Modular Forms: Problem Sheet 11

Sarah Zerbes

27th May 2022

1. (a) Let $\gamma=\left(\begin{array}{cc}0 & -1 \\ N & 0\end{array}\right)$. Show that $\gamma^{-1} \Gamma_{1}(N) \gamma=\Gamma_{1}(N)$, and so the operator $w_{N}=\left.\right|_{k} \gamma$ is the double coset operator $\left[\Gamma_{1}(N) \gamma \Gamma_{1}(N)\right]_{k}$ on $\mathcal{S}_{k}\left(\Gamma_{1}(N)\right)$. Show that $w_{N}\langle n\rangle w_{N}^{-1}=\langle n\rangle^{*}$ for all n such that $(n, N)=1$, and thus for all n.

Solution: We first note that, for $a, b, c, d \in \mathbb{Z}$ such that $\left(\begin{array}{cc}a & b \\ N c & d\end{array}\right) \in \Gamma_{1}(N)$, we have

$$
\gamma^{-1}\left(\begin{array}{cc}
a & b \\
N c & d
\end{array}\right) \gamma=\left(\begin{array}{cc}
d & -c \\
-N b & a
\end{array}\right) \in \Gamma_{1}(N) .
$$

Hence we have $\Gamma_{1}(N)=\gamma^{-1} \Gamma_{1}(N) \gamma$. Additionally, we have the following coset decomposition:

$$
\Gamma_{1}(N) \gamma \Gamma_{1}(N)=\gamma \Gamma_{1}(N)=\Gamma_{1}(N) \gamma
$$

This shows $w_{N}:=\left.\right|_{k} \gamma=\left[\Gamma_{1}(N) \gamma \Gamma_{1}(N)\right]_{k}$. Similarly, we see that

$$
\gamma \Gamma_{1}(N) \gamma^{-1}=\Gamma_{1}(N)
$$

and therefore that $w_{N}^{-1}=\left.\right|_{k} \gamma^{-1}=\left[\Gamma_{1}(N) \gamma^{-1} \Gamma_{1}(N)\right]_{k}$.
Recall that for $n \in \mathbb{Z}$ with $(n, N)=1$ we computed

$$
\langle n\rangle^{*}=\left\langle n^{-1}\right\rangle .
$$

On the other hand, for $\left(\begin{array}{ll}a & b \\ c & n\end{array}\right) \in \Gamma_{0}(N)$,

$$
\begin{aligned}
w_{N}\langle n\rangle w_{N}^{-1} & =\left[\Gamma_{1}(N) \gamma\left(\begin{array}{cc}
a & b \\
c & n
\end{array}\right) \gamma^{-1} \Gamma_{1}(N)\right]_{k} \\
& =\left[\Gamma_{1}(N)\left(\begin{array}{cc}
n & -c / N \\
-N b & a
\end{array}\right) \Gamma_{1}(N)\right]_{k}
\end{aligned}
$$

We clearly have $\left(\begin{array}{cc}n & -c / N \\ -N b & a\end{array}\right) \in \Gamma_{0}(N)$ and $a n \equiv 1 \bmod N$. Hence,

$$
w_{N}\langle n\rangle w_{N}^{-1}=\left\langle n^{-1}\right\rangle=\langle n\rangle^{*}
$$

In the case $(n, N)>1$, recall that then the diamond operator $\langle n\rangle$ is the null operator.
(b) Let $\Gamma_{1}(N)\left(\begin{array}{ll}1 & 0 \\ 0 & p\end{array}\right) \Gamma_{1}(N)=\cup_{j} \Gamma_{1}(N) \beta_{j}$ be a distinct union. From part (a), $\gamma \Gamma_{1}(N)=\Gamma_{1}(N) \gamma$ and similarly for γ^{-1}. Use this and the formula

$$
\left(\begin{array}{ll}
p & 0 \\
0 & 1
\end{array}\right)=\gamma^{-1}\left(\begin{array}{ll}
1 & 0 \\
0 & p
\end{array}\right) \gamma
$$

to find coset representatives for $\Gamma_{1}(N)\left(\begin{array}{ll}p & 0 \\ 0 & 1\end{array}\right) \Gamma_{1}(N)$. Use the formula for the adjoint computed in Theorem 3.4.6 and the coset representatives to show that

$$
T_{p}^{*}=w_{N} T_{p} w_{N}^{-1} \text { and so } T_{n}^{*}=w_{N} T_{n} w_{N}^{-1} \text { for all } n
$$

Solution: A straight-forward computation using the given formula shows that

$$
\begin{align*}
\Gamma_{1}(N)\left(\begin{array}{ll}
p & 0 \\
0 & 1
\end{array}\right) \Gamma_{1}(N) & =\Gamma_{1}(N) \gamma^{-1}\left(\begin{array}{ll}
1 & 0 \\
0 & p
\end{array}\right) \gamma \Gamma_{1}(N) \\
& =\bigcup_{j} \Gamma_{1}(N)\left(\gamma^{-1} \beta_{j} \gamma\right) \tag{1}
\end{align*}
$$

Therefore the set of $\delta_{j}:=\gamma^{-1} \beta_{j} \gamma$ is a set of coset representatives for $\Gamma_{1}(N)\left(\begin{array}{ll}p & 0 \\ 0 & 1\end{array}\right) \Gamma_{1}(N)$. Recall that T_{p} was defined as the double coset operator $\left[\Gamma_{1}(N)\left(\begin{array}{l}1 \\ 0\end{array} p_{p}^{0}\right) \Gamma_{1}(N)\right]_{k}$. Using the formula from Theorem 3.4.6., we have

$$
T_{p}^{*}=\left[\Gamma_{1}(N)\left(\begin{array}{ll}
1 & 0 \\
0 & p
\end{array}\right)^{\prime} \Gamma_{1}(N)\right]_{k}=\left[\Gamma_{1}(N)\left(\begin{array}{ll}
p & 0 \\
0 & 1
\end{array}\right) \Gamma_{1}(N)\right]_{k}
$$

where $\alpha^{\prime}=\operatorname{det}(\alpha) \alpha^{-1}$ for any $\alpha \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$. Using the coset decomposition (1), we conclude that

$$
\left[\Gamma_{1}(N)\left(\begin{array}{ll}
p & 0 \\
0 & 1
\end{array}\right) \Gamma_{1}(N)\right]_{k}=\left.\sum_{j} \cdot\right|_{k}\left(\gamma^{-1} \beta_{j} \gamma\right)=w_{N} T_{p} w_{N}^{-1}
$$

Note that this computation of the adjoint does not depend on a coprimality condition between p and N, and therefore the generalization to T_{n} for any $n \in \mathbb{Z}_{>0}$ is direct from the definitions (multiplicativity for products of distinct primes and induction for prime powers).
(c) Show that $w_{N}^{*}=(-1)^{k} w_{N}$ and that $i^{k} w_{N} T_{n}$ is self-adjoint.
2. Let l be a prime and let $N \in \mathbb{Z}_{\geq 1}$. Recall the U_{l} and V_{l} operators and their action on the q-expansion of $f=\sum_{n} a_{n} q^{n} \in \mathcal{M}_{k}\left(\Gamma_{1}(N)\right)$:

$$
\begin{aligned}
U_{l} f & =\sum_{n} a_{n l} q^{n}, \\
V_{l} f & =\sum_{n} a_{n} q^{n l} .
\end{aligned}
$$

Compute the composition $V_{l} \circ U_{l}$.

Solution: By looking at the action on q-expansions, we see that $V_{l} \circ U_{l}$ discards all coefficients of f except those corresponding to a power of q that is divisible by p.
3. Recall that a lattice in \mathbb{C} is a subgroup $\Lambda \subset \mathbb{C}$ of the form

$$
\Lambda=\omega_{1} \mathbb{Z}+\omega_{2} \mathbb{Z}
$$

for two \mathbb{R}-linearly independent complex numbers ω_{1}, ω_{2}. We make the normalizing convention that $\omega_{1} / \omega_{2} \in \mathcal{H}$ and denote \mathcal{L} the set of such lattices. Note that two lattices of \mathcal{L}, say $\Lambda=\omega_{1} \mathbb{Z}+\omega_{2} \mathbb{Z}$ and $\Lambda^{\prime}=\omega_{1}^{\prime} \mathbb{Z}+\omega_{2}^{\prime} \mathbb{Z}$, are equal if and only if there exists a matrix $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$ such that

$$
\binom{\omega_{1}}{\omega_{2}}=\gamma\binom{\omega_{1}^{\prime}}{\omega_{2}^{\prime}} .
$$

For an arbitrary $\Lambda=\omega_{1} \mathbb{Z}+\omega_{2} \mathbb{Z}$, we let $\tau=\omega_{1} / \omega_{2} \in \mathcal{H}$ and $\Lambda_{\tau}:=\tau \mathbb{Z}+\mathbb{Z}$. Then, the map

$$
\begin{aligned}
& \varphi_{\tau}: \mathbb{C} / \Lambda \\
& \rightarrow \\
& z+\Lambda \\
& \mapsto \\
& z / \omega_{2}+\Lambda_{\tau}
\end{aligned}
$$ is an isomorphism. Moreover, $\tau \in \mathcal{H}$ is uniquely determined up to the action of $\mathrm{SL}_{2}(\mathbb{Z})$ on \mathcal{H}.

Finally, we say that a map

$$
\mathcal{F}: \mathcal{L} \rightarrow \mathbb{C}
$$

is homogeneous of weight $k \in \mathbb{Z}$ if it satisfies

$$
\mathcal{F}(\lambda \Lambda)=\lambda^{-k} \mathcal{F}(\Lambda) \text { for all } \lambda \in \mathbb{C}^{*} \text { and } \Lambda \in \mathcal{L}
$$

Note that the value of F at any $\Lambda \in \mathcal{L}$ is completely determined by its value at Λ_{τ}. To a homogeneous map, we associate a function $f: \mathcal{H} \rightarrow \mathbb{C}$ by letting $f(\tau)=\mathcal{F}\left(\Lambda_{\tau}\right)$ for all $\Lambda \in \mathcal{L}$. This function is then well-defined by the above paragraph.
(a) Show that such an f is modular, i.e. prove that $f(\gamma \tau)=\mathcal{F}\left(\Lambda_{\gamma \tau}\right)=j(\gamma, \tau)^{k} f(\tau)$ for all $\gamma \in$ $\mathrm{SL}_{2}(\mathbb{Z})$ and $\tau \in \mathcal{H}$.

Solution: This is a straight-forward computation. Letting $\gamma=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \operatorname{SL}_{2}(\mathbb{Z})$, we have

$$
\begin{aligned}
f(\gamma \tau)=\mathcal{F}\left(\Lambda_{\gamma \tau}\right) & =\mathcal{F}\left(\frac{a \tau+b}{c \tau+d} \mathbb{Z}+\mathbb{Z}\right) \\
& =\mathcal{F}\left(\frac{1}{c \tau+d}[(a \tau+b) \mathbb{Z}+(c \tau+d) \mathbb{Z}]\right) \\
& =(c \tau+d)^{k} \mathcal{F}((a \tau+b) \mathbb{Z}+(c \tau+d) \mathbb{Z}) .
\end{aligned}
$$

Now, the lattice $(a \tau+b) \mathbb{Z}+(c \tau+d) \mathbb{Z}$ is equal to Λ_{τ} since the basis vectors $a \tau+b$ and $c \tau+d$ are related to the basis vectors $\tau, 1$ of Λ_{τ} by multiplication by an element of $\mathrm{SL}_{2}(\mathbb{Z})$. We conclude that

$$
f(\gamma \tau)=\mathcal{F}\left(\Lambda_{\gamma \tau}\right)=(c \tau+d)^{k} \mathcal{F}\left(\Lambda_{\tau}\right)=(c \tau+d)^{k} f(\tau)
$$

(b) For a prime number p, define the Hecke operator T_{p} by letting $T_{p} \mathcal{F}$ be the homogeneous function of weight k corresponding to $T_{p} f$ (where the second occurence of T_{p} is our usual Hecke operator on $\left.\mathcal{M}_{k}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)\right)$. Show that

$$
T_{p} \mathcal{F}(\Lambda)=\frac{1}{p} \sum_{\substack{\Lambda^{\prime} \supset \Lambda \\\left[\Lambda^{\prime}: \Lambda\right]=p}} \mathcal{F}\left(\Lambda^{\prime}\right), \forall \Lambda \in \mathcal{L} .
$$

Solution: By homogeneity of \mathcal{F}, it is enough to show the statement for $\Lambda=\Lambda_{\tau}, \tau \in \mathcal{H}$. Since we are working at level $\Gamma_{1}(1)=\mathrm{SL}_{2}(\mathbb{Z})$, any diamond operator is the identity and we do not have to consider the case of a prime p dividing the level. Hence,

$$
\begin{aligned}
T_{p} \mathcal{F}\left(\Lambda_{\tau}\right) & =T_{p} f(\tau) \\
& =p^{k-1} p^{-k} \sum_{j=0}^{p-1} f\left(\frac{\tau+j}{p}\right)+p^{k-1} f(p \tau) \\
& =\frac{1}{p} \sum_{j=0}^{p-1} \mathcal{F}\left(\frac{\tau+j}{p} \mathbb{Z}+\mathbb{Z}\right)+p^{k-1} \mathcal{F}(p \tau \mathbb{Z}+\mathbb{Z}) \\
& =\frac{1}{p}\left[\sum_{j=0}^{p-1} \mathcal{F}\left(\frac{\tau+j}{p} \mathbb{Z}+\mathbb{Z}\right)+\mathcal{F}\left(\tau \mathbb{Z}+\frac{1}{p} \mathbb{Z}\right)\right] .
\end{aligned}
$$

To conclude, we have to show that the lattices $\frac{\tau+j}{p} \mathbb{Z}+\mathbb{Z}$ for $0 \leq j \leq p-1$ and $\tau \mathbb{Z}+\frac{1}{p} \mathbb{Z}$ are precisely the lattices in which Λ_{τ} has index p.

We proceed by first letting M_{p} be the set of all lower upper triangular matrices $\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)$ such that $a d=p$ and $0 \leq b<d$, i.e.

$$
M_{p}=\left\{\left.\left(\begin{array}{ll}
1 & j \\
0 & p
\end{array}\right) \right\rvert\, 0 \leq j<p\right\} \cup\left\{\left(\begin{array}{ll}
p & 0 \\
0 & 1
\end{array}\right)\right\}
$$

and then showing that the map

$$
\begin{array}{ccc}
M_{p} & \rightarrow & \left\{\Lambda^{\prime} \in \mathcal{L} \mid\left[\Lambda^{\prime}: \Lambda_{\tau}\right]=p\right\} \\
\left(\begin{array}{cc}
a & b \\
0 & d
\end{array}\right) & \mapsto & \frac{1}{p}((a \tau+b) \mathbb{Z}+d \mathbb{Z})
\end{array}
$$

is a bijection. Indeed, note that any lattice Λ^{\prime} containing Λ_{τ} as a sublattice of index p admits basis vectors ω_{1}, ω_{2} of the form

$$
\binom{\omega_{1}}{\omega_{2}}=\frac{1}{p}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{\tau}{1},
$$

where $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is an integral matrix of determinant p. We know from linear algebra that an integral matrix of determinant p can be transformed to a unique element of M_{p} using row transformations. This shows that any such Λ^{\prime} admits a basis of the form $\frac{1}{p}(a \tau+b), \frac{1}{p} d$ for some $\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \in M_{p}$.
Remark 1. The same statement and proof apply replacing Λ_{τ} by an arbitrary Λ.
Remark 2. The T_{p} Hecke operator, viewed as an operator on homogeneous lattice functions, acts by "averaging" the function on the "sup-lattices" containing the given lattice with index p. (It is not exactly an average since there are $p+1$ such lattices.)

