Modular Forms: Problem Sheet 11

Sarah Zerbes

27th May 2022

1. (a) Let $\gamma = \begin{pmatrix} 0 & -1 \\ N & 0 \end{pmatrix}$. Show that $\gamma^{-1}\Gamma_1(N)\gamma = \Gamma_1(N)$, and so the operator $w_N = |_k\gamma$ is the double coset operator $[\Gamma_1(N)\gamma\Gamma_1(N)]_k$ on $\mathcal{S}_k(\Gamma_1(N))$. Show that $w_N \langle n \rangle w_N^{-1} = \langle n \rangle^*$ for all n such that (n, N) = 1, and thus for all n.

Solution: We first note that, for $a, b, c, d \in \mathbb{Z}$ such that $\begin{pmatrix} a & b \\ Nc & d \end{pmatrix} \in \Gamma_1(N)$, we have

$$\gamma^{-1} \begin{pmatrix} a & b \\ Nc & d \end{pmatrix} \gamma = \begin{pmatrix} d & -c \\ -Nb & a \end{pmatrix} \in \Gamma_1(N).$$

Hence we have $\Gamma_1(N) = \gamma^{-1}\Gamma_1(N)\gamma$. Additionally, we have the following coset decomposition:

$$\Gamma_1(N)\gamma\Gamma_1(N) = \gamma\Gamma_1(N) = \Gamma_1(N)\gamma.$$

This shows $w_N := |_k \gamma = [\Gamma_1(N)\gamma\Gamma_1(N)]_k$. Similarly, we see that

$$\gamma \Gamma_1(N) \gamma^{-1} = \Gamma_1(N),$$

and therefore that $w_N^{-1} = |_k \gamma^{-1} = [\Gamma_1(N)\gamma^{-1}\Gamma_1(N)]_k$. Recall that for $n \in \mathbb{Z}$ with (n, N) = 1 we computed

$$\langle n \rangle^* = \langle n^{-1} \rangle.$$

On the other hand, for $\begin{pmatrix} a & b \\ c & n \end{pmatrix} \in \Gamma_0(N)$,

$$w_N \langle n \rangle w_N^{-1} = \left[\Gamma_1(N) \gamma \begin{pmatrix} a & b \\ c & n \end{pmatrix} \gamma^{-1} \Gamma_1(N) \right]_k$$
$$= \left[\Gamma_1(N) \begin{pmatrix} n & -c/N \\ -Nb & a \end{pmatrix} \Gamma_1(N) \right]_k.$$

We clearly have $\binom{n \quad -c/N}{-Nb} \in \Gamma_0(N)$ and $an \equiv 1 \mod N$. Hence,

$$w_N \langle n \rangle w_N^{-1} = \langle n^{-1} \rangle = \langle n \rangle^*$$

In the case (n, N) > 1, recall that then the diamond operator $\langle n \rangle$ is the null operator.

(b) Let $\Gamma_1(N) \begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix} \Gamma_1(N) = \bigcup_j \Gamma_1(N) \beta_j$ be a distinct union. From part (a), $\gamma \Gamma_1(N) = \Gamma_1(N) \gamma$ and similarly for γ^{-1} . Use this and the formula

$$\begin{pmatrix} p & 0\\ 0 & 1 \end{pmatrix} = \gamma^{-1} \begin{pmatrix} 1 & 0\\ 0 & p \end{pmatrix} \gamma$$

to find coset representatives for $\Gamma_1(N) \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix} \Gamma_1(N)$. Use the formula for the adjoint computed in Theorem 3.4.6 and the coset representatives to show that

$$T_p^* = w_N T_p w_N^{-1}$$
 and so $T_n^* = w_N T_n w_N^{-1}$ for all n .

Solution: A straight-forward computation using the given formula shows that

$$\Gamma_1(N) \begin{pmatrix} p & 0\\ 0 & 1 \end{pmatrix} \Gamma_1(N) = \Gamma_1(N)\gamma^{-1} \begin{pmatrix} 1 & 0\\ 0 & p \end{pmatrix} \gamma \Gamma_1(N)$$
$$= \bigcup_j \Gamma_1(N)(\gamma^{-1}\beta_j\gamma). \tag{1}$$

Therefore the set of $\delta_j := \gamma^{-1}\beta_j\gamma$ is a set of coset representatives for $\Gamma_1(N) \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix} \Gamma_1(N)$. Recall that T_p was defined as the double coset operator $[\Gamma_1(N) \begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix} \Gamma_1(N)]_k$. Using the formula from Theorem 3.4.6., we have

$$T_p^* = \left[\Gamma_1(N) \begin{pmatrix} 1 & 0\\ 0 & p \end{pmatrix}' \Gamma_1(N)\right]_k = \left[\Gamma_1(N) \begin{pmatrix} p & 0\\ 0 & 1 \end{pmatrix} \Gamma_1(N)\right]_k,$$

where $\alpha' = \det(\alpha)\alpha^{-1}$ for any $\alpha \in \operatorname{GL}_2^+(\mathbb{Q})$. Using the coset decomposition (1), we conclude that

$$\left[\Gamma_1(N)\begin{pmatrix}p&0\\0&1\end{pmatrix}\Gamma_1(N)\right]_k = \sum_j \cdot |_k(\gamma^{-1}\beta_j\gamma) = w_N T_p w_N^{-1}.$$

Note that this computation of the adjoint does not depend on a coprimality condition between p and N, and therefore the generalization to T_n for any $n \in \mathbb{Z}_{>0}$ is direct from the definitions (multiplicativity for products of distinct primes and induction for prime powers).

- (c) Show that $w_N^* = (-1)^k w_N$ and that $i^k w_N T_n$ is self-adjoint.
- 2. Let *l* be a prime and let $N \in \mathbb{Z}_{\geq 1}$. Recall the U_l and V_l operators and their action on the *q*-expansion of $f = \sum_n a_n q^n \in \mathcal{M}_k(\Gamma_1(N))$:

$$U_l f = \sum_n a_{nl} q^n,$$
$$V_l f = \sum_n a_n q^{nl}.$$

Compute the composition $V_l \circ U_l$.

Solution: By looking at the action on q-expansions, we see that $V_l \circ U_l$ discards all coefficients of f except those corresponding to a power of q that is divisible by p.

3. Recall that a lattice in \mathbb{C} is a subgroup $\Lambda \subset \mathbb{C}$ of the form

 $\Lambda = \omega_1 \mathbb{Z} + \omega_2 \mathbb{Z}$

for two \mathbb{R} -linearly independent complex numbers ω_1, ω_2 . We make the normalizing convention that $\omega_1/\omega_2 \in \mathcal{H}$ and denote \mathcal{L} the set of such lattices. Note that two lattices of \mathcal{L} , say $\Lambda = \omega_1 \mathbb{Z} + \omega_2 \mathbb{Z}$ and $\Lambda' = \omega'_1 \mathbb{Z} + \omega'_2 \mathbb{Z}$, are equal if and only if there exists a matrix $\gamma \in SL_2(\mathbb{Z})$ such that

$$\begin{pmatrix} \omega_1 \\ \omega_2 \end{pmatrix} = \gamma \begin{pmatrix} \omega_1' \\ \omega_2' \end{pmatrix}$$

For an arbitrary $\Lambda = \omega_1 \mathbb{Z} + \omega_2 \mathbb{Z}$, we let $\tau = \omega_1 / \omega_2 \in \mathcal{H}$ and $\Lambda_\tau := \tau \mathbb{Z} + \mathbb{Z}$. Then, the map

$$\begin{array}{rcl} \varphi_{\tau}: & \mathbb{C}/\Lambda & \to & \mathbb{C}/\Lambda_{\tau} \\ & z+\Lambda & \mapsto & z/\omega_2+\Lambda_{\tau} \end{array}$$

is an isomorphism. Moreover, $\tau \in \mathcal{H}$ is uniquely determined up to the action of $SL_2(\mathbb{Z})$ on \mathcal{H} .

Finally, we say that a map

$$\mathcal{F}:\mathcal{L}
ightarrow\mathbb{C}$$

is homogeneous of weight $k \in \mathbb{Z}$ if it satisfies

$$\mathcal{F}(\lambda\Lambda) = \lambda^{-k} \mathcal{F}(\Lambda)$$
 for all $\lambda \in \mathbb{C}^*$ and $\Lambda \in \mathcal{L}$.

Note that the value of F at any $\Lambda \in \mathcal{L}$ is completely determined by its value at Λ_{τ} . To a homogeneous map, we associate a function $f : \mathcal{H} \to \mathbb{C}$ by letting $f(\tau) = \mathcal{F}(\Lambda_{\tau})$ for all $\Lambda \in \mathcal{L}$. This function is then well-defined by the above paragraph.

(a) Show that such an f is modular, i.e. prove that $f(\gamma \tau) = \mathcal{F}(\Lambda_{\gamma \tau}) = j(\gamma, \tau)^k f(\tau)$ for all $\gamma \in SL_2(\mathbb{Z})$ and $\tau \in \mathcal{H}$.

Solution: This is a straight-forward computation. Letting $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$, we have $f(\gamma \tau) = \mathcal{F}(\Lambda_{\gamma \tau}) = \mathcal{F}\left(\frac{a\tau + b}{c\tau + d}\mathbb{Z} + \mathbb{Z}\right)$ $= \mathcal{F}\left(\frac{1}{c\tau + d}[(a\tau + b)\mathbb{Z} + (c\tau + d)\mathbb{Z}]\right)$ $= (c\tau + d)^k \mathcal{F}((a\tau + b)\mathbb{Z} + (c\tau + d)\mathbb{Z}).$

Now, the lattice $(a\tau + b)\mathbb{Z} + (c\tau + d)\mathbb{Z}$ is equal to Λ_{τ} since the basis vectors $a\tau + b$ and $c\tau + d$ are related to the basis vectors τ , 1 of Λ_{τ} by multiplication by an element of $SL_2(\mathbb{Z})$. We conclude that

$$f(\gamma\tau) = \mathcal{F}(\Lambda_{\gamma\tau}) = (c\tau + d)^k \mathcal{F}(\Lambda_{\tau}) = (c\tau + d)^k f(\tau).$$

(b) For a prime number p, define the Hecke operator T_p by letting $T_p\mathcal{F}$ be the homogeneous function of weight k corresponding to T_pf (where the second occurrence of T_p is our usual Hecke operator on $\mathcal{M}_k(\mathrm{SL}_2(\mathbb{Z}))$). Show that

$$T_{p}\mathcal{F}(\Lambda) = \frac{1}{p} \sum_{\substack{\Lambda' \supset \Lambda \\ [\Lambda':\Lambda] = p}} \mathcal{F}(\Lambda'), \ \forall \Lambda \in \mathcal{L}.$$

Solution: By homogeneity of \mathcal{F} , it is enough to show the statement for $\Lambda = \Lambda_{\tau}, \tau \in \mathcal{H}$. Since we are working at level $\Gamma_1(1) = \operatorname{SL}_2(\mathbb{Z})$, any diamond operator is the identity and we do not have to consider the case of a prime p dividing the level. Hence,

$$T_{p}\mathcal{F}(\Lambda_{\tau}) = T_{p}f(\tau)$$

$$= p^{k-1}p^{-k}\sum_{j=0}^{p-1} f\left(\frac{\tau+j}{p}\right) + p^{k-1}f(p\tau)$$

$$= \frac{1}{p}\sum_{j=0}^{p-1} \mathcal{F}\left(\frac{\tau+j}{p}\mathbb{Z} + \mathbb{Z}\right) + p^{k-1}\mathcal{F}(p\tau\mathbb{Z} + \mathbb{Z})$$

$$= \frac{1}{p}\left[\sum_{j=0}^{p-1} \mathcal{F}\left(\frac{\tau+j}{p}\mathbb{Z} + \mathbb{Z}\right) + \mathcal{F}\left(\tau\mathbb{Z} + \frac{1}{p}\mathbb{Z}\right)\right].$$

To conclude, we have to show that the lattices $\frac{\tau+j}{p}\mathbb{Z} + \mathbb{Z}$ for $0 \leq j \leq p-1$ and $\tau\mathbb{Z} + \frac{1}{p}\mathbb{Z}$ are precisely the lattices in which Λ_{τ} has index p.

We proceed by first letting M_p be the set of all lower upper triangular matrices $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$ such that ad = p and $0 \le b < d$, i.e.

$$M_p = \left\{ \begin{pmatrix} 1 & j \\ 0 & p \end{pmatrix} \mid 0 \le j$$

and then showing that the map

$$\begin{array}{rcl} M_p & \to & \{\Lambda' \in \mathcal{L} \mid [\Lambda' : \Lambda_{\tau}] = p\} \\ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} & \mapsto & \frac{1}{p}((a\tau + b)\mathbb{Z} + d\mathbb{Z}) \end{array}$$

is a bijection. Indeed, note that any lattice Λ' containing Λ_{τ} as a sublattice of index p admits basis vectors ω_1, ω_2 of the form

$$\begin{pmatrix} \omega_1 \\ \omega_2 \end{pmatrix} = \frac{1}{p} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \tau \\ 1 \end{pmatrix},$$

where $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is an integral matrix of determinant p. We know from linear algebra that an integral matrix of determinant p can be transformed to a unique element of M_p using row transformations. This shows that any such Λ' admits a basis of the form $\frac{1}{p}(a\tau + b)$, $\frac{1}{p}d$ for some $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \in M_p$.

Remark 1. The same statement and proof apply replacing Λ_{τ} by an arbitrary Λ .

Remark 2. The T_p Hecke operator, viewed as an operator on homogeneous lattice functions, acts by "averaging" the function on the "sup-lattices" containing the given lattice with index p. (It is not exactly an average since there are p + 1 such lattices.)