Modular Forms: Problem Sheet 1

Sarah Zerbes

4th March 2022

1. Show that the action of $PSL_2(\mathbb{R})$ on \mathcal{H} is **transitive** (for any $z, z' \in \mathcal{H}$, there is $g \in PSL_2(\mathbb{R})$ such that $g \circ z = z'$) and **faithful** (no non-identity element in $PSL_2(\mathbb{R})$ acts trivially on \mathcal{H}).

Answer. We show that for any $z = x + iy \in \mathcal{H}$, there exists $g \in PSL_2(\mathbb{R})$ so that $g \circ i = z$. We have,

$$g \circ i = \frac{ai+b}{ci+d} = \frac{ac+bd}{c^2+d^2} + \frac{i}{c^2+d^2}$$

Setting $x + iy = g \circ i$ and solving for the entries of g we find

$$\begin{pmatrix} \sqrt{y} & x/\sqrt{y} \\ 0 & 1/\sqrt{y} \end{pmatrix} \circ i = z$$

We conclude that for any $z \in \mathcal{H}$, $z \in PSL_2(\mathbb{R}) \circ i$ and therefore that the action of $PSL_2(\mathbb{R})$ on \mathcal{H} is transitive.

We now show that the action is faithful. Assume that $\gamma \in \text{PSL}_2(\mathbb{R})$ such that $\gamma \circ z = z$ for all $z \in \mathcal{H}$. Since $\Im(\gamma \circ z) = \frac{\Im(z)}{|cz+d|^2}$, we must have $|cz+d|^2 = 1$ for all $z \in \mathcal{H}$. We first consider the case $c \neq 0$ and set z = i/c. Then d = 0 must hold and equating the real parts of $\gamma \circ z$ and z we see that a = 0 must also hold. We conclude that, to fix i/c, we must have $\gamma = \begin{pmatrix} 0 & -1/c \\ c & 0 \end{pmatrix}$. However, this obviously doesn't fix the whole of \mathcal{H} . We have shown that c must vanish. The equation $|cz+d|^2 = 1$ then implies $d = \pm 1$. Let us set d = 1 (the other case is done similarly). Again equating the real parts of $\gamma \circ z$ and z, we see that, to fix z = x + iy the equation

$$b + ax = x$$

has to hold for all $x \in \mathbb{R}$. Of course, this can only hold if b = 0 and a = 1, which yields $\gamma = \text{Id}$. This concludes the proof.

2. Let $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be an element of $SL_2(\mathbb{Z})$. Show that if c = 1 and d = 0, and there is some $z \in D$ such that $\gamma z \in D$, then we must have one of the following possibilities:

•
$$\gamma = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
, and z is any element of D with $|z| = 1$,
• $\gamma = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$, $z = \gamma z = 1 + \rho$,
• $\gamma = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}$, $z = \gamma z = \rho$.

(This fills in a detail of Step 2 of Theorem 1.2.2.)

Answer. Recall that in the proof of Step 2 of Theorem 1.2.2. we showed that in the case c = 1, d = 0, if there is some $z \in D$ such that $\gamma \circ z \in D$, then |z| = 1. Since $\gamma \in SL_2(\mathbb{Z})$, $det(\gamma) = 1$ so we must also have b = -1. Letting z = x + iy, we now compute

$$\begin{pmatrix} a & -1 \\ 1 & 0 \end{pmatrix} \circ z = a - x + iy.$$

From this we deduce two things. First, that $\Im(\gamma \circ z) = \Im(z)$. Second, since $z, \gamma \circ z \in D$, we have

$$x + \frac{1}{2} \ge a \ge x - \frac{1}{2}$$
 and $\frac{1}{2} \ge x \ge -\frac{1}{2}$.

We deduce that the only possible values for $a \in \mathbb{Z}$ are 1, -1 and 0. Moreover, the case a = 1 can only occur if x = 1/2, hence if $z = \rho + 1$. The case a = -1 can only occur if x = -1/2, hence if $z = \rho$. Finally, for a = 0, the action of γ just sends z to its reflection with respect to the imaginary axis, hence $\gamma \circ z \in D$ for any $z \in D$ with |z| = 1.

3. Express the element

$$\gamma = \begin{pmatrix} 8 & 29\\ 11 & 40 \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$$

in terms of the generators S and T.

Answer. We give a general algorithm to help us solve such problems. First note that

$$S\begin{pmatrix}a&b\\c&d\end{pmatrix} = \begin{pmatrix}-c&-d\\a&b\end{pmatrix}$$
 and $T^n\begin{pmatrix}a&b\\c&b\end{pmatrix} = \begin{pmatrix}a+nc&b+nd\\c&d\end{pmatrix}$.

Let. $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Assume moreover that $c \neq 0$. If $|a| \geq |c|$, start by dividing a by c (otherwise exchange the two rows using S, then proceed as follows). More precisely, if a = qc + r for some $r \in \mathbb{Z}$ with |r| < |c|, then the upper left entry of $T^{-q}g$ is r. If $r \neq 0$, we then exchange the two rows using S and repeat the process with -c in the role of a and r in the role of c. Continuing this way as long as the lower left entry vanishes. Since the resulting matrix still has determinant 1, it must be of the form

$$\begin{pmatrix} \operatorname{sgn} \cdot 1 & \beta \\ 0 & \operatorname{sgn} \cdot 1 \end{pmatrix}, \, \operatorname{sgn} \in \{\pm 1\}.$$

This is either equal to T^{β} or to $-T^{-\beta}$ for some $m \in \mathbb{Z}$. Hence, there is a $\gamma \in SL_2(\mathbb{Z})$ such that

$$\gamma \cdot g = \operatorname{sgn} T^{\operatorname{sgn} \beta}.$$

The right-hand side of the previous equation can be expressed in terms of S and T since $T^{\operatorname{sgn}\beta} \in \operatorname{SL}_2(\mathbb{Z})$ and $-\operatorname{Id} = S^2 \in \operatorname{SL}_2(\mathbb{Z})$. We conclude that the expression of g in terms of S and T is

 $\gamma^{-1}S^2T^{-\beta}$, if sgn = -1 and $\gamma^{-1}T^{\beta}$, if sgn = 1.

Applying the algorithm in the context of this exercise, we find

$$\gamma = S^3 T^{-1} S^3 T^2 S^3 T^{-1} S^3 T^2 S T^4.$$

.

4. Let $G = SL_2(\mathbb{Z})$. Show that for $z \in D$, we have

$$G_{z} = \begin{cases} C_{6} = \langle ST \rangle = \left\langle \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix} \right\rangle & z = \rho \\ C_{6} = \langle TS \rangle = \left\langle \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} \right\rangle & z = \rho + 1 \\ C_{4} = \langle S \rangle = \left\langle \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right\rangle & z = i \\ C_{2} = \langle -\mathrm{Id} \rangle = \left\langle \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\rangle & z \notin \{i, \rho, \rho + 1\} \end{cases}$$

Answer. In Step 2 of the proof of Theorem 1.2.2, we have determined for which $z \in D$ there exists $\gamma \in SL_2(\mathbb{Z})$ such that $\gamma \circ z \in D$ and we have described every such γ . Of course, for any $z \in D$ we have

$$\{\gamma \in \mathrm{SL}_2(\mathbb{Z}) \mid \gamma \circ z = z\} \subset \{\gamma \in \mathrm{SL}_2(\mathbb{Z}) \mid \gamma \circ z \in D\}.$$

So, to solve this problem, compute for each case listed in Step 2 which γ 's fix z, and observe that the ones that do belong to the cyclic groups presented above.