Modular Forms: Problem Sheet 2

Sarah Zerbes

13th March 2022

1. (a) Let a, b, c, d be integers. Show that the map $(m, n) \mapsto(m a+n c, m b+n d)$ is a bijection on $\mathbb{Z}^{2}-\{(0,0)\}$ if and only if $a d-b c= \pm 1$.

Solution: It is clear that

$$
(m, n) \mapsto(m a+n c, m b+n d)
$$

is a well-defined map from \mathbb{Z}^{2} to itself. Let A be the matrix of $M_{2}(\mathbb{Z})$ associated to this linear transformation.
Assume first that $\operatorname{det}(A) \in\{ \pm 1\}$. Then the inverse A^{-1} belongs to $M_{2}(\mathbb{Z})$. Finally,

$$
A\left(A^{-1} v\right)=v=A^{-1}(A v)
$$

shows that the map is bijective (existence of a left- and right-inverse).
Assume now that the map is bijective. It can be viewed as a linear map on the \mathbb{R}-vector space \mathbb{R}^{2} that maps the lattice $\mathbb{Z}^{2} \subset \mathbb{R}^{2}$ to itself bijectively. By definition, the volume of the fundamental parallelogram of $A \mathbb{Z}^{2}$ equals $|\operatorname{det}(A)|$. Since $A \mathbb{Z}^{2}=\mathbb{Z}^{2}$,

$$
|\operatorname{det}(A)|=\operatorname{vol}\left(\mathbb{R}^{2} / A \mathbb{Z}^{2}\right)=\operatorname{vol}\left(\mathbb{R}^{2} / \mathbb{Z}^{2}\right)=1
$$

and we have proved the statement.
(b) Hence show that for $k \geq 4$ even, the Eisenstein series

$$
G_{k}(z)=\sum_{(m, n) \neq(0,0)} \frac{1}{(m z+n)^{k}}
$$

satisfies $\left.G_{k}\right|_{k} \gamma=G_{k}$ for any $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$, without using Theorem 1.2.2 (a) as we did in class. (You may assume that the sum defining $G_{k}(z)$ converges absolutely for any $z \in \mathcal{H}$.)

Solution: Let $\gamma \in \operatorname{SL}_{2}(\mathbb{Z})$, then

$$
\begin{aligned}
\left.G\right|_{k} \gamma(z) & =\sum_{(m, n) \neq(0,0)} \frac{(c z+d)^{-k}}{(m(\gamma \circ z)+d)^{k}} \\
& =\sum_{(m, n) \neq(0,0)} \frac{1}{(m(a z+b)+n(c z+d))^{k}} \\
& =\sum_{(m, n) \neq(0,0)} \frac{1}{((m a+n c) z+(m b+n d))^{k}} \\
& =G_{k}(z),
\end{aligned}
$$

where the last equality follows from $\operatorname{det}(\gamma) \in\{ \pm 1\}$ by (a).
2. (a) Prove the identity

$$
\pi z \frac{\cos (\pi z)}{\sin (\pi z)}=\sum_{k \geq 0, \text { even }}(2 \pi i)^{k} \frac{B_{k}}{k!} z^{k} \quad \forall|z|<1
$$

Solution: We have

$$
\begin{aligned}
\pi z \cot (\pi z) & =i \pi z \frac{e^{i \pi z}+e^{-i \pi z}}{e^{i \pi z}-e^{-i \pi z}}=i \pi z \frac{e^{2 i \pi z}+1}{e^{2 i \pi z}-1} \\
& =i \pi z\left(1+\frac{2}{e^{2 i \pi z}-1}\right)=i \pi z+\frac{2 i \pi z}{e^{2 i \pi z}-1} \\
& =i \pi z+\sum_{k=0}^{\infty} \frac{B_{k}}{k!}(2 \pi i z)^{k} \\
& =\sum_{k \geq 0, \text { even }}(2 \pi i)^{k} \frac{B_{k}}{k!} z^{k},
\end{aligned}
$$

where the last equality follows from (d). Note that convergence holds on $|z|<1$.
(b) Show that

$$
\pi z \frac{\cos (\pi z)}{\sin (\pi z)}=1-2 \sum_{k \geq 2, \text { even }} \zeta(k) z^{k} \quad \forall|z|<1
$$

Solution: Starting from the equation

$$
\sum_{d \in \mathbb{Z}} \frac{1}{z+d}=\pi \cot (\pi z)
$$

seen in the lecture, we get

$$
\begin{aligned}
\pi z \cot (\pi z) & =z\left[\frac{1}{z}+\sum_{d=1}^{\infty}\left(\frac{1}{z+d}+\frac{1}{z-d}\right)\right] \\
& =1+2 z^{2} \sum_{d=1}^{\infty} \frac{1}{z^{2}-d^{2}}=1+2 z^{2} \sum_{d=1}^{\infty} \frac{1}{d^{2}\left(z^{2} / d^{2}-1\right)} \\
& =1-2 z^{2} \sum_{d=1}^{\infty} \sum_{k=0}^{\infty} \frac{z^{2 k}}{d^{2 k+2}} \\
& =1-2 \sum_{k=1}^{\infty} \zeta(2 k) z^{2 k}
\end{aligned}
$$

where absolute convergence is guaranteed on $|z|<1$ (additionally recall that the Riemann zeta $\zeta(s)$ converges absolutely on $\Re(s)>1)$.
(c) Deduce that the values of the Riemann zeta function at the even integers $k \geq 2$ are given by

$$
\zeta(k)=-\frac{(2 \pi i)^{k} B_{k}}{2 \cdot k!}
$$

Solution: This follows directly from the uniqueness of power series on their domain of convergence. More precisely,

$$
\sum_{k \geq 0, \text { even }}(2 \pi i)^{k} \frac{B_{k}}{k!} z^{k}=1-2 \sum_{k \geq 2, \text { even }}^{\infty} \zeta(k) z^{k}
$$

on $|z|<1$, hence their coefficients must coincide for each $k \geq 0$.
(d) Prove that B_{k} is non-zero if and only if k is 1 or k is even.

Solution: Consider

$$
\frac{t}{e^{t}-1}+\frac{-t}{e^{-t}-1}=2 \frac{t}{e^{t}-1}+t
$$

Now, the left-hand side equals

$$
\sum_{k \geq 0} \frac{B_{k}}{k!} t^{k}+\sum_{k \geq 0} \frac{B_{k}}{k!}(-t)^{k}=2 \sum_{k \geq 0, \text { even }} \frac{B_{k}}{k!} t^{k}
$$

and the right-hand side equals

$$
2 \sum_{k \geq 0} \frac{B_{k}}{k!} t^{k}+t
$$

Hence, by uniqueness of the power series on their domain of convergence we conclude that $B_{1}=-\frac{1}{2}$ and that B_{k} vanishes for all odd $k \geq 3$.
3. (a) Show that the Eisenstein series E_{4} has a simple zero at $z=\rho$ and no other zeros.

Solution: Lemma 1.4.3. from the lecture notes shows that E_{4} is holomorphic on the whole of \mathcal{H}, hence that $v_{P}\left(E_{4}\right) \in \mathbb{Z}_{\geq 0}$ for any representative P of a $\operatorname{PSL}_{2}(\mathbb{Z})$ orbit in \mathcal{H}. Moreover, Proposition 1.4.5. shows that it is holomorphic at ∞ with $v_{\infty}\left(E_{4}\right)=0$. At the same time, the valence formula states that

$$
v_{\infty}\left(E_{4}\right)+\frac{v_{\rho}\left(E_{4}\right)}{3}+\frac{v_{i}\left(E_{4}\right)}{2}+\sum_{P \in W} v_{P}\left(E_{4}\right)=\frac{1}{3},
$$

where W contains a unique representative for every $\mathrm{PSL}_{2}(\mathbb{Z})$-orbit passing through \mathcal{H}, apart from the orbits of i and ρ. This implies

$$
\frac{v_{i}\left(E_{4}\right)}{2}+\sum_{P \in W} v_{P}\left(E_{4}\right)=\frac{1-v_{\rho}\left(E_{4}\right)}{3} .
$$

Now notice that the left-hand side above is in $\mathbb{Z}_{\geq 0}+\frac{1}{2} \mathbb{Z}_{\geq 0}$, so in particular it is positive, while the right-hand side is in $\frac{1}{3}\left(1-\mathbb{Z}_{\geq 0}\right)$ and will be positive iff $v_{\rho}\left(E_{4}\right) \in\{0,1\}$. For this equation to hold, we must then have $v_{i}\left(E_{4}\right)=0=v_{P}\left(E_{4}\right)$ for all $P \in W$ and $v_{\rho}\left(E_{4}\right)=1$.
(b) Similarly, show that E_{6} has a simple zero at $z=i$ and no other zeros.

Solution: This is solved similarly as the part (a).

