Modular Forms: Problem Sheet 2

Sarah Zerbes

13th March 2022

1. (a) Let a, b, c, d be integers. Show that the map $(m, n) \mapsto (ma + nc, mb + nd)$ is a bijection on $\mathbb{Z}^2 - \{(0, 0)\}$ if and only if $ad - bc = \pm 1$.

Solution: It is clear that

 $(m,n)\mapsto (ma+nc,mb+nd)$

is a well-defined map from \mathbb{Z}^2 to itself. Let A be the matrix of $M_2(\mathbb{Z})$ associated to this linear transformation.

Assume first that $det(A) \in \{\pm 1\}$. Then the inverse A^{-1} belongs to $M_2(\mathbb{Z})$. Finally,

 $A(A^{-1}v) = v = A^{-1}(Av)$

shows that the map is bijective (existence of a left- and right-inverse). Assume now that the map is bijective. It can be viewed as a linear map on the \mathbb{R} -vector space \mathbb{R}^2 that maps the lattice $\mathbb{Z}^2 \subset \mathbb{R}^2$ to itself bijectively. By definition, the volume of the fundamental parallelogram of $A\mathbb{Z}^2$ equals $|\det(A)|$. Since $A\mathbb{Z}^2 = \mathbb{Z}^2$,

$$\det(A) = \operatorname{vol}(\mathbb{R}^2 / A\mathbb{Z}^2) = \operatorname{vol}(\mathbb{R}^2 / \mathbb{Z}^2) = 1$$

and we have proved the statement.

(b) Hence show that for $k \ge 4$ even, the Eisenstein series

$$G_k(z) = \sum_{(m,n) \neq (0,0)} \frac{1}{(mz+n)^k}$$

satisfies $G_k|_k \gamma = G_k$ for any $\gamma \in \mathrm{SL}_2(\mathbb{Z})$, without using Theorem 1.2.2 (a) as we did in class. (You may assume that the sum defining $G_k(z)$ converges absolutely for any $z \in \mathcal{H}$.)

Solution: Let $\gamma \in SL_2(\mathbb{Z})$, then

$$G \mid_{k} \gamma(z) = \sum_{(m,n)\neq(0,0)} \frac{(cz+d)^{-k}}{(m(\gamma\circ z)+d)^{k}}$$
$$= \sum_{(m,n)\neq(0,0)} \frac{1}{(m(az+b)+n(cz+d))^{k}}$$
$$= \sum_{(m,n)\neq(0,0)} \frac{1}{((ma+nc)z+(mb+nd))^{k}}$$
$$= G_{k}(z),$$

where the last equality follows from $det(\gamma) \in \{\pm 1\}$ by (a).

2. (a) Prove the identity

$$\pi z \frac{\cos(\pi z)}{\sin(\pi z)} = \sum_{k \ge 0, \text{ even}} (2\pi i)^k \frac{B_k}{k!} z^k \qquad \forall |z| < 1.$$

Solution: We have

$$\begin{aligned} \pi z \cot(\pi z) &= i\pi z \frac{e^{i\pi z} + e^{-i\pi z}}{e^{i\pi z} - e^{-i\pi z}} = i\pi z \frac{e^{2i\pi z} + 1}{e^{2i\pi z} - 1} \\ &= i\pi z \left(1 + \frac{2}{e^{2i\pi z} - 1} \right) = i\pi z + \frac{2i\pi z}{e^{2i\pi z} - 1} \\ &= i\pi z + \sum_{k=0}^{\infty} \frac{B_k}{k!} (2\pi i z)^k \\ &= \sum_{k \ge 0, \text{ even}} (2\pi i)^k \frac{B_k}{k!} z^k, \end{aligned}$$

where the last equality follows from (d). Note that convergence holds on |z| < 1.

(b) Show that

$$\pi z \frac{\cos(\pi z)}{\sin(\pi z)} = 1 - 2 \sum_{k \ge 2, \text{ even}} \zeta(k) z^k \qquad \forall |z| < 1.$$

Solution: Starting from the equation

$$\sum_{d\in\mathbb{Z}}\frac{1}{z+d} = \pi\cot(\pi z)$$

seen in the lecture, we get

$$\begin{aligned} \pi z \cot(\pi z) &= z \left[\frac{1}{z} + \sum_{d=1}^{\infty} \left(\frac{1}{z+d} + \frac{1}{z-d} \right) \right] \\ &= 1 + 2z^2 \sum_{d=1}^{\infty} \frac{1}{z^2 - d^2} = 1 + 2z^2 \sum_{d=1}^{\infty} \frac{1}{d^2 (z^2/d^2 - 1)} \\ &= 1 - 2z^2 \sum_{d=1}^{\infty} \sum_{k=0}^{\infty} \frac{z^{2k}}{d^{2k+2}} \\ &= 1 - 2 \sum_{k=1}^{\infty} \zeta(2k) z^{2k}, \end{aligned}$$

where absolute convergence is guaranteed on |z| < 1 (additionally recall that the Riemann zeta $\zeta(s)$ converges absolutely on $\Re(s) > 1$).

(c) Deduce that the values of the Riemann zeta function at the even integers $k \ge 2$ are given by

$$\zeta(k) = -\frac{(2\pi i)^k B_k}{2 \cdot k!}$$

Solution: This follows directly from the uniqueness of power series on their domain of convergence. More precisely,

$$\sum_{k \ge 0, \text{ even}} (2\pi i)^k \frac{B_k}{k!} z^k = 1 - 2 \sum_{k \ge 2, \text{ even}}^{\infty} \zeta(k) z^k$$

on |z| < 1, hence their coefficients must coincide for each $k \ge 0$.

(d) Prove that B_k is non-zero if and only if k is 1 or k is even.

Solution: Consider

$$\frac{t}{e^t - 1} + \frac{-t}{e^{-t} - 1} = 2\frac{t}{e^t - 1} + t.$$

Now, the left-hand side equals

$$\sum_{k \ge 0} \frac{B_k}{k!} t^k + \sum_{k \ge 0} \frac{B_k}{k!} (-t)^k = 2 \sum_{k \ge 0, \text{ even}} \frac{B_k}{k!} t^k$$

and the right-hand side equals

$$2\sum_{k>0}\frac{B_k}{k!}t^k + t.$$

Hence, by uniqueness of the power series on their domain of convergence we conclude that $B_1 = -\frac{1}{2}$ and that B_k vanishes for all odd $k \ge 3$.

3. (a) Show that the Eisenstein series E_4 has a simple zero at $z = \rho$ and no other zeros.

Solution: Lemma 1.4.3. from the lecture notes shows that E_4 is holomorphic on the whole of \mathcal{H} , hence that $v_P(E_4) \in \mathbb{Z}_{\geq 0}$ for any representative P of a $\mathrm{PSL}_2(\mathbb{Z})$ orbit in \mathcal{H} . Moreover, Proposition 1.4.5. shows that it is holomorphic at ∞ with $v_{\infty}(E_4) = 0$. At the same time, the valence formula states that

$$v_{\infty}(E_4) + \frac{v_{\rho}(E_4)}{3} + \frac{v_i(E_4)}{2} + \sum_{P \in W} v_P(E_4) = \frac{1}{3},$$

where W contains a unique representative for every $PSL_2(\mathbb{Z})$ -orbit passing through \mathcal{H} , apart from the orbits of i and ρ . This implies

$$\frac{v_i(E_4)}{2} + \sum_{P \in W} v_P(E_4) = \frac{1 - v_\rho(E_4)}{3}.$$

Now notice that the left-hand side above is in $\mathbb{Z}_{\geq 0} + \frac{1}{2}\mathbb{Z}_{\geq 0}$, so in particular it is positive, while the right-hand side is in $\frac{1}{3}(1 - \mathbb{Z}_{\geq 0})$ and will be positive iff $v_{\rho}(E_4) \in \{0, 1\}$. For this equation to hold, we must then have $v_i(E_4) = 0 = v_P(E_4)$ for all $P \in W$ and $v_{\rho}(E_4) = 1$.

(b) Similarly, show that E_6 has a simple zero at z = i and no other zeros.

Solution: This is solved similarly as the part (a).