.2.2. (a) The group SLy(Z) is generated by S = ({ 3') and T = (§1).
(b) Every orbit of SLo(Z) acting on H contains a point of the set D defined by

D:{zG’H: —%S%(z)ﬁ%and|z|21}.

(c) If z € D and gz € D for some g € Slo(Z), then either g = +1 and gz = z or z
lies on the boundary of D.

(d) The stabilizer of z € H in PSLy(Z) is trivial unless z is in the orbit of i or in the
orbit of p = e2™/3,

Proof. We will prove all of these statements in 4 steps using a very elegant argument of
Serre. Let G = SLy(Z) and G' = (S, T) < G.

Step 1. Every GG’ orbit in H contains a point of D.

Proof of Step 1. Let z € H. Since |cz+d| > |c S(2)| and |cz+d| > |c R(z)+d| there exist
only finitely many (c,d) € Z? such that |cz+d| < 1. Recall S((¢})z) = [cz+d| 7% S(z).
This implies there are only finitely many g € G’ such that S(gz) > J(z). So the G
orbit of z contains a point of maximal imaginary part. Let this point be z.

We can assume R(z) € [—3, 3] since Tz = z 4+ 1. Moreover $(Sz) = [z]72 S(2). Bu
z is a point of maximal imaginary part in the orbit of G', so we get 2|72 S(z) < (2
implying |z| > 1. Thus z € D. Clearly this proves part (b) of the theorem.

-+
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Step 2. If z € D and gz € D, where g € GG, then one of the following holds:

1. g==Id

\)

.g==xSand |z|=1

3. g=xT and R(z) = -3, or g =T and R(z) = 1

4.9g==25T =£(0 ) or g =£T7'S = £(7' ) or g = £5T7'S = £(71 %)
and z = p

D. g=:|:TS=:I:(1_01) or g =+ST! ::I:((l)j) Org=:|:STS=:|:(_11_01) and

z=p+1

Proof of Step 2. Let z € D and g = (ﬁg) € G such that 2/ = gz € D. Being free
to replace g by ¢! and z by 2’ we can assume that $(z') > $(z). Again recalling
S(gz) = |ez +d|7? $(2) we gain |cz + d| < 1. Furthermore we have

3
) 21 3(2) 2 Id 3() = Ll

Thus |c|§2/\/§<2. As c € Z we get c =0 or ¢ = £1.

e Let ¢ =0. Since 1 > |[cz+d| = |d| we have d =0 ord = £1. Butc=d =0 is
impossible. So d = +1 and hence a = £1. Therefore g = (%' % ) is the translation

by 0. But since
1
%), R € |30 5]

this implies that b = 0 or b = £1. So either ¢ = £Id (case 1) or ¢ = +7 and
R(z) = —3 or g ==+T " and R(z) = 5.

e Let ¢ = 1. Assuming |d| > 2 leads to the following contradiction:

1> ez +d| = |z +d| > |d — R(2) > |d] — = >

N | —
| W

Thus we have d =0 or d = +1.

Let d = 0. Then 1 > |cz + d| = |z|. On the other hand |z| > 1 as z € D and
therefore |z| =1 (cases 2, 4 or 5 — exercise sheet 1).

Let d = 1. Then 1 > |z + 1|. This is only possible for z € D if z = p (exercise).
Since a — b = 1, we deduce that wither (a,b) = (1,0) or (a,b) = (0,—1) (case 4).

Analogue d = —1 implies z = p + 1 (case 5).
e The case ¢ = —1 is analogous to the case ¢ = 1.

Since there are no further cases this shows Step 2 (it remains to check the matrices in
case 4 and 5 — see exercise sheet 1) and therefore part (¢) of the theorem. O



Step 3. Let z € D such that the stabilizer G, of z is not £Id. Then z =i, 2z = p or
z=p+1

Proof of Step 3. This follows directly from Step 2 by checking gz = z for all possible
g’s. Step 3 proves part (d) of the theorem. n

Step 4. It remains to show that SLy(Z) is generated by S and 7T

Proof of Step 4. Let g € G and let z be an arbitrary point of the interior of D. Then
gz € H and by Step 1 exists ¢’ € G’ such that ¢'(gz) € D. Moreover Step 2 implies that
cither ¢'g € {£1d} or z is on the boundary of D which is by assumption not the case.
Thus either ¢'g = Id or ¢’g = —Id. Since S? = —Id € G, we deduce that g € G’, so
SLy(Z) is generated by S and T'. This proves part (a) of the theorem. ]

Therefore the theorem is proved. O

Remark 1.2.3. We have seen in the proof of Theorem 1.2.2 that SLy(Z) is generated
by the elements S and T'. These satisfy the relations

St=1d (ST)* =5

and one can show that these generate all the relations, i.e. that
(S,T|S* S72(ST)%)

is a presentation of the group SLs(Z).

Remark 1.2.4. The set D is called the fundamental domain. The figure below
represents D itself and the transforms of D by some group elements of SLy(Z). Part (c)
of the theorem shows that two sets gD and ¢’D where g,¢g" € SLy(Z) are either equal
(if ¢ = £g) or only intersect along their edges. Furthermore part (a) implies that # is
covered by the sets {gD: g € SLiy(Z)}: they form a tesselation of H.

ST™'S

+1



1.3 Modular forms and modular functions

Definition 1.3.1. A weakly modular function of weight k£ and level 1 is a mero-
morphic function H — C such that f|ya = f for all @ € SLiy(Z), or equivalent

() = vt )

for all z € H and for all (24) € SLy(Z).

Note 1.3.2. Since SLy(Z) is generated by the matrices S and T, it is sufficient to check
invariance under these two matrices, i.c. that

flz+1) = f(2) and f(=1/2) = 2" f(2)
for all z € H.
Lemma 1.3.3. There are no nonzero weakly modular functions of odd weight.

Proof. Let k be odd and let f be a weakly modular function of weight k. As shown
in (2) we have f(z) = f(z + 1) for all z € H. Moreover we get f(z) = —f(z + 1) for
all z € M, since flp( ¢ Z1) = —f(-+1). So f(z) = —f(z) and thus f(z) = 0 for all
zeH. O

Define the function

q: H—C,
z > exp(2miz).

Note 1.3.4. Now let f be weakly periodic of weight k. Then f is periodic with period
1, so it can be written in the form

f(z) = [flexp(2miz)),
where f is a meromorphic function on the punctured unit disk
D*={qeC:0<|q <1}

Note 1.3.5. The function f is defined by

F =1 (5E0).

211

Observe that the logarithm is multi-valued, but choosing a different value of the logar-

ithm is the same as adding an integer to 1‘2)%. The periodicity of f hence implies that

f(q) does not depend on the chosen value of the logarithm.



Note 1.3.6. Any weakly modular function can be written as

for some a,, € C where ¢ = e?™#; we call this the g-expansion of f. This is just the
Laurent series of f around ¢ = 0, which converges for 0 < |q| < ¢ for ¢ sufficiently small
(& S(2) > 0)

Definition 1.3.7.
e We say that f is meromorphic at oo if a,, = 0 for n < —N and some N € N.

e We say that f is holomorphic at oo if a, = 0 for n < 0. In this case, we define the
value of f at oo to be f(oo) = f(0) = ao.

Definition 1.3.8. Let f be a weakly modular function of weight k& and level 1.

1. If f is meromorphic on H U {oco} we say f is a modular function (of weight k
and level 1).

2. If f is holomorphic on H U {oo} we say f is a modular form (of weight k& and
level 1).

3. If f is holomorphic on H U {oo} and f(oc0) = 0 we say [ is a cuspidal modular
form or cusp form.

Note 1.3.9. If f and g are modular forms (resp. modular functions) of level 1 and
weights k£ and ¢, then the product fg is a modular form (resp. modular function) of
weight & + /.

1.4 Eisenstein series

Definition 1.4.1. Let £ > 4 even. Define the Eisenstein series of weight £ to be
the function G: ‘H — C given by

CAE NN e — (L1)

-
mnjeznyoy (72 H )
Recall the following result from complex analysis:

Proposition 1.4.2. Let U be an open subset of C, and let (f,), > 0 be a sequence of

holomorphic functions on U that converges uniformly on compact subsets of U. Then
the limit function U — C is holomorphic.

10



Lemma 1.4.3. The series defining Gi(z) converges absolutely and uniformly on subsets
of H of the form
R.c={x+iy: |z|<r, y> s}

It hence converges to a holomorphic function on H.
Proof. Let z = x + 1y € R, ;. We have

Imz +n|* = (mz +n)* + m?*y® > (mx +n)* + m?s>,

For fixed m and n, we distinguish the cases |n| < 2r|m| and |n| > 2r|m|. In the first
case, we have

Imz +n|? > m?s? > S—2m2 + S—2n2 > min < - (m* +n?).
= =2 2(2r)2 2782

In the second case, the triangle inequality implies
1
|mz +n* > (|mz| — |n|)? + m?s* > <| |> +m?s? > mln{4 32} - (m? +n?).

Combining both cases and putting

¢ = min 8—8—182
N 2782747 [

we get the inequality
|mz +n| > c1/2(7n2 + n2)1/2 forall m,n € Z, z € R, ;.

Hence for all z € R, 5, we have

1 1
Gi(2) < k2 Z (m2 + n2)k/2’
(m,n)#(0,0)

We rearrange the sum by grouping together, for each fixed j = 1,2, 3, ..., all pairs (m,n)
with max{|m|,|n|} = j. We note that for each j there are 8j such pairs (m,n), each of
which satisfies

2 2 2

j°<m*+n°.
Hence

IS 3 2 = X
k = Ck/2 k2 k- k10

which is finite and independent of z € R, 5, so G (2) converges absolutely and uniformly
on R,s. Since every compact subset of H is contained in some R, g, this finishes the
proof by Proposition 1.4.2. O

11



Remark 1.4.4. This proof clearly fails for £ = 2. One can show that for £k = 2, the
series (1.1) is conditionally but not absolutely convergent. We will come back to this
issue later in the course.

Proposition 1.4.5. For every even integer k > 4, the function Gy is a modular form
of weight k and level 1. The g-expansion of Gy is given by

Gule) =2 C + Zakl

where ((k) = > | & (the Riemann zeta function) and of_y(n) = > djn d*1.

Proof. One easily checks that G(z + 1) = G(z). Moreover, we have

()= ¥ Grnrw

(m,n)eZ2\{0}
1
k
= Z B ——
(mm;z%’\m} (=m +n2)*

= Zk Gk(Z)

Hence Gi|S = Gy and Gi|i,T = Gy, so Gilra = Gy for all a € Sly(Z) by Theorem
1.2.2 (a). Thus G}, is a weakly modular function of weight & and level 1.
It remains to show that Gy is holomorphic at co. Therefore we will determine the

g-expansion of Gy. Consider the formula ) _, ﬁ =7 - cot(mz). Thus we obtain
1 (ETEATY 2 . S
n% o =m-cot(mz) =im (M) =T <1+E> :ZT—ZWZ;L]”,

where g = %™

. Differentiating (k — 1) times with respect to z, and using that % =
27Tiqa%, leads to

—(k—1)! ot
S g ()

= —2mi Z(Zmn)k_lq"

n=1
0o
_ —(27T2)k Z nk—lqn
n=1

(We are using here that k is even; for k£ odd we get an additional — sign.)

Hence we get
. Z 1 27” Z k=1 2minz
telz) = (z+n)F

ne’

12



Now we can split up the original sum of the function Gy into two parts, one where
m = 0 and one where m # 0. Afterwards we will simplify both parts using symmetry
(remember again that & is even) of the sums and the above formula:

Gil2) = Z _+ Z Z (mz +n)k

nezZn{o} meZ\{O} nEZ
=2 +—2

k) +2 Z tr(m2)
- 27”)k = k—1 27rmmz
=2((k) +2 Z >’ Zn

2m F SN —
= 20(k) -1 Z
m=1
From there we obtain the proposed g-expansion by resorting the last sum:

Gi(z) = 2 (k) 27”, SNy

=1 dll
——
op—1(1)

nklnm
1

n=

And since G, has a g-expansion without any negative powers of ¢, G is holomorphic at
00. Thus G}, is indeed a modular form. O

Definition 1.4.6. The Bernoulli numbers are the rational numbers By, for k& > 0,
defined by the equation

By
s 1~ 2 mt <l

Remark 1.4.7. The Bernoulli numbers are of great importance in mathematics. Barry
Mazur once said: “When a Bernoulli number sneezes, the tremors can be felt in all of
mathematics.”

Lemma 1.4.8. We have
By, #0 & k=1 ork is even.

Proof. Exercise sheet 2. O
Example 1.4.9. The first few non-zero Bernoulli numbers
1 1 1 1
By = Bj=—=-. By=- B,=—- Bs=—
0 07 1 27 2 67 4 37 6 427
1 5 691

Bs=——. Bjg= — —
8 300 T e T 2730

13



Lemma 1.4.10. If k > 2 is an even integer, then

oy = - EL D

Proof. Exercise sheet 2. O

Definition 1.4.11. Let k£ > 4 be even. The normalised Eisenstein series of weight &
is given by

1

P = 5w

2k o
Gr(z)=1- B, Zak_l(n)q”.
n=1

1.5 The valence formula

Definition 1.5.1. Let f # 0 be a meromorphic function H — C and let P € H. The
unique integer n such that (z— P)~" f(z) is holomorphic and non-vanishing at P is called
the order of f at P and denoted by vp(f). We say f has a zero of order n at P if
n is positive, and f has a pole of order n at P if n is negative.

Definition 1.5.2. Consider the Laurent expansion of f around P

Then the residue of [ at P is Resp(f) =c_; € C.

Lemma 1.5.3. If f is meromorphic around a point P, then

Resp(f/f') = vp(f).
Proof. Exercise. ]
We recall without proof the following results from complex analysis:

Theorem 1.5.4. (Cauchy’s integral formula) Let g be a holomorphic function on an
open subset U C C and let C' be a contour in U. Then for each P € U, we have

/ g(ziDdz = 2mi - g(P).

z —

Corollary 1.5.5. Let C(P,r,a) be an arc of a circle of radius r and angle « around a
point P. If g is holomorphic at P, then

. 9(2) :
1 ———dz =ai - g(P).
Tli}(l) C(Pra) 7 — P : ! g( )

(Here, we integrate counterclockwise.)
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