Modular Forms: Problem Sheet 10

Sarah Zerbes

17th May 2022

1. Let $\Gamma' \subset \Gamma \subset \operatorname{SL}_2(\mathbb{Z})$ be congruence subgroups with $-I \in \Gamma'$. Suppose that $f \in \mathcal{S}_k(\Gamma) \subset \mathcal{S}_k(\Gamma')$ and that $g \in \mathcal{S}_k(\Gamma')$. Letting $\Gamma = \bigcup_i \alpha_i \Gamma'$, define the trace of g to be

trace
$$g = \sum_{i} g|_k \alpha_i \in \mathcal{S}_k(\Gamma)$$

Show that

$$\langle f, g \rangle_{\Gamma'} = \langle f, \operatorname{trace} g \rangle_{\Gamma}.$$

Solution: By definition, we have

$$\langle f,g\rangle_{\Gamma'} = \int_{D_{\Gamma'}} f(\tau)\overline{g(\tau)} \Im(\tau)^k d\mu(\tau),$$

where $d\mu$ denotes the hyperbolic measure. Check that the coset decomposition $\Gamma = \bigcup_i \alpha_i \Gamma'$ gives a decomposition of $D_{\Gamma'}$ as

$$D_{\Gamma'} = \bigsqcup_{i} \alpha_i D_{\Gamma}.$$

Hence,

$$\langle f,g\rangle_{\Gamma'} = \sum_{i} \int_{\alpha_i D_{\gamma}} f(\tau) \overline{g(\tau)} \Im(\tau)^k d\mu(\tau). \tag{1}$$

Now fix i, and use the invariance of $d\mu$ and the modularity of f to compute

$$\int_{\alpha_i D_{\Gamma}} f(\tau) \overline{g(\tau)} \Im(\tau)^k d\mu(\tau) = \int_{D_{\Gamma}} f(\alpha_i \tau) \overline{g(\alpha_i \tau)} \Im(\alpha_i \tau)^k d\mu(\alpha_i \tau)$$
$$= \int_{D_{\Gamma}} f|_k \alpha_i(\tau) \overline{g|_k \alpha_i(\tau)} \Im(\tau)^k d\mu(\tau)$$
$$= \int_{D_{\Gamma}} f(\tau) \overline{g|_k \alpha_i(\tau)} \Im(\tau)^k d\mu(\tau).$$

Using absolute convergence, we can exchange the sum and the integral in (1). This yields the result.

2. Let $\Gamma \subset \mathrm{SL}_2(\mathbb{Z})$ be a congruence subgroup, and let $\alpha \in \mathrm{GL}_2^+(\mathbb{Q})$. Set $\alpha' = \det(\alpha)\alpha^{-1}$. Show that if $\alpha^{-1}\Gamma\alpha = \Gamma$, then $|_k\alpha'$ is the adjoint operator of $|_k\alpha$ with respect to the Petersson inner product.

Solution: Let $f \in \mathcal{S}_k(\Gamma)$, then $f|_k \alpha \in \mathcal{S}_k(\alpha^{-1}\Gamma\alpha)$. Additionally, let $g \in \mathcal{S}_k(\alpha^{-1}\Gamma\alpha)$. We consider the Petersson inner product of $f|_k \alpha$ and g. To compute it, we'll use the fact that

 $D_{\alpha^{-1}\Gamma\alpha} = \alpha D_{\Gamma}$. Moreover, we notice that $\alpha' \tau = \alpha^{-1} \tau$, for any $\tau \in \mathcal{H}$. We have

$$\begin{split} \langle f|_k \alpha, g \rangle_{\alpha^{-1} \Gamma \alpha} &= \int_{D_{\alpha^{-1} \Gamma \alpha}} f|_k \alpha(\tau) \overline{g(\tau)} \Im(\tau)^k d\mu(\tau) \\ &= \int_{D_{\alpha^{-1} \Gamma \alpha}} \det(\alpha)^{k-1} f(\alpha\tau) j(\alpha, \tau)^{-k} \overline{g(\tau)} d\mu(\tau) \\ &= \int_{D_{\Gamma}} \det(\alpha)^{k-1} f(\tau) j(\alpha, \alpha' \tau)^{-k} \overline{g(\alpha' \tau)} \Im(\alpha' \tau)^k d\mu(\alpha' \tau) \end{split}$$

Now recall that $\det(\alpha) = j(\alpha \alpha', \tau) = j(\alpha, \alpha' \tau)j(\alpha', \tau)$ and that $d\mu$ is invariant under the action of $\operatorname{GL}_2^+(\mathbb{R})$. Additionally, compute that

$$\Im(\alpha'\tau) = \det(\alpha')|j(\alpha',\tau)|^{-2}\Im(\tau) = \det(\alpha)|j(\alpha',\tau)|^{-2}\Im(\tau).$$

The above equation then becomes

$$\langle f|_k \alpha, g \rangle_{\alpha^{-1}\Gamma\alpha} = \int_{D_{\Gamma}} f(\tau) \overline{g|_k \alpha'(\tau)} \mathfrak{F}(\tau)^k d\mu(\tau) = \langle f, g|_k \alpha' \rangle_{\Gamma}.$$

Since we assumed that $\Gamma = \alpha^{-1} \Gamma \alpha$, this proves the claim.

3. Define the normalized Petersson inner product as

$$[f,g]_{\Gamma}=\frac{1}{V_{\Gamma}}\langle f,g\rangle_{\Gamma},$$

for any two cusp forms $f, g \in \mathcal{S}_k(\Gamma)$, and with $V_{\Gamma} = \int_{D_{\Gamma}} \frac{dxdy}{y^2}$.

i. Find a formula relating the volumes V_{Γ} and $V_{\mathrm{SL}_2(\mathbb{Z})}$ and the index $[\mathrm{PSL}_2(\mathbb{Z}) : \overline{\Gamma}]$, where $\overline{\Gamma} = \{\pm \mathrm{Id}\}\Gamma/\{\pm \mathrm{Id}\}$.

Solution: The formula in question is

$$V_{\Gamma} = [\mathrm{SL}_2(\mathbb{Z}) : \{\pm \mathrm{Id}\}\Gamma]V_{\mathrm{SL}_2(\mathbb{Z})}$$

Since Γ is a congruence subgroup, $\{\pm \operatorname{Id}\}\Gamma$ has finite index in $\operatorname{SL}_2(\mathbb{Z})$. Hence there exist a set $\{\alpha_i\} \subset \operatorname{SL}_2(\mathbb{Z})$ of cardinality $[\operatorname{SL}_2(\mathbb{Z}) : \{\pm \operatorname{Id}\}\Gamma]$ such that

$$D_{\Gamma} = \bigsqcup_{i} \alpha_{i} D_{\mathrm{SL}_{2}(\mathbb{Z})}$$

Hence

$$\int_{D_{\Gamma}} d\mu(\tau) = \sum_{i} \int_{\alpha_{i} D_{\mathrm{SL}_{2}(\mathbb{Z})}} d\mu(\tau) = \sum_{i} \int_{D_{\mathrm{SL}_{2}(\mathbb{Z})}} d\mu(\alpha_{i}\tau).$$

Since the hyperbolic measure is $SL_2(\mathbb{R})$ -invariant, the previous sum does not depend on the choice of coset representatives for $SL_2(\mathbb{Z}) \setminus \{\pm \operatorname{Id}\}\Gamma$ and each integral equals $V_{SL_2(\mathbb{Z})}$. This shows the statement.

ii. Show that if $\Gamma' \subset \Gamma \subset SL_2(\mathbb{Z})$ are congruence subgroups, then $[,]_{\Gamma} = [,]_{\Gamma'}$ on $\mathcal{S}_k(\Gamma)$.

Solution: We start by noting that if

$$SL_2(\mathbb{Z}) = \bigsqcup_i \alpha_i \{\pm \operatorname{Id}\} \Gamma$$
$$\{\pm \operatorname{Id}\} \Gamma = \bigsqcup_j \beta_j \{\pm \operatorname{Id}\} \Gamma'$$

then

$$\operatorname{SL}_2(\mathbb{Z}) = \bigsqcup_{i,j} \alpha_i \beta_j \Gamma'.$$

Therefore, using the equation from one for Γ and $\Gamma',$ we obtain

$$V_{\Gamma'} = [\overline{\Gamma} : \overline{\Gamma'}] V_{\Gamma}.$$

Now let $f, g \in \mathcal{S}_k(\Gamma)$. We have

$$\begin{split} [f,g]_{\Gamma'} &= \frac{1}{[\overline{\Gamma}:\overline{\Gamma'}]V_{\Gamma}} \int_{D_{\Gamma'}} f\overline{g} \Im(\tau)^k d\mu(\tau) \\ &= \frac{1}{[\overline{\Gamma}:\overline{\Gamma'}]V_{\Gamma}} \sum_j \int_{\beta_j D_{\Gamma}} f\overline{g} \Im(\tau)^k d\mu(\tau) \end{split}$$

Considering the last integral for an arbitrary j, we use the $\Gamma'\text{-invariance of the integral and obtain$

$$\int_{\beta_j D_{\Gamma}} f \overline{g} \Im(\tau) d\mu(\tau) = \int_{D_{\Gamma}} f \overline{g} \Im(\tau)^k d\mu(\tau).$$

Since $|\{\beta_j\}| = [\overline{\Gamma} : \overline{\Gamma'}]$ we get the result.