Modular Forms: Problem Sheet 1

Sarah Zerbes

4th March 2022

1. Show that the action of $\operatorname{PSL}_{2}(\mathbb{R})$ on \mathcal{H} is transitive (for any $z, z^{\prime} \in \mathcal{H}$, there is $g \in \operatorname{PSL}_{2}(\mathbb{R})$ such that $g \circ z=z^{\prime}$) and faithful (no non-identity element in $\mathrm{PSL}_{2}(\mathbb{R})$ acts trivially on \mathcal{H}).

Answer. We show that for any $z=x+i y \in \mathcal{H}$, there exists $g \in \mathrm{PSL}_{2}(\mathbb{R})$ so that $g \circ i=z$. We have,

$$
g \circ i=\frac{a i+b}{c i+d}=\frac{a c+b d}{c^{2}+d^{2}}+\frac{i}{c^{2}+d^{2}} .
$$

Setting $x+i y=g \circ i$ and solving for the entries of g we find

$$
\left(\begin{array}{cc}
\sqrt{y} & x / \sqrt{y} \\
0 & 1 / \sqrt{y}
\end{array}\right) \circ i=z .
$$

We conclude that for any $z \in \mathcal{H}, z \in \mathrm{PSL}_{2}(\mathbb{R}) \circ i$ and therefore that the action of $\mathrm{PSL}_{2}(\mathbb{R})$ on \mathcal{H} is transitive.
We now show that the action is faithful. Assume that $\gamma \in \operatorname{PSL}_{2}(\mathbb{R})$ such that $\gamma \circ z=z$ for all $z \in \mathcal{H}$. Since $\Im(\gamma \circ z)=\frac{\Im(z)}{|c z+d|^{2}}$, we must have $|c z+d|^{2}=1$ for all $z \in \mathcal{H}$. We first consider the case $c \neq 0$ and set $z=i / c$. Then $d=0$ must hold and equating the real parts of $\gamma \circ z$ and z we see that $a=0$ must also hold. We conclude that, to fix i / c, we must have $\gamma=\left(\begin{array}{cc}0 & -1 / c \\ c & 0\end{array}\right)$. However, this obviously doesn't fix the whole of \mathcal{H}. We have shown that c must vanish. The equation $|c z+d|^{2}=1$ then implies $d= \pm 1$. Let us set $d=1$ (the other case is done similarly). Again equating the real parts of $\gamma \circ z$ and z, we see that, to fix $z=x+i y$ the equation

$$
b+a x=x
$$

has to hold for all $x \in \mathbb{R}$. Of course, this can only hold if $b=0$ and $a=1$, which yields $\gamma=\mathrm{Id}$. This concludes the proof.
2. Let $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be an element of $\mathrm{SL}_{2}(\mathbb{Z})$. Show that if $c=1$ and $d=0$, and there is some $z \in D$ such that $\gamma z \in D$, then we must have one of the following possibilities:

- $\gamma=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$, and z is any element of D with $|z|=1$,
- $\gamma=\left(\begin{array}{cc}1 & -1 \\ 1 & 0\end{array}\right), z=\gamma z=1+\rho$,
- $\gamma=\left(\begin{array}{cc}-1 & -1 \\ 1 & 0\end{array}\right), z=\gamma z=\rho$.
(This fills in a detail of Step 2 of Theorem 1.2.2.)
Answer. Recall that in the proof of Step 2 of Theorem 1.2.2. we showed that in the case $c=1$, $d=0$, if there is some $z \in D$ such that $\gamma \circ z \in D$, then $|z|=1$. Since $\gamma \in \operatorname{SL}_{2}(\mathbb{Z})$, $\operatorname{det}(\gamma)=1$ so we must also have $b=-1$. Letting $z=x+i y$, we now compute

$$
\left(\begin{array}{cc}
a & -1 \\
1 & 0
\end{array}\right) \circ z=a-x+i y
$$

From this we deduce two things. First, that $\Im(\gamma \circ z)=\Im(z)$. Second, since $z, \gamma \circ z \in D$, we have

$$
x+\frac{1}{2} \geq a \geq x-\frac{1}{2} \quad \text { and } \quad \frac{1}{2} \geq x \geq-\frac{1}{2} .
$$

We deduce that the only possible values for $a \in \mathbb{Z}$ are $1,-1$ and 0 . Moreover, the case $a=1$ can only occur if $x=1 / 2$, hence if $z=\rho+1$. The case $a=-1$ can only occur if $x=-1 / 2$, hence if $z=\rho$. Finally, for $a=0$, the action of γ just sends z to its reflection with respect to the imaginary axis, hence $\gamma \circ z \in D$ for any $z \in D$ with $|z|=1$.
3. Express the element

$$
\gamma=\left(\begin{array}{cc}
8 & 29 \\
11 & 40
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})
$$

in terms of the generators S and T.
Answer. We give a general algorithm to help us solve such problems. First note that

$$
S\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
-c & -d \\
a & b
\end{array}\right) \quad \text { and } \quad T^{n}\left(\begin{array}{ll}
a & b \\
c & b
\end{array}\right)=\left(\begin{array}{cc}
a+n c & b+n d \\
c & d
\end{array}\right) .
$$

Let. $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Assume moreover that $c \neq 0$. If $|a| \geq|c|$, start by dividing a by c (otherwise exchange the two rows using S, then proceed as follows). More precisely, if $a=q c+r$ for some $r \in \mathbb{Z}$ with $|r|<|c|$, then the upper left entry of $T^{-q} g$ is r. If $r \neq 0$, we then exchange the two rows using S and repeat the process with $-c$ in the role of a and r in the role of c. Continuing this way as long as the lower left entry isn't zero, we will arrive in a finite number of steps to a matrix of $\mathrm{SL}_{2}(\mathbb{Z})$ whose lower left entry vanishes. Since the resulting matrix still has determinant 1, it must be of the form

$$
\left(\begin{array}{cc}
\operatorname{sgn} \cdot 1 & \beta \\
0 & \operatorname{sgn} \cdot 1
\end{array}\right), \operatorname{sgn} \in\{ \pm 1\} .
$$

This is either equal to T^{β} or to $-T^{-\beta}$ for some $m \in \mathbb{Z}$. Hence, there is a $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$ such that

$$
\gamma \cdot g=\operatorname{sgn} T^{\operatorname{sgn} \beta} .
$$

The right-hand side of the previous equation can be expressed in terms of S and T since $T^{\operatorname{sgn} \beta} \in$ $\mathrm{SL}_{2}(\mathbb{Z})$ and $-\mathrm{Id}=S^{2} \in \mathrm{SL}_{2}(\mathbb{Z})$. We conclude that the expression of g in terms of S and T is

$$
\gamma^{-1} S^{2} T^{-\beta}, \text { if } \operatorname{sgn}=-1 \quad \text { and } \quad \gamma^{-1} T^{\beta}, \text { if } \operatorname{sgn}=1
$$

Applying the algorithm in the context of this exercise, we find

$$
\gamma=S^{3} T^{-1} S^{3} T^{2} S^{3} T^{-1} S^{3} T^{2} S T^{4}
$$

4. Let $G=\mathrm{SL}_{2}(\mathbb{Z})$. Show that for $z \in D$, we have

$$
G_{z}= \begin{cases}C_{6}=\langle S T\rangle=\left\langle\left(\begin{array}{cc}
0 & -1 \\
1 & 1
\end{array}\right)\right\rangle & z=\rho \\
C_{6}=\langle T S\rangle=\left\langle\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right)\right\rangle & z=\rho+1 \\
C_{4}=\langle S\rangle=\left\langle\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right\rangle & z=i \\
C_{2}=\langle-\mathrm{Id}\rangle=\left\langle\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)\right\rangle & z \notin\{i, \rho, \rho+1\}\end{cases}
$$

Answer. In Step 2 of the proof of Theorem 1.2.2, we have determined for which $z \in D$ there exists $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$ such that $\gamma \circ z \in D$ and we have described every such γ. Of course, for any $z \in D$ we have

$$
\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}) \mid \gamma \circ z=z\right\} \subset\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}) \mid \gamma \circ z \in D\right\} .
$$

So, to solve this problem, compute for each case listed in Step 2 which γ 's fix z, and observe that the ones that do belong to the cyclic groups presented above.

