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1 Lattices and theta series

We will investigate theta series, which give a neat connection between the theory of lattices and
the theory of modular forms. We will first recall the basics of lattice theory, define theta series, and
study two cases in which they prove useful: one in number theory, with the proof that any integer
can be represented as the sum of 4 squares, and one general result that made possible the recent
breakthroughs in solving the sphere-packing problem in dimensions 8 and 24. My references for this
presentation are [Ebe13] and [Bru+08].

The setup is as follows: we let V = Rn be equipped with the usual scalar product and we let
Q(x) := ⟨x, x⟩, x ∈ V , be the quadratic form associated to it. Note that this could be done in more
generality by looking at a quadratic space on an arbitrary field.

We recall that a lattice L in V is a discrete subgroup of V that spans V as a vector space over
R. In other words, L is a finitely-generated Z-module equipped with a positive definite symmetric
bilinear form (the restriction of B to L) that spans V when we extend its scalars to R, or, maybe
more simply, it is the Z-span of n R-linearly independent vectors of Rn.

We identify V with its dual V ∗ = Hom(V,R) and define the dual lattice of L, denoted L∗, by

L∗ = Hom(L,Z) = {y ∈ V | ⟨ℓ, y⟩ ∈ Z for all ℓ ∈ L}.

Note that this is now a lattice in V too.
To conclude this introduction to lattices, we record a fundamental result in the theory of functions

on lattices:

Proposition 1.1 (Poisson summation formula). Let Rn be equipped with the usual scalar product.
Let L be a lattice in Rn and denote L∗ its dual. Finally for a smooth rapidly decreasing function
f : Rn → C, define

F(f)(y) =

∫
Rn

f(x)e−2iπ⟨x,y⟩dx

the Fourier transform of f . Then,∑
ℓ∈L

f(ℓ) =
1

vol(Rn/L)

∑
ℓ̃∈L∗

F(f)(ℓ̃).

See [Ebe13] Theorem 2.3 for a proof.

1



Considering a lattice L of Rn on which Q : x 7→ ⟨x, x⟩ is integer-valued, we associate to L the
generating function counting the number of vectors of L at which Q takes the value n ∈ N. We let

ΘL(z) :=
∑
ℓ∈L

q
1
2Q(ℓ).

It is called the theta function of L. It is not hard to check that ΘL converges absolutely on subsets
of H of the form

{z ∈ H | ℑ(z) ≥ y0 > 0},

which implies that it is holomorphic and well-defined on H. Theta series turn out to be an important
source of modular forms. We now turn to our first example of the usefulness of theta series.

2 The Jacobi theta series

We first consider the case n = dim(V ) = 1 and the simplest example of a unary (one-variable) theta
series. It is called the Jacobi theta function and corresponds to the quadratic form x 7→ x2 evaluated
on the lattice Z ⊂ R:

θ(z) =
∑
n∈Z

qn
2

= 1 + 2 + 2q + 2q2 + . . . ,

where z ∈ H. This very basic example already has interesting properties and turns out to have
surprising applications. We let the reader refer to [Bru+08] pp. 24–27 for more details.

Indeed, the Jacobi theta has the following transformation properties:

Proposition 2.1. For any z ∈ H, we have

θ(z + 1) = θ(z), θ

(
−1

4z

)
=

√
2z

i
θ(z).

Lemma 2.2. The function f : x 7→ e−πx2

, x ∈ Rn, is equal to its Fourier transform.

Proof of Proposition 2.1. The first transformation formula follows directly since θ is a function of
q. Since both sides are holomorphic on H, it is sufficient to prove the second formula for z = it/2,

t > 0. We apply the Poisson summation formula to the function f : x 7→ e−πtx2

and the lattice
Z ⊂ R. Using Lemma 2.2, we have

F(f)(y) =
1√
t
e−πy2/t.

Hence, ∑
n∈Z

e−πn2t =
1√
t

∑
n∈Z

e−πn2/t.

This shows the second transformation formula for z = it/2.

We let

W4 :=
1

2

(
0 −1
4 0

)
,

the matrix of SL2(Z) mapping z to −1/4z, and note that
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Proposition 2.3. The group ⟨Γ0(4),W4⟩ =: Γ+
0 (4) is commensurable with SL2(Z) and is generated

by T and W4.

The two previous propositions and a few additional computations show that θ4 is a modular form
of weight 2 and level Γ0(4) (which is something that we are now familiar with). We can now use
the theory of modular forms to easily recover a theorem of Lagrange regarding the decomposition
of integers as the sum of four squares. It will in fact come as a corollary of the following result:

Proposition 2.4. Let n be a positive integer. Then the number of representations of n as a sum of
four squares is 8 times the sum of the positive divisors of n which are not multiples of 4.

Proof. The number r4(n) of representations of n as a sum of four squares is the coefficient of qn in
the expansion of θ4. The function θ4 is a modular form of weight 2 and level Γ0(4). We showed in
the last problem sheet that

E
(4)
2 (z) = E2(z)− 4E2(4z) = −3− 24

∞∑
n=1

σ̃1(n)q
n,

where
σ̃1(n) =

∑
d|n
4∤d

d,

is also a modular form of M2(Γ0(4)) and since the coefficients of θ4 and − 1
3E

(4)
2 agree up to order

2, they are equal by Corollary 2.6.8 from the lecture notes. This shows the proposition.

Corollary 2.5 (Lagrange). Every positive integer is the sum of four squares.

3 Even unimodular lattices and modular forms

We now turn our interest to a lattice L of Rn and assume that it is even and unimodular. A
lattice is said to be even if ⟨x, x⟩ is even for any lattice vector x, and it is said to be unimodular if its
volume equals 1 (this is defined to be the determinant of a matrix of basis vectors or, equivalently,
as vol(Rn/L)). We note that L is unimodular if and only if L = L∗. We will see that this special
category of lattices is in fact a source of modular forms. More precisely

Theorem 3.1. Let L be an even unimodular lattice in Rn. Then,

1. The dimension n of V is divisible by 8.

2. The function ΘL is a modular form of weight n/2.

Several intermediate results are needed to prove the theorem. More precisely, we’ll need Propos-
ition 1.1, Lemma 2.2 and the following transformation formula for ΘL:

Lemma 3.2. We have the identity

ΘL

(
−1

z

)
=

(z
i

)n
2 1

vol(Rn/L)
ΘL∗(z). (1)
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Proof. Since both sides are holomorphic on H, it suffices to prove that the identity hold for z = it,
t > 0. Lemma 2.2 applied with x′ = x√

t
gives that the Fourier transform of e−πx2/t is tn/2e−πty2

.

Therefore we obtain the result directly by applying Poisson’s formula to

ΘL

(
− 1

it

)
=

∑
ℓ∈L

eπi(−1/it)x2

.

Proof of Theorem 3.1. Let L be an even unimodular lattice in Rn. Assume for a contradiction that
n is not divisible by 8. Replacing L by L⊕L or by L⊕L⊕L⊕L if necessary, we can assume that
n ≡ 4 mod 8. From Lemma 3.2, we have

ΘL(S · z) = (−1)n/4zn/2ΘL(z) = −zn/2ΘL(z).

Hence,
ΘL((TS) · z) = −zn/2ΘL(z)

and
ΘL((TS)

3 · z) = −(−1)n/2ΘL(z) = −ΘL(z).

But (TS)3 = Id, which yields a contradiction. We have proved that n is divisible by 8.
To show that ΘL(z) is mpdular of weight n/2, simply apply Lemma 3.2. Since 8|n, we have

ΘL(S · z) = zn/2ΘL(z).

This finishes the proof.

This is the building block at the base of Maryna Viazovska’s solution to the sphere packing
problem in dimensions 8 and 24, in which she ingeniously uses the theory of modular forms to
obtain results on the theta series attached to E8 lattice and to the Leech lattice.
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