Modular Forms: Problem Sheet 10

Sarah Zerbes

17th May 2022

1. Let $\Gamma^{\prime} \subset \Gamma \subset \operatorname{SL}_{2}(\mathbb{Z})$ be congruence subgroups with $-I \in \Gamma^{\prime}$. Suppose that $f \in \mathcal{S}_{k}(\Gamma) \subset \mathcal{S}_{k}\left(\Gamma^{\prime}\right)$ and that $g \in \mathcal{S}_{k}\left(\Gamma^{\prime}\right)$. Letting $\Gamma=\bigcup_{i} \alpha_{i} \Gamma^{\prime}$, define the trace of g to be

$$
\operatorname{trace} g=\left.\sum_{i} g\right|_{k} \alpha_{i} \in \mathcal{S}_{k}(\Gamma)
$$

Show that

$$
\langle f, g\rangle_{\Gamma^{\prime}}=\langle f, \operatorname{trace} g\rangle_{\Gamma} .
$$

Solution: By definition, we have

$$
\langle f, g\rangle_{\Gamma^{\prime}}=\int_{D_{\Gamma^{\prime}}} f(\tau) \overline{g(\tau)} \Im(\tau)^{k} d \mu(\tau)
$$

where $d \mu$ denotes the hyperbolic measure. Check that the coset decomposition $\Gamma=\bigcup_{i} \alpha_{i} \Gamma^{\prime}$ gives a decomposition of $D_{\Gamma^{\prime}}$ as

$$
D_{\Gamma^{\prime}}=\bigsqcup_{i} \alpha_{i} D_{\Gamma}
$$

Hence,

$$
\begin{equation*}
\langle f, g\rangle_{\Gamma^{\prime}}=\sum_{i} \int_{\alpha_{i} D_{\gamma}} f(\tau) \overline{g(\tau)} \Im(\tau)^{k} d \mu(\tau) \tag{1}
\end{equation*}
$$

Now fix i, and use the invariance of $d \mu$ and the modularity of f to compute

$$
\begin{aligned}
\int_{\alpha_{i} D_{\Gamma}} f(\tau) \overline{g(\tau)} \Im(\tau)^{k} d \mu(\tau) & =\int_{D_{\Gamma}} f\left(\alpha_{i} \tau\right) \overline{g\left(\alpha_{i} \tau\right)} \Im\left(\alpha_{i} \tau\right)^{k} d \mu\left(\alpha_{i} \tau\right) \\
& =\left.\int_{D_{\Gamma}} f\right|_{k} \alpha_{i}(\tau) \overline{\left.g\right|_{k} \alpha_{i}(\tau)} \Im(\tau)^{k} d \mu(\tau) \\
& =\int_{D_{\Gamma}} f(\tau) \overline{\left.g\right|_{k} \alpha_{i}(\tau)} \Im(\tau)^{k} d \mu(\tau)
\end{aligned}
$$

Using absolute convergence, we can exchange the sum and the integral in (1). This yields the result.
2. Let $\Gamma \subset \mathrm{SL}_{2}(\mathbb{Z})$ be a congruence subgroup, and let $\alpha \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$. Set $\alpha^{\prime}=\operatorname{det}(\alpha) \alpha^{-1}$. Show that if $\alpha^{-1} \Gamma \alpha=\Gamma$, then $\left.\right|_{k} \alpha^{\prime}$ is the adjoint operator of $\left.\right|_{k} \alpha$ with respect to the Petersson inner product.

Solution: Let $f \in \mathcal{S}_{k}(\Gamma)$, then $\left.f\right|_{k} \alpha \in \mathcal{S}_{k}\left(\alpha^{-1} \Gamma \alpha\right)$. Additionally, let $g \in \mathcal{S}_{k}\left(\alpha^{-1} \Gamma \alpha\right)$. We consider the Petersson inner product of $\left.f\right|_{k} \alpha$ and g. To compute it, we'll use the fact that
$D_{\alpha^{-1} \Gamma \alpha}=\alpha D_{\Gamma}$. Moreover, we notice that $\alpha^{\prime} \tau=\alpha^{-1} \tau$, for any $\tau \in \mathcal{H}$. We have

$$
\begin{aligned}
\left\langle\left. f\right|_{k} \alpha, g\right\rangle_{\alpha^{-1} \Gamma \alpha} & =\left.\int_{D_{\alpha^{-1} \Gamma \alpha}} f\right|_{k} \alpha(\tau) \overline{g(\tau)} \Im(\tau)^{k} d \mu(\tau) \\
& =\int_{D_{\alpha^{-1} \Gamma \alpha}} \operatorname{det}(\alpha)^{k-1} f(\alpha \tau) j(\alpha, \tau)^{-k} \overline{g(\tau)} d \mu(\tau) \\
& =\int_{D_{\Gamma}} \operatorname{det}(\alpha)^{k-1} f(\tau) j\left(\alpha, \alpha^{\prime} \tau\right)^{-k} \overline{g\left(\alpha^{\prime} \tau\right)} \Im\left(\alpha^{\prime} \tau\right)^{k} d \mu\left(\alpha^{\prime} \tau\right)
\end{aligned}
$$

Now recall that $\operatorname{det}(\alpha)=j\left(\alpha \alpha^{\prime}, \tau\right)=j\left(\alpha, \alpha^{\prime} \tau\right) j\left(\alpha^{\prime}, \tau\right)$ and that $d \mu$ is invariant under the action of $\mathrm{GL}_{2}^{+}(\mathbb{R})$. Additionally, compute that

$$
\Im\left(\alpha^{\prime} \tau\right)=\operatorname{det}\left(\alpha^{\prime}\right)\left|j\left(\alpha^{\prime}, \tau\right)\right|^{-2} \Im(\tau)=\operatorname{det}(\alpha)\left|j\left(\alpha^{\prime}, \tau\right)\right|^{-2} \Im(\tau)
$$

The above equation then becomes

$$
\left\langle\left. f\right|_{k} \alpha, g\right\rangle_{\alpha^{-1} \Gamma \alpha}=\int_{D_{\Gamma}} f(\tau) \overline{\left.g\right|_{k} \alpha^{\prime}(\tau)} \Im(\tau)^{k} d \mu(\tau)=\left\langle f,\left.g\right|_{k} \alpha^{\prime}\right\rangle_{\Gamma}
$$

Since we assumed that $\Gamma=\alpha^{-1} \Gamma \alpha$, this proves the claim.
3. Define the normalized Petersson inner product as

$$
[f, g]_{\Gamma}=\frac{1}{V_{\Gamma}}\langle f, g\rangle_{\Gamma},
$$

for any two cusp forms $f, g \in \mathcal{S}_{k}(\Gamma)$, and with $V_{\Gamma}=\int_{D_{\Gamma}} \frac{d x d y}{y^{2}}$.
i. Find a formula relating the volumes V_{Γ} and $V_{\mathrm{SL}_{2}(\mathbb{Z})}$ and the index $\left[\mathrm{PSL}_{2}(\mathbb{Z}): \bar{\Gamma}\right]$, where $\bar{\Gamma}=$ $\{ \pm \mathrm{Id}\} \Gamma /\{ \pm \mathrm{Id}\}$.

Solution: The formula in question is

$$
V_{\Gamma}=\left[\mathrm{SL}_{2}(\mathbb{Z}):\{ \pm \mathrm{Id}\} \Gamma\right] V_{\mathrm{SL}_{2}(\mathbb{Z})} .
$$

Since Γ is a congruence subgroup, $\{ \pm \mathrm{Id}\} \Gamma$ has finite index in $\mathrm{SL}_{2}(\mathbb{Z})$. Hence there exist a set $\left\{\alpha_{i}\right\} \subset \mathrm{SL}_{2}(\mathbb{Z})$ of cardinality $\left[\mathrm{SL}_{2}(\mathbb{Z}):\{ \pm \mathrm{Id}\} \Gamma\right]$ such that

$$
D_{\Gamma}=\bigsqcup_{i} \alpha_{i} D_{\mathrm{SL}_{2}(\mathbb{Z})}
$$

Hence

$$
\int_{D_{\Gamma}} d \mu(\tau)=\sum_{i} \int_{\alpha_{i} D_{\mathrm{SL}_{2}(\mathbb{Z})}} d \mu(\tau)=\sum_{i} \int_{D_{\mathrm{SL}_{2}(\mathbb{Z})}} d \mu\left(\alpha_{i} \tau\right) .
$$

Since the hyperbolic measure is $\mathrm{SL}_{2}(\mathbb{R})$-invariant, the previous sum does not depend on the choice of coset representatives for $\mathrm{SL}_{2}(\mathbb{Z}) \backslash\{ \pm \mathrm{Id}\} \Gamma$ and each integral equals $V_{\mathrm{SL}_{2}(\mathbb{Z})}$. This shows the statement.
ii. Show that if $\Gamma^{\prime} \subset \Gamma \subset \operatorname{SL}_{2}(\mathbb{Z})$ are congruence subgroups, then $[,]_{\Gamma}=[,]_{\Gamma^{\prime}}$ on $\mathcal{S}_{k}(\Gamma)$.

Solution: We start by noting that if

$$
\begin{aligned}
& \operatorname{SL}_{2}(\mathbb{Z})=\bigsqcup_{i} \alpha_{i}\{ \pm \mathrm{Id}\} \Gamma \\
& \{ \pm \mathrm{Id}\} \Gamma=\bigsqcup_{j} \beta_{j}\{ \pm \mathrm{Id}\} \Gamma^{\prime}
\end{aligned}
$$

then

$$
\mathrm{SL}_{2}(\mathbb{Z})=\bigsqcup_{i, j} \alpha_{i} \beta_{j} \Gamma^{\prime} .
$$

Therefore, using the equation from one for Γ and Γ^{\prime}, we obtain

$$
V_{\Gamma^{\prime}}=\left[\bar{\Gamma}: \overline{\Gamma^{\prime}}\right] V_{\Gamma}
$$

Now let $f, g \in \mathcal{S}_{k}(\Gamma)$. We have

$$
\begin{aligned}
{[f, g]_{\Gamma^{\prime}} } & =\frac{1}{\left[\overline{\bar{\Gamma}}: \overline{\Gamma^{\prime}}\right] V_{\Gamma}} \int_{D_{\Gamma^{\prime}}} f \bar{g} \Im(\tau)^{k} d \mu(\tau) \\
& =\frac{1}{\left[\bar{\Gamma}: \overline{\Gamma^{\prime}}\right] V_{\Gamma}} \sum_{j} \int_{\beta_{j} D_{\Gamma}} f \bar{g} \Im(\tau)^{k} d \mu(\tau)
\end{aligned}
$$

Considering the last integral for an arbitrary j, we use the Γ^{\prime}-invariance of the integral and obtain

$$
\int_{\beta_{j} D_{\Gamma}} f \bar{g} \Im(\tau) d \mu(\tau)=\int_{D_{\Gamma}} f \bar{g} \Im(\tau)^{k} d \mu(\tau) .
$$

Since $\left|\left\{\beta_{j}\right\}\right|=\left[\bar{\Gamma}: \overline{\Gamma^{\prime}}\right]$ we get the result.

